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Abstract
This paper studies the robust adaptive control of fractional-order chaotic systems
with system uncertainties and bounded external disturbances. Based on a proposed
lemma, quadratic Lyapunov functions are used in the stability analysis and
fractional-order adaptation laws are designed to update the controller parameters. By
employing the fractional-order expansion of classical Lyapunov stability method, a
robust controller is designed for fractional-order chaotic systems. The system states
asymptotically converge to the origin and all signals in the closed-loop system remain
bounded. A counterexample is constructed to show that the fractional-order
derivative of a function is less than zero does not mean that the function
monotonically decreases (this property appears in many references). Finally,
simulation results are presented to confirm our theoretical results.
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1 Introduction
Chaos phenomenon is very common in physical systems (also biology, economics, etc.),
and chaotic systems have become one of the hot topics in the nonlinear systems [1–
14]. Since Lorenz discovered the first chaotic attractor, the research on the control and
synchronization of chaotic systems has been widely used in many fields. In the past 20
years, many chaos control and synchronization methods have been proposed [15–17].
Fractional-order calculus has almost the same long history as integer calculus. It was found
that the complex chaotic behavior appeared if one introduced the fractional differential
operator into the integer order chaotic systems. In fact, fractional-order calculus pro-
vides new mathematical tools for many practical systems, especially for chaotic systems in
physics, because it is very suitable for describing the dynamic behavior of some physical
systems that are very sensitive to the initial state values [18–28]. There are many meth-
ods (such as drive-response control, Lyapunov function method, sliding mode control,
generalized synchronization control, active control, nonlinear feedback control) on syn-
chronization and control of fractional-order chaotic systems. However, some new prob-
lems run into the case of fractional-order chaotic systems. Firstly, as the tiny initial value
changes will cause the system’s trajectory shape and affect its stability, it is difficult to con-
trol or synchronize the chaotic systems. Secondly, although the Lyapunov second method
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of fractional-order systems is proposed in [29], and the control and stability analysis of
fractional order nonlinear systems has gradually become a research focus, it is hard to use
the squared Lyapunov function in the stability analysis of fractional-order systems because
the fractional-order derivatives of square functions have a very complex form (as pointed
out in [30, 31]). In order to get over it, many efforts have been made. In 2015, Liu et al.
[32, 33] proposed a method to realize adaptive fuzzy synchronous control of uncertain
fractional-order chaotic systems with unknown asymptotic control gain. This is really a
relatively universal construction method which can be used in many kinds of control and
synchronization of chaotic systems [26, 32, 34–50].

We must point out that the technical part of the successful use of this method is Re-
mark 1 (i.e., Lemma 5 in [32] or Lemma 7 in [33]) which is indeed questionable. In this
paper, we proposed some corrections and verified that the revised theory can still work in
control of chaotic systems. Our contributions are as follows:

• To coin a counterexample which shows that the fractional-order derivative of a
function is less than zero does not mean that the function monotonically decreases.
Then we correct Lemma 5 in [32] and Lemma 7 in [33] to Lemma 4 in this paper.

• To further verify the effectiveness of the new Lemma 4 in the above relatively
universal fractional-order Lyapunov second method, we study the robust adaptive
control of fractional-order chaotic systems with bounded external disturbances and
system uncertainties.

2 Preliminaries
In this section we present some notions and lemmas which are needed in this paper.

Definition 1 (1) Suppose f : [0, +∞) −→ R (the set of all real numbers) and f ′ are bounded
and continuous almost everywhere. The Caputo fractional-order derivative and Caputo
fractional-order integral of f with order α (α ∈ (0, 1)) are defined by the following equali-
ties (1) and (2), respectively [51]:

Dα(f )(t) =
1

�(1 – α)

∫ t

0

f ′(τ ) dτ

(t – τ )α
, (1)

Iα(f )(t) =
1

�(α)

∫ t

0

f (τ ) dτ

(t – τ )1–α
, (2)

where �(z) =
∫ ∞

0 e–ttz–1 dt (z ∈ C, Re(z) > 0) is the gamma function, and C is the set of all
complex numbers.

(2) Assume that f : [0, +∞) −→ R is piecewise continuous and satisfies |f (t)| ≤ Mect for
some M > 0 and c ≥ 0. Then the integral

∫ ∞
0 f (t)e–zt dt is convergent in Cc = {z ∈ C |

Re(z) > c}, and hence we get a mapping F : Cc −→ C (called the Laplace transformation
of f , written also as L (f )). It has been shown that there exists unique g : [0, +∞) −→ R
(called the inverse Laplace transformation of F , written as L –1(F)) such that L (g) = F
(i.e., g = f ). It can be shown that the Laplace transform of the Caputo fractional derivative
is

∫ ∞

0
e–stDα(f )(t) dt = sαF(s) – sα–1f (0). (3)
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(3) The convolution G of two functions f and g is defined by G(x) = f (x) ∗ g(x) =∫ +∞
–∞ f (u)g(x – u) du, and the Mittag-Leffler function with two parameters is defined by

Eα,β (s) =
∞∑

k=0

sk

�(αk + β)
(s ∈C), (4)

where α,β > 0. Note that E1,1(s) = es. The Laplace transform of the function f (t) =
tβ–1Eα,β(–atα) is [52]

L (f )(s) =
sα–β

sα + a
. (5)

Lemma 1 ([29]) Let 0 : [0, +∞) −→ Rn be the mapping taking constant value 0 =
[0, 0, . . . , 0], where Rn is the ordinary n-dimensional Euclidean space. If 0 is an equilibrium
of the following fractional-order nonlinear system (where x : [0, +∞) −→ Rn):

Dα(x)(t) = f
(

x(t)
)
, (6)

and there exist a Lyapunov function V (t, x) and three class-k functions g1, g2, g3 such that

g1
(‖x‖) ≤ V (t, x) ≤ g2

(‖x‖), (7)

Dβ
[
V (t, x)

] ≤ –g3
(‖x‖), (8)

where 0 < β < 1, and ‖ · ‖ is the Euclidean norm, then the equilibrium point 0 of system (6)
is Mittag-Leffler stable (and thus asymptotically stable).

Lemma 2 ([52, 53]) Suppose that x(t) ∈ C1[0, T] where T is a positive constant, then the
following two equations hold:

IαDαx(t) = x(t) – x(0), (9)

DαIαx(t) = x(t). (10)

Lemma 3 ([51]) If x : [0, +∞) −→ Rn is continuously derivable, then

1
2

Dα
[

xT (t)x(t)
] ≤ xT (t)Dα(x)(t)

(∀t ∈ [0, +∞)
)
. (11)

3 Controller design and stability analysis
In this paper, the fractional-order chaotic system model is considered. This mathemati-
cal model describes a fractional-order system by n-directional nonlinear fractional-order
differential equations. The considered model can be expressed as follows:

Dαxi(t) = fi
(

x(t)
)
, (12)

where xi(t) is the state variable. Assume that system (12) has some equilibrium points, one
of them is noted as x∗ = (x∗

1, x∗
2, . . . , x∗

n)T .
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According to (12), the controlled model can be expressed as follows:

Dαxi(t) = fi
(

x(t)
)

+ �fi
(

x(t)
)

+ di(t) + ui(t), (13)

where �fi(x(t)) is system uncertainty, di(t) is unknown external disturbance, and ui(t) is
the control input.

Let the error state be

ei(t) = xi(t) – x∗
i . (14)

In the closed-loop system, we will design the control input ui(t) to make sure that the
error states converge to the origin and all signals remain bounded. To reach this goal, the
following assumptions are needed.

Assumption 1 The system uncertainty �fi(x(t)) is Lipschitz continuous, and there exists
a positive constant γi such that

∣∣�fi
(

x(t)
)∣∣ ≤ γi

∥∥x(t)
∥∥, (15)

where ‖ · ‖ denotes the Euclidean norm.

Assumption 2 The external disturbance di(t) is a bounded continuous function, i.e., di(t)
satisfies the following inequality:

∣∣di(t)
∣∣ ≤ d̄i, (16)

where di is a positive constant.

Since the Caputo derivative of a constant is zero, from (13) and (14) we have

Dαei(t) = fi
(

x(t)
)

+ �fi
(

x(t)
)

+ di(t) + ui(t). (17)

For each i ∈ {1, 2, . . . , n}, multiplying ei(t) to both sides of (17), by Assumptions 1 and 2,
we have

ei(t)Dαei(t) = ei(t)fi
(

x(t)
)

+ ei(t)�fi
(

x(t)
)

+ ei(t)di(t) + ei(t)ui(t)

≤ ei(t)fi
(

x(t)
)

+ ei(t)ui(t) + γi
∥∥x(t)

∥∥∣∣ei(t)
∣∣ + d̄i

∣∣ei(t)
∣∣. (18)

Then we design a controller ui(t) as follows:

ui(t) = –fi
(

x(t)
)

+ sign
(
ei(t)

)(
–ki

∣∣ei(t)
∣∣ – γ̂i(t)

∥∥x(t)
∥∥ – ˆ̄di(t)

)
, (19)

where ki is a positive design parameter, γ̂i(t) is the estimation of γi, and ˆ̄di(t) is the estima-
tion of d̄i.
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Substituting (19) into (18) yields

ei(t)Dαei(t) ≤ ∣∣ei(t)
∣∣((–ki

∣∣ei(t)
∣∣ – γ̂i(t)

∥∥x(t)
∥∥ – ˆ̄di(t)

)
+ γi

∥∥x(t)
∥∥ + d̄i

)

= –ki
∣∣ei(t)

∣∣2 –
∣∣ei(t)

∣∣γ̃i(t)
∥∥x(t)

∥∥ –
∣∣ei(t)

∣∣ ˜̄di(t), (20)

where

γ̃i(t) = γ̂i(t) – γi (21)

and

˜̄di(t) = ˆ̄di(t) – d̄i (22)

are the estimation errors of unknown parameters γi and d̄i, respectively.

Remark 1 In [32], there exists such a result: Suppose that f ′ : [0, +∞) −→ R is continuous.
Then f : [0, +∞) −→ R is monotone increasing (resp., monotone decreasing) if Dα(f )(t) ≥
0 (resp., Dα(f )(t) ≤ 0) for all t ∈ [0, +∞). However, this result is not proper. In this section
we will construct a counter-example to show this and meanwhile give a corrected form
(i.e., Lemma 4).

Example 1 Let α ∈ (0, 1). We are going to construct the needed counter-example in 11
steps.

Step 1. Let a = max{1, 1
41–α–21–α }, and

h1(t) = t1–α – (t – 2)1–α . (23)

From

h′
1(t) = (1 – α)

[
1
tα

–
1

(t – 2)α

]
≤ 0

(∀t ∈ [3, 4]
)
, (24)

we have

h1(t) ≥ h1(4) = 41–α – 21–α ≥ 1
a

(∀t ∈ [3, 4]
)
. (25)

Step 2. Let

I(t) =
∫ 2

0

1
(t – τ )α

dτ +
∫ 4

3

–1
(t – τ )α

dτ

=
1

1 – α

[
t1–α – (t – 2)1–α – (t – 3)1–α + (t – 4)1–α

] (
t ∈ [4, +∞)

)
. (26)

By L’Hospital’s rule, we have

lim
t→+∞ tβ – (t – n)β = lim

t→+∞
1 – (1 – n

t )β

t–β
= lim

t→+∞
nβ(1 – n

t )β–1 1
t2

βt–β–1

= lim
t→+∞

nβ(1 – n
t )β–1

βt1–β
= 0 (n is a natural number, 0 < β < 1). (27)
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From (26) and (27), we can know

lim
t→+∞ I(t) = 0. (28)

Step 3. Since h2(t) = t–α is decreasing in (0, +∞), 1
(t–3)α ≤ 1

(t–4)α (∀t ∈ (4, +∞)), thus

1
2

[
2
tα

–
1

(t – 3)α

]
+

1
2

[
2
tα

–
1

(t – 4)α

]
≥ 2

tα
–

1
(t – 4)α

(∀t ∈ (4, +∞)
)

(29)

and

1
(t – 4)1–α

≥ 1
t1–α

(∀t ∈ (4, +∞)
)
. (30)

Step 4.

lim
t→+∞

[
2(t – 4)α – tα

]
= lim

t→+∞ tα

[
2
(

1 –
4
t

)α

– 1
]

= +∞. (31)

Step 5. As I(t) is continuous in [4, +∞) and limt→+∞ I(t) = 0 (see (28)), there exists b > 0
such that |I(t)| ≤ b (∀t ∈ [4, +∞)).

Step 6. Given t ∈ (4, +∞), we note

u(τ ) =
1

(t – τ )α
(∀τ ∈ [0, t)

)
. (32)

As u′′(τ ) = (–α)(–α – 1)(t – τ )–α–2 ≥ 0, u(τ ) = 1
(t–τ )α is convex downwards in [0, t), thus

∫ 4

3
u(τ ) dτ =

∫ 1

0
u
(
3λ + 4(1 – λ)

)
dλ ≤

∫ 1

0

[
λu(3) + (1 – λ)u(4)

]
dλ

=
1
2
[
u(3) + u(4)

]
=

1
2

[
1

(t – 3)α
+

1
(t – 4)α

]
. (33)

Step 7. From (29) and (33) we know (∀t ∈ (4, +∞))

I(t) ≥
∫ 2

0

1
tα

dτ –
∫ 4

3
u(τ ) dτ ≥ 2

tα
–

1
2

[
1

(t – 3)α
+

1
(t – 4)α

]

=
1
2

[
2
tα

–
1

(t – 3)α

]
+

1
2

[
2
tα

–
1

(t – 4)α

]
≥ 2

tα
–

1
(t – 4)α

. (34)

Step 8. There exists t0 ∈ (4, +∞) such that I(t) ≥ 0 (∀t ∈ [t0, +∞)). In fact, limt→+∞[2(t –
4)α – tα] = +∞ by (27). As 2(t – 4)α – tα is continuous,

2(t – 4)α – tα ≥ 0
(∀t ∈ [t0, +∞)

)
(35)

for some t0 ∈ (4, +∞), which together with (34) implies I(t) ≥ 0 (∀t ∈ [t0, +∞)).



Zhang et al. Advances in Difference Equations        (2018) 2018:412 Page 7 of 15

Step 9. Let c = max{0, b[
∫ 2.75

2.25
dτ

(t0–τ )α ]–1},

l(x) =

⎧⎪⎪⎨
⎪⎪⎩

4(c – a)x + (9a – 8c), x ∈ [2, 2.25),

c, x ∈ [2.25, 2.75),

–4cx + 12c x ∈ [2.75, 3),

(36)

and

g(x) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

a, x ∈ [0, 2),

l(x), x ∈ [2, 3),

–ax + 3a, x ∈ [3, 3 + 1
a ],

a
a–1 x – 4a

a–1 , x ∈ (3 + 1
a , 4),

x – 4 x ∈ [4, +∞).

(37)

Then g(x) is a piecewise linear continuous function which is negative just in (3, 4). From
the fundamental theorem of calculus, we know the function f (t) =

∫ t
0 g(x) dx satisfies

f ′(0+) = g(0) and f ′(t) = g(t). By the definitions of g(x) and f (t), f (t) is monotonous in-
creasing in [0, 3] and [4, +∞) but monotonous decreasing in (3, 4), which means that f (t)
is not monotone in [0, +∞).

Step 10. Now we prove

Dα(f )(t) =
∫ t

0

g(τ )
(t – τ )α

dτ ≥ 0. (38)

If t ∈ [0, 3), then (t – τ )α > 0 (τ ∈ [0, t)), and thus g(τ )
(t–τ )α ≥ 0 (τ ∈ [0, t)) by the definition of

g(x), which means Dα(f )(t) ≥ 0. If t ∈ [3, 4], then ϕ′(t) ≤ 0 (i.e., ϕ(t) = t1–α – (t – 2)1–α is
monotonous decreasing) by Step 3 and the minimum of ϕ(t) in [3, 4] is ϕ(4) = 41–α – 21–α .
As ψ(t) = (t – 3)1–α is monotonous increasing, its maximum on [3, 4] is ψ(4) = 1. By Step 1,

Dα(f )(t) =
∫ 2

0

a
(t – τ )α

dτ +
∫ 3

2

l(τ )
(t – τ )α

dτ +
∫ t

3

g(τ )
(t – τ )α

dτ

≥
∫ 2

0

a
(t – τ )α

dτ +
∫ t

3

g(τ )
(t – τ )α

dτ

≥ a
∫ 2

0

1
(t – τ )α

dτ +
∫ t

3

–1
(t – τ )α

dτ

=
a

1 – α

[
t1–α – (t – 2)1–α

]
+

1
1 – α

[
(t – t)1–α – (t – 3)1–α

]

≥ 1
1 – α

t1–α – (t – 2)1–α

41–α – 21–α
–

1
1 – α

≥ 0. (39)

If t ∈ (4, +∞), then

∫ t

0

g(τ )
(t – τ )α

dτ ≥
∫ 2

0

a
(t – τ )α

dτ +
∫ 3

2

l(τ )
(t – τ )α

dτ

+
∫ 4

3

–1
(t – τ )α

dτ +
∫ t

4

g(τ )
(t – τ )α

dτ
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≥
∫ 2

0

1
(t – τ )α

dτ +
∫ 4

3

–1
(t – τ )α

dτ

+
∫ 3

2

l(τ )
(t – τ )α

dτ +
∫ t

4

g(τ )
(t – τ )α

dτ . (40)

If t ∈ (4, t0], then

Dα(f )(t) =
∫ t

0

g(τ )
(t – τ )α

dτ ≥ I(t) +
∫ 3

2

l(τ )
(t – τ )α

dτ +
∫ t

4

g(τ )
(t – τ )α

dτ

≥ –b +
∫ 2.75

2.25

c
(t – τ )α

dτ

= –b + b
[∫ 2.75

2.25

dτ

(t0 – τ )α

]–1 ∫ 2.75

2.25

dτ

(t – τ )α
= 0. (41)

If t ∈ (t0, +∞), then

Dα(f )(t) =
∫ t

0

g(τ )
(t – τ )α

dτ ≥ I(t) +
∫ 3

2

l(τ )
(t – τ )α

dτ +
∫ t

4

g(τ )
(t – τ )α

dτ ≥ 0. (42)

Step 11. From Steps 1–10 we know h(t) = –f (t) is differentiable in [0, +∞), h′ is contin-
uous, and Dα(h)(t) ≤ 0 (t ∈ [0, +∞)), but h(t) is not monotone in [0, +∞).

Remark 2 This example shows a difference between fractional and integer order calculus.
And the results in [32] are still right because their proofs are valid as long as we replace
Lemma 5 in [32] by the following Lemma 4. In many closed-loop systems, it is difficult to
determine that all signals are bounded. With the following lemma, we can manage to do
this. For example, the signals γ̂ and ˆ̄d in system (13).

Lemma 4 Assume that f ′ is continuous and bounded in [0, +∞). Then f (t) ≥ f (0) if
Dα(f )(t) ≥ 0 (t ∈ [0, +∞)), and f (t) ≤ f (0) if Dα(f )(t) ≤ 0.

Proof We just prove the first part of this lemma.
Step 1.On [0, +∞), if f is continuous St = {(u, v) ∈ R2 | 0 ≤ u ≤ v ≤ t} (t > 0) and α,β ∈

(0, 1), by Fubini’s theorem [54], the following holds:

∫∫
St

f (u) du dv
(t – v)1–α(v – u)1–β

=
∫ t

0

[
1

(t – v)1–α

∫ v

0

f (u) du
(v – u)1–β

]
dv

=
∫ t

0

[
f (u)

∫ t

u

dv
(t – v)1–α(v – u)1–β

]
du. (43)

Step 2. If f is continuous on [0, +∞), we have

Dα ◦ Dβ (f )(t) = Dα+β (f )(t) = Dβ ◦ Dα(f )(t)
(
α,β ∈ (0, 1)

)
. (44)

In fact, let

η = u, ξ =
v – u
t – u

, (45)
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the partial derivatives of (45) are continuous and their Jacobian matrix is not 0 almost
everywhere in the domain. By the definition of Caputo fractional-order integral and Step 1,
we have (where B is the beta function)

Iα ◦ Iβ (f )(t) =
1

�(α)�(β)

∫ t

0

[
1

(t – v)1–α

∫ v

0

f (u) du
(v – u)1–β

]
dv

=
1

�(α)�(β)

∫ t

0

[
f (u)

∫ t

u

(t – v)α–1 dv
(v – u)1–β

]
du

=
1

�(α)�(β)

∫ t

0

[
f (η)(t – η)α+β–1

∫ 1

0

ξβ–1 dξ

(1 – ξ )1–α

]
dη

=
B(β ,α)

�(α)�(β)

∫ t

0

f (η) dη

(t – η)1–α–β
= Iα+β (f )(t). (46)

Step 3. If f ′ is bounded and continuous in [0, +∞), then

Iα ◦ Dα(f )(t) = f (t) – f (0). (47)

In fact, from the definitions of Caputo derivative and integral, we know Dα(f ) = I1–α(f ′).
By Step 2,

Iα ◦ Dα(f )(t) = Iα ◦ I1–α
(
f ′)(t) = I1(f ′). (48)

By the fundamental theorem of calculus, I1(f ′) = f (t) – f (0).
Step 4. Since Dα(f )(t) ≥ 0 (t ∈ [0, +∞)), f (t) – f (0) = Iα ◦ Dα(f )(t) ≥ 0 (∀t ∈ [0,∞)) by

Step 3 and the definition of Iα , which means f (t) ≥ f (0) (∀t ∈ [0,∞)). �

And we show the following lemma.

Lemma 5 Let V1(t) = 1
2 x2(t) + 1

2 y2(t), where x, y : [0, +∞) −→ R is a continuous function. If

Dα(V1)(t) ≤ –kx2(t), (49)

where k is a positive constant, then we have

x2(t) ≤ 2V1(0)Eα

(
–2ktα

)
. (50)

Proof Using the fractional integral operator Iα to both sides of (49), it follows from
Lemma 2 that

V1(t) – V1(0) ≤ –kIαx2(t). (51)

It follows from (51) that

x2(t) ≤ 2V1(0) – 2kIαx2(t). (52)

There exists a nonnegative function m(t) such that

x2(t) + m(t) = 2V1(0) – 2kIαx2(t). (53)
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Taking the Laplace transform (L {·}) on (53) by (3) gives

2X(s) = 2V1(0)
sα–1

sα + 2k
–

sα

sα + 2k
M(s), (54)

where 2X(s) and M(s) are Laplace transforms of x2(t) and m(t), respectively. Using (5), the
solution of (54) will be given as

x2(t) = 2V1(0)Eα

(
–2ktα

)
– m(t) ∗ [

t–1Eα,0
(
–2ktα

)]
, (55)

where ∗ represents the convolution operator. Noting that m(t), Eα,0(–2ktα) and t–1 are
nonnegative functions, it follows from (55) that (50) holds. Then this ends the proof for
Lemma 5. �

Based on the above discussions, now we are ready to give the following results.

Theorem 1 Consider the fractional-order chaotic system (13). Under Assumptions 1 and
2, let the control input be (19). If γ̂i(t) and ˆ̄di(t) are updated by

Dαγ̂i(t) = hi
∣∣ei(t)

∣∣∥∥x(t)
∥∥ (56)

and

Dα ˆ̄di(t) = mi
∣∣ei(t)

∣∣, (57)

respectively, where hi and mi are positive design parameters, then the tracking error ei(t)
will tend to the origin asymptotically, and all signals in the closed-loop system will remain
bounded.

Proof Let us consider the following Lyapunov function candidate:

Vi(t) =
1
2

e2
i (t) +

1
2hi

γ̃ 2
i (t) +

1
2mi

˜̄di
2
(t). (58)

Then, by using Lemma 3, we have

DαVi(t) ≤ ei(t)Dαei(t) +
1
hi

γ̃i(t)Dαγ̃i(t) +
1

mi

˜̄di(t)Dα ˜̄di(t). (59)

Noting that the fractional-order derivative of a constant is zero, from (21) and (22) we
have

Dαγ̃i(t) = Dαγ̂i(t) (60)

and

Dα ˜̄di(t) = Dα ˆ̄di(t). (61)
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Substituting (20), (60), and (61) into (59), we have

DαVi(t) ≤ –ki
∣∣ei(t)

∣∣2 –
∣∣ei(t)

∣∣γ̃i(t)
∥∥x(t)

∥∥ –
∣∣ei(t)

∣∣ ˜̄di

+
1
hi

γ̃i(t)Dαγ̂i(t) +
1

mi

˜̄di(t)Dα ˆ̄di(t). (62)

Then substituting (56) and (57) into (62) gives

DαVi(t) ≤ –ki
∣∣ei(t)

∣∣2. (63)

Thus, we have DαVi(t) ≤ –ki|ei(t)|2 ≤ 0. According to Lemma 4, Vi(t) ≤ Vi(0). In addi-

tion, for Vi(t) = 1
2 e2

i (t) + 1
2hi

γ̃ 2
i (t) + 1

2mi
˜̄di

2
(t), we can know that ei(t), γ̃i(t), and ˜̄di(t) are all

bounded. From Lemma 5 and (63), we can conclude that ei(t) will asymptotically converge
to the origin. This ends the proof for Theorem 1. �

Remark 3 In the stability analysis of fractional-order nonlinear systems, the Lyapunov
function candidate V (t) = 2eT (t)e(t) is often used. The αth-order of V (t) can be given as

DαV (t) =
(
Dαe(t)

)T e(t) + eT (t)Dαe(t) + 2
, (64)

where


 =
∞∑
i=1

�(1 + α)
�(1 + i)�(1 – i + α)

Die(t)Dα–ie(t). (65)

We can see that it is very hard to use the above complicated infinite series to analyze the
stability of fractional-order systems. However, in this paper, by using Lemma 3 and the
proposed Lemma 5, we need not tackle the above complicated infinite series.

4 Simulation studies
Consider the following fractional-order system with Caputo fractional derivative:

⎧⎪⎪⎨
⎪⎪⎩

Dα(x1) = 0.8x1(t) – x2(t)x3(t),

Dα(x2) = –x2(t) + x1(t)x3(t),

Dα(x3) = –4x3(t) + x1(t)x2(t).

(66)

Let α = 0.95, and the equilibrium point is (2, 3.20.5, 0.80.5)T .
The system uncertainties are chosen as:

⎧⎪⎪⎨
⎪⎪⎩

�f1(x(t)) = 0.1x1(t),

�f2(x(t)) = 0.1x2(t) + 0.1x3(t),

�f3(x(t)) = 0.1 sin(x(t)) + 0.1x2(t).

(67)
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Figure 1 Chaotic behavior of fractional-order
system

Figure 2 Stability of fractional-order system

We can easily conclude that Assumption 1 is satisfied. Let the external disturbances be

�d1(t) = 0.1 sin t,

�d2(t) = 0.1 cos t,

�d3(t) = –0.1 sin t + 0.1 cos t.

(68)

Assumption 2 is satisfied, too. The controller design parameters are chosen as k1 = k2 =
k3 = 1, h1 = h2 = h3 = 0.1, m1 = m2 = m3 = 0.1. The initial conditions of the fractional-order
adaptation law are chosen as γ̂1(0) = 0.1, γ̂2(0) = 0.2, γ̂3(0) = 0.2, ˆ̄d1(0) = 0.1, ˆ̄d2(0) = 0.1,
ˆ̄d3(0) = 0.2. To eliminate the chattering phenomenon, the discontinuous term sign(·) is
replaced by arctan(10·).

Figure 1 shows the behavior of the chaotic system. Figure 2 shows how the fractional-
order system has become stable when the controller is activated since t = 30. Figure 3
shows the action of controllers. In this figure, the control inputs do not converge to zero
because fi(t) do not converge to zero. And after t = 30, the error states of the fractional-
order system which converge to the origin are shown in Fig. 4. From the simulation results,
we can see that the good control performance has been obtained, and the system variables
converge to the origin rapidly when the controller is activated at t = 30.

5 Conclusions
Chaotic systems can be used in many fields. Controlling fractional-order chaotic systems
by using an effective control method is an interesting yet challenging work. In this pa-
per, an example is built to show that being less than zero for a fractional-order deriva-
tive does not mean that the function monotonically decreases. And the robust control of
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Figure 3 Controllers of fractional-order system

Figure 4 Error states of fractional-order system

fractional-order chaotic systems by means of adaptive control is primarily discussed. The
proposed method can be divided into three aspects: (1) Based on the fractional-order Lya-
punov second method, analyzing the stability of general fractional-order chaotic systems;
(2) Designing the fractional-order adaptation laws and uploading the controller; (3) Us-
ing the quadratic Lyapunov functions in the stability analysis of fractional-order systems.
The control theorem of fractional-order systems may be enriched by our results, and the
proposed control method can also be extended to other fractional-order systems.
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