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Abstract
In this paper, we study the asymptotic behavior of the solutions of a new class of
difference equations

xn+1 = axn–l + bxn–k + f (xn–l , xn–k),

where l and k are nonnegative integers, a and b are nonnegative real numbers, the
initial values x–s, x–s+1, . . . , x0 are positive real numbers, s =max{l, k}, and
f (u, v) : (0,∞)2 → (0,∞) is a continuous and homogeneous real function of degree
zero. We consider the stability, boundedness, and periodicity of the solutions of this
equation which is the most general form of linear difference equations. Thus, the
results in this paper apply to several other equations that are special cases of the
studied equation. Moreover, we present a new method to study periodic solutions of
period two.
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1 Introduction
Difference equations describe the observed evolution of a phenomenon at discrete time
steps. Thus, difference equations are used as discrete models of the workings of physical or
artificial systems. The asymptotic behavior of the solutions of linear difference equations
is a qualitative property having important applications in many areas, including control
theory, mathematical biology, neural networks, and so forth. We cannot use numerical
methods to study the asymptotic behavior of all solutions of a given equation due to the
global nature of that behavior. Therefore, the analytical study of those qualitative proper-
ties has been attracting considerable interest from mathematicians and engineers, as the
only method to gain insight into those properties.

This paper is concerned with the study of the asymptotic behavior of the solutions of a
general class of difference equations

xn+1 = axn–l + bxn–k + f (xn–l, xn–k), (1.1)

where l and k are nonnegative integers, a and b are nonnegative real numbers, and
f (u, v) : (0,∞)2 → (0,∞) is a continuous and homogeneous real function of degree zero.
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The construction of this new class of difference equations is complex and involves several
cases. For example, one can assume a = 0 or b = 0 or both. That makes our analysis better
suited for studying those equations. For studies on equations of a similar form, the reader
is referred to [1–25]. We begin our study with a review of the background on equations
having a similar form to the one we consider in this paper.

Kalabušić and Kulenović [15] and Kulenović and Ladas [18] studied the difference equa-
tion

xn+1 =
a1xn–l + a2xn–k

b1xn–l + b2xn–k
.

Elsayed [12] investigated the asymptotic behavior of the difference equation

xn+1 = A +
a1xn–l + a2xn–k

b1xn–l + b2xn–k
.

Zayed and El-Moneam [26, 27, 29] studied the asymptotic behavior of the difference equa-
tion

xn+1 = Axn +
a1xn + a2xn–k

b1xn + b2xn–k
,

whereas Zayed and El-Moneam [28] studied the global and asymptotic properties of the
solutions of the difference equation

xn+1 = Axn + Bxn–k +
a1xn + a2xn–k

b1xn + b2xn–k
.

Notice that these equations as well as several other equations not listed above are special
cases of equation (1.1).

The results in this paper make three main contributions to the study of linear difference
equations. First, we formulate a general class of difference equations as a means of estab-
lishing general theorems for the asymptotic behavior of its solutions and the solutions of
equations that are special cases of the studied equation. Second, we study the asymptotic
behavior of the solutions of this more general class of difference equations using an effi-
cient method introduced in [12] and modified in [19]. Theorem 3.2 establishes how this
method can be applied to equation (1.1). In particular, this method is also valid and can
be applied to several classes of difference equations for which the classical method fails to
give results. Moreover, we consider difference equations with real coefficients and initial
values which extend and slightly improve previous results. Third, we can use our analysis
to check and verify the results obtained by other researchers.

For the basic definitions and auxiliary lemmas we use for establishing our results, namely
equilibrium points, local stability, and periodicity of the solutions, we refer the reader to
[1, 9, 17, 18]. For the convenience of the reader, we present below some related results.

Lemma 1.1 (see [17, Theorem 1.3.7]) Assume that p, q ∈ R and k ∈ {0, 1, 2, . . .}. Then |p| +
|q| < 1 is a sufficient condition for the asymptotic stability of the difference equation

xn+1 + pxn + qxn–k = 0, n = 0, 1, 2, . . . .
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Lemma 1.2 (see [9, Corollary 4]) Let f : Rn
+ → R be continuous and differentiable on R

n
++.

If f is homogeneous of degree k, then Djf = ∂f /∂xj is homogeneous of degree k – 1.

The rest of the paper is organized as follows. In Sect. 2, we study the stability behav-
ior and boundedness of the solutions of equation (1.1) and give an illustrative example
in support of our analysis. In Sect. 3, we present a technique to investigate the periodic
behavior of the solutions of equation (1.1). A distinguishing feature of our criteria is that
the coefficients l and k of equation (1.1) can be odd or even. Two examples are provided
to illustrate the new method for studying periodic solutions. In Sect. 4, the practicability,
maneuverability, and efficiency of the results obtained are illustrated via two applications.

2 Dynamics of equation (1.1)
2.1 Local stability
Here, we investigate the local stability of the equilibrium point of equation (1.1), which is
given by

x = ax + bx + f (x, x).

Hence, the positive equilibrium point is

x =
1

1 – a – b
f (1, 1), a + b < 1.

Now, we define the function φ(u, v) : (0,∞)2 → (0,∞) by

φ(u, v) = au + bv + f (u, v)

so that

∂φ

∂u
(u, v) = a + fu(u, v),

∂φ

∂v
(u, v) = b + fv(u, v).

Theorem 2.1 The equilibrium point of equation (1.1) x = (1 – a – b)–1f (1, 1) is locally
asymptotically stable if

|ρ| – ρ < (1 – a – b)f (1, 1),

where

ρ =

⎧
⎨

⎩

bf (1, 1) – (1 – a – b)fu(1, 1) if fu > 0,

af (1, 1) – (1 – a – b)fv(1, 1) if fu < 0.

Proof The linearized equation of equation (1.1) about x is the linear difference equation

yn+1 –
∂φ

∂u
(x, x)yn–l –

∂φ

∂v
(x, x)yn–k = 0.
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Hence, by Lemma 1.1, equation (1.1) is locally stable if
∣
∣
∣
∣
∂φ

∂u
(x, x)

∣
∣
∣
∣ +

∣
∣
∣
∣
∂φ

∂v
(x, x)

∣
∣
∣
∣ < 1.

Therefore,

∣
∣a + fu(x, x)

∣
∣ +

∣
∣b + fv(x, x)

∣
∣ < 1. (2.1)

From Euler’s homogeneous function theorem, we deduce that ufu = –vfv and thus fufv < 0.
If fu > 0, then

∣
∣b – fu(x, x)

∣
∣ < 1 – a – fu(x, x).

Using Lemma 1.2, we get
∣
∣
∣
∣b –

1
x

fu(1, 1)
∣
∣
∣
∣ < 1 – a –

1
x

fu(1, 1),

which implies that inequality (2.1) is equivalent to
∣
∣
∣
∣

b
1 – a – b

f (1, 1) – fu(1, 1)
∣
∣
∣
∣ <

1 – a
1 – a – b

f (1, 1) – fu(1, 1),

and so

∣
∣bf (1, 1) – (1 – a – b)fu(1, 1)

∣
∣ < (1 – a)f (1, 1) – (1 – a – b)fu(1, 1).

Next, if fu < 0, then

∣
∣a – fv(x, x)

∣
∣ < 1 – b – fv(x, x).

Similarly, we find

∣
∣af (1, 1) – (1 – a – b)fv(1, 1)

∣
∣ < (1 – b)f (1, 1) – (1 – a – b)fv(1, 1),

which completes the proof. �

Example 2.1 Consider the difference equation

xn+1 = axn–l + bxn–k + c
xn–l

xn–k
, (2.2)

where c is a positive real number. Note that f (u, v) = cu/v. By Theorem 2.1, the equilibrium
point of equation (2.2) x = c/(1 – a – b) is locally asymptotically stable if

∣
∣b – (1 – a – b)

∣
∣ < b.

For example, for l = 0, k = 1, a = 0.2, b = 0.3, c = 1, x–1 = 2.8, and x0 = 1.5, the stable solution
of (2.2) is shown in Fig. 1.
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Figure 1 Stable solution corresponding to difference equation (2.2)

2.2 Boundedness
In this section, we study the boundedness of the solutions of equation (1.1).

Theorem 2.2 If a + b < 1 and there exists a positive constant L such that f (u, v) < L for all
u, v ∈ (0,∞), then every solution of equation (1.1) is bounded.

Proof From equation (1.1), we obtain

xn+1 = axn–l + bxn–k + f (xn–l, xn–k)

< axn–l + bxn–k + L.

Using a comparison, we can write the right-hand side as follows:

yn+1 = ayn–l + byn–k + L,

and this equation is locally stable if a + b < 1 and converges to the equilibrium point y =
L/(1 – a – b). Then we have xn < yn and

lim sup
n→∞

xn ≤ L
1 – a – b

.

Thus, every solution of (1.1) is bounded. �

Remark 2.3 As fairly noticed by the referees, the global asymptotic stability of equation
(1.1) remains an open problem for further research.

3 Periodic solutions
Theorem 3.1 If l and k are either odd or even, then equation (1.1) has no solutions of prime
period two.

Proof Suppose that l and k are even and equation (1.1) has a prime period two solution

. . . , p, q, p, q, . . . .
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Then xn–l = xn–k = q. From equation (1.1), we have

p = (a + b)q + f (q, q),

q = (a + b)p + f (p, p).

Thus, we get

p = q =
1 + a + b

1 – (a + b)2 f (1, 1),

which is a contradiction. Another case can be shown similarly. This completes the proof. �

Theorem 3.2 Assume that l is odd and k is even. Then equation (1.1) has a prime period
two solution

. . . , p, q, p, q, . . .

if and only if

[
(1 – a) – bτ

]
f (τ , 1) =

[
(1 – a)τ – b

]
f (1, τ ), (3.1)

where τ = p/q.

Proof Without loss of generality, we can assume that l > k. Now, let equation (1.1) have a
prime period two solution

. . . , p, q, p, q, . . . .

Since l is odd and k is even, we arrive at xn–l = p and xn–k = q. From equation (1.1), we get

p = ap + bq + f (p, q),

q = aq + bp + f (q, p).

This yields

(1 – a)p = bq + f (τ , 1),

(1 – a)q = bp + f (1, τ ),

where τ = p/q. Then we obtain

(
(1 – a)2 – b2)p = bf (1, τ ) + (1 – a)f (τ , 1),

(
(1 – a)2 – b2)q = bf (τ , 1) + (1 – a)f (1, τ ).

Since p = τq, we find

[
(1 – a) – bτ

]
f (τ , 1) =

[
(1 – a)τ – b

]
f (1, τ ).
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On the other hand, suppose that (3.1) is satisfied. Now, we choose

x–l+2r = λf (1, τ ) + μf (τ , 1) and

x–l+2r+1 = λf (τ , 1) + μf (1, τ ), r = 0, 1, 2, . . . , (l – 1)/2,

where

λ =
b

(1 – a)2 – b2 , μ =
1 – a

(1 – a)2 – b2 ,

and τ ∈R
+. Hence, we see that

x1 = ax–l + bx–k + f (x–l, x–k)

= a
[
λf (1, τ ) + μf (τ , 1)

]
+ b

[
λf (τ , 1) + μf (1, τ )

]

+ f
([

λf (1, τ ) + μf (τ , 1)
]
,
[
λf (τ , 1) + μf (1, τ )

])
. (3.2)

From (3.1), we have

[μ – λτ ]f (τ , 1) = [μτ – λ]f (1, τ ),

and so

μf (τ , 1) + λf (1, τ ) = τ
[
λf (τ , 1) + μf (1, τ )

]
,

which together with (3.2) implies that

x1 = aλf (1, τ ) + aμf (τ , 1) + bλf (τ , 1) + bμf (1, τ ) + f (τ , 1)

= (aμ + bλ + 1)f (τ , 1) + (aλ + bμ)f (1, τ )

= μf (τ , 1) + λf (1, τ ).

Similarly, we can show that x2 = λf (τ , 1) + μf (1, τ ). Then, by induction, we conclude that

x2n–1 = μf (τ , 1) + λf (1, τ ) and x2n = λf (τ , 1) + μf (1, τ ) for all n > 0.

This completes the proof. �

Theorem 3.3 Assume that l is even and k is odd. Then equation (1.1) has a prime period
two solution

. . . , p, q, p, q, . . .

if and only if

[
a – (1 – b)τ

]
f (τ , 1) =

[
aτ – (1 – b)

]
f (1, τ ), (3.3)

where τ = p/q.
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Figure 2 Prime period two solution of equation (2.2)

Proof The proof is similar to that of Theorem 3.2 and thus is omitted. �

Example 3.1 Consider equation (2.2) and assume that l is odd and k is even. By virtue of
Theorem 3.2, equation (2.2) has a prime period two solution

. . . , p, q, p, q, . . .

if and only if

(τ – 1)
(
b – τ + aτ + bτ + bτ 2) = 0.

Since τ �= 1, we obtain

1 + τ 2

τ
=

1 – a – b
b

.

Letting

H(τ ) =
1 + τ 2

τ
> min

τ∈R+
H(τ ) = 2 for τ ∈R

+\{1},

we get a + 3b < 1. For a numerical example, we take l = 1, k = 0, a = 0.3, b = 0.2, c = 1,
x–1 = 3.3333, and x0 = 1.6667; see Fig. 2.

Remark 3.4 Consider the equation

xn+1 = axn + bxn–k +
pxn + xn–k

qxn + xn–k
, (3.4)

which was studied by Zayed and El-Moneam [28]. Define the function

f (u, v) =
pu + v
qu + v

.

Then f is homogeneous with degree zero and

fu(u, v) =
(p – q)v
(qu + v)2 and fv(u, v) =

(q – p)u
(qu + v)2 .
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From Theorem 2.1, the positive equilibrium point of equation (3.4) is

x =
1

1 – a – b
p + 1
q + 1

.

This point is asymptotically stable if p > q and

∣
∣
∣
∣

b
1 – a – b

(p + 1) –
p – q
q + 1

∣
∣
∣
∣ <

1 – a
1 – a – b

(p + 1) –
p – q
q + 1

.

Since 1 – a – b > 0, we obtain the condition

b
1 – a – b

(p + 1) >
p – q
q + 1

.

Also, if q > p, then we have the condition

a
1 – a – b

(p + 1) >
p – q
q + 1

.

(Results of Theorem 6 in [28]). From Theorem 3.1, if k is even, then equation (3.4) has no
prime period two solutions. Furthermore, using Theorem 3.3, if k is odd, then equation
(3.4) has a prime period two solution if and only if

(
a – (1 – b)τ

)
(pτ + 1)(q + τ ) =

(
aτ – (1 – b)

)
(p + τ )(qτ + 1)

and so

(τ – 1)
(
(p + aq – bp)

(
1 + τ 2) +

(
(p – 1)(q – 1)(a + 1 – b) + (2p + 2aq – 2bp)

)
τ
)

= 0.

Since τ �= 1, we have

–
(

(p – 1)(q – 1)(a + 1 – b)
p + aq – bp

+ 2
)

=
1 + τ 2

τ
> min

τ∈R+

1 + τ 2

τ
= 2.

Thus,

(1 – p)(q – 1)(a + 1 – b)
p + aq – bp

> 4.

We note that if p, q > 1 or p, q < 1, then equation (3.4) has no prime period two solutions.

Remark 3.5 Several equations that have been studied in [26, 27, 29] can be treated as spe-
cial cases of (1.1).

4 Applications
Here, two test cases are given to validate the asymptotic behavior of the proposed new
class of difference equations.
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4.1 Application 1
Consider the difference equation

xn+1 = axn–l +
β∑

i=0

ci

(
xn–l

xn–k

)i

, (4.1)

where β ≥ 2 is a positive integer and ci are positive real numbers for all i = 0, 1, . . . ,β . Now,
we define the functions

φ(u, v) = au + f (u, v)

and

f (u, v) =
β∑

i=0

ci

(
u
v

)i

,

where f is homogeneous with degree zero and

fu(u, v) =
β∑

i=1

ici
ui–1

vi .

Note that fu > 0. Then, by Theorem 2.1, the positive equilibrium point

x =
1

1 – a

β∑

i=0

ci

of equation (4.1) is locally asymptotically stable if

β∑

i=1

(2i – 1)ci < c0.

For a numerical example, we take l = 0, k = 1, β = 3, c0 = 2, c1 = 0.2, c2 = 0.2, c3 = 0.1,
x–1 = 5.5, and x0 = 4.5; see Fig. 3.

Assume that l is odd and k is even. It follows from Theorem 3.2 that equation (4.1) has
a prime period two solution . . . , p, q, p, q, . . . if and only if

(1 – a)
β∑

i=0

ciτ
i = (1 – a)τ

β∑

i=0

ciτ
–i.

If a �= 1, then

c0 =
β∑

i=1

ci
1 – τ 2i–1

τ i–1(1 – τ )
.

Now, we have

H(τ ) =
1 – τ 2i–1

τ i–1(1 – τ )
> 2i – 1 for i ≥ 2 and τ ∈R

+\{1}.
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Figure 3 Stable solution of difference equation (4.1)

Figure 4 Prime period solution of equation (4.1)

Then, we get
∑β

i=1(2i – 1)ci < c0. For a numerical example, we take l = 1, k = 0, β = 2,
a = 0.1, c0 = 19/3, c1 = 2, c2 = 1, x–1 = 23.704, and x0 = 7.9012; see Fig. 4.

Conjecture 1 Note that, if
∑β

i=1(2i – 1)ci < c0, then every solution of equation (4.1) con-
verges either to the equilibrium point or to a periodic solution having period two.

4.2 Application 2
Consider the difference equation

xn+1 = axn–l + bxn–k + e–cxn–l/xn–k , (4.2)

where c is a real number. For c > 0, define the function

f (u, v) = e–cu/v,

which is homogeneous with degree zero and

fu(u, v) = –
c
v

e–cu/v < 0,

fv(u, v) =
cu
v2 e–cu/v > 0.
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Figure 5 Stable solution of difference equation (4.2)

Figure 6 Prime period solution of equation (4.2)

By Theorem 2.1, the positive equilibrium point of equation (4.2)

x =
e–c

1 – a – b

is locally asymptotically stable if

∣
∣a – (1 – a – b)c

∣
∣ –

(
a – (1 – a – b)c

)
< 1 – a – b.

Then

a > (1 – a – b)c

or

(1 – a – b)(2c – 1) < 2a.

For a numerical example, we take l = 0, k = 1, a = 0.8, b = 0.1, c = 1, x–1 = 5, and x0 = 5.9;
see Fig. 5. Taking into account that 0 < f (u, v) < 1, an application of Theorem 2.2 implies
that every solution of equation (4.2) is bounded in this case.
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Let l be odd and k be even. By Theorem 3.2, equation (4.2) has a prime period two
solution . . . , p, q, p, q, . . . if and only if

(
(1 – a) – bτ

)
ec(1/τ–τ ) = (1 – a)τ – b,

that is,

c =
τ

1 – τ 2 ln
(1 – a)τ – b
(1 – a) – bτ

.

For a numerical example, we take l = 1, k = 0, a = 0.2, b = 0.3, c = –1.2479, x–1 = 18.663,
and x0 = 9.3316; see Fig. 6.
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