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Abstract
The fractional reaction–subdiffusion equation is one of the most famous subdiffusion
equations. These equations are widely used in recent years to simulate many physical
phenomena. In this paper, we consider a new version of such equations, namely the
variable order linear and nonlinear reaction–subdiffusion equation. A numerical study
is introduced using the weighted average methods for the variable order linear and
nonlinear reaction–subdiffusion equations. A stability analysis of the proposed
method is given by a recently proposed procedure similar to the standard John von
Neumann stability analysis. The paper is ended with the results of numerical
examples that support the theoretical analysis.
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1 Introduction
Fractional calculus is a very hot area of research due to its ability to study many appli-
cations in physics and engineering, which cannot be studied by the ordinary calculus.
There are many applications of this important type of calculus [1–4]. The approximate
and numerical techniques must be used [5–9] because most fractional differential equa-
tions (FDEs) do not have exact solutions. Recently, several numerical methods to solve
fractional differential equations have been proposed, such as variational iteration method
[10], homotopy perturbation method [11], Adomian decomposition method [12], homo-
topy analysis method [13], finite difference method (FDM) [14, 15], and spectral methods
[5, 6].

Many physical processes appear to exhibit fractional order behavior that may vary with
time or space. This fact enables us to consider the order of the fractional integrals and
derivatives to be a function of time or some other variables. The objective of this work
is to identify the most appropriate definition of a variable-order operator for modeling
dynamic systems and to assign the order of the derivative to give a physical meaning that
will facilitate the understanding of its use in problems of vibration and control. However,
until now, only few researchers have considered the numerical analysis of variable-order
differential equations; see, for example, [16–20].
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In this paper, we study the following variable order linear and nonlinear reaction–
subdiffusion equation:

∂

∂t
y(x, t) = D1–γ (x,t)

t

[
kα

∂2

∂x2 y(x, t) – εy(x, t)
]

+ g
(
x, t, y(x, t)

)
, 0 < t ≤ T , 0 < x < L, (1)

where we assume Dirichlet boundary conditions as follows:

y(0, t) = φ(t), y(L, t) = ψ(t), 0 < t ≤ T , (2)

with an initial condition

y(x, 0) = ω(x), 0 ≤ x ≤ L. (3)

On a finite domain a < x < b, 0 ≤ t ≤ T , where f is the source term, which may be linear
(g(x, t)) or nonlinear (g(x, t, y(x, t))), 0 < γ (x, t) < 1, ε is a positive constant and D1–γ (x,t)

t

is the variable order fractional derivative defined by the Riemann–Liouville operator of
order 1 – γ , which is defined for a function f (x, t) by (see [18, 20])

D1–γ (x,t)
t f (x, t) =

1
Γ (γ (x, t))

[
∂

∂ξ

∫ ξ

0

f (x,η)
(ξ – η)1–γ (x,t) dη

]
ξ=t

. (4)

And we use the weighted average FDM to solve this model.

2 Fractional reaction–subdiffusion equation
The standard mean-field model for the evolution of the concentrations a(x, t) and b(x, t)
of A and B particles is given by the reaction–diffusion equations:

∂

∂t
a(x, t) = D

∂2

∂x2 a(x, t) – εa(x, t)b(x, t), (5)

∂

∂t
b(x, t) = D

∂2

∂x2 b(x, t) – εa(x, t)b(x, t), (6)

where D is the diffusion coefficient assumed in this paper to be equal for species and ε is
the rate constant for the bimolecular reaction.

In order to generalize the reaction–diffusion problem to a reaction–subdiffusion prob-
lem, we must deal with the subdiffusive motion of the particles. Seki et al. [21] and Yuste
et al. [22] replaced Eqs. (5) and (6) with the set of reaction–subdiffusion equations, in
which both the motion and the reaction terms are affected by the subdiffusive character
of the process:

∂

∂t
a(x, t) = D1–α

t kα

∂2

∂x2 a(x, t) – εa(x, t)b(x, t), (7)

∂

∂t
b(x, t) = D1–α

t kα

∂2

∂x2 b(x, t) – εa(x, t)b(x, t), (8)

where kα is the generalized diffusion coefficient and D1–α
t is the Riemann–Liouville frac-

tional partial derivative of order 1 – α. The fractional reaction–subdiffusion equations (7)
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and (8) are decoupled, which is equivalent to solving the following fractional reaction–
subdiffusion equation:

∂

∂t
y(x, t) = D1–α

t

[
kα

∂2

∂x2 y(x, t) – εy(x, t)
]

+ g(x, t), 0 < t ≤ T , 0 < x < L, (9)

where 0 < α < 1 and ε is a positive constant. We assume Dirichlet boundary conditions for
this problem as follows:

y(0, t) = φ(t), y(L, t) = ψ(t), 0 < t ≤ T , (10)

with an initial condition

y(x, 0) = ω(x), 0 ≤ x ≤ L. (11)

In the last few years, many papers studied the proposed model (1)–(3) (see [21–27]).

3 Finite difference scheme for a variable order fractional
reaction–subdiffusion equation

In this section, we will use the weighted average FDM to obtain a discretization finite
difference formula of the variable order linear and nonlinear reaction–subdiffusion equa-
tion (1). For some positive constants M and N , we use �t and �x to denote the time-step
length and space-step length, respectively. The coordinates of the mesh points are xj = j�x
(j = 0, 1, 2, . . . , N), and tm = m�t, (m = 0, 1, 2, . . . , M) and the values of the solution y(x, t)
on these grid points are y(xj, tm) ≡ ym

j � Y m
j , where �x = L

N , and �t = T
M .

In the first step, the ordinary differential operators are discretized as follows [28]:

∂y
∂t

∣∣∣
xj ,tm

= δtym
j + O(�t) ≡ ym+1

j – ym
j

�t
+ O(�t) (12)

and

∂2y
∂x2

∣∣∣
xj ,tm

= δxxym
j + O

(
(�x)2) ≡ ym

j–1 – 2ym
j + ym

j+1

(�x)2 + O
(
(�x)2). (13)

In the second step, the Riemann–Liouville operator is discretized as follows:

D
1–αm

j
t y(x, t) |xj ,tm = δ

1–αm
j

t ym
j + O

(
(�t)p), (14)

where p is the order of the approximation which depends on the choice of ρ
(1–αm

j )
k , and

δ
1–αm

j
t ym

j ≡ 1

(�t)1–αm
j

[ tm
�t ]∑

k=0

ρ
(1–αm

j )
k y(xj, tm – kh) =

1

(�t)1–αm
j

m∑
k=0

ρ
(1–αm

j )
k ym–k

j , (15)

where [ tm
�t ] means the integer part of tm

�t . There are many choices of the weights ρ
(αm

j )
k (see

[4, 29]), so the above formula is not unique. Let us denote the generating function of the
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weights ρ
(β)
k by ρ(z,β), i.e.,

ρ(z,β) =
∞∑

k=0

ρ
(β)
k zk .

If

ρ(z,β) = (1 – z)β , (16)

then (14) gives the backward difference formula of the first order, which is called the
Grünwald–Letnikov formula. The coefficients ρ

(β)
k can be evaluated by the following for-

mula:

ρ
(β)
k =

(
1 –

β + 1
k

)
ρ

(β)
k–1, ρ

(β)
0 = 1.

For α = 1, the operator D1–α
t becomes the identity operator so that the consistency of

Eqs. (14) and (15) requires ρ
(0)
0 = 1, and ρ

(0)
k = 0 for k ≥ 1, which in turn means that

ρ(z, 0) = 1.
Now, we are going to obtain a finite difference scheme of the linear and nonlinear vari-

able order reaction–subdiffusion equation (1). In our study we take kα = ε = 1.
To achieve this aim, we evaluate this equation at the points of the grid (xj, tm) by

[
yt(x, t) – D

1–αm
j

t yxx(x, t) + D
1–αm

j
t y(x, t)

]
xj ,tm

= g(xj, tm).

Then, we replace the first order time-derivative by the forward difference formula (12) and
replace the second order space-derivative by the three-point centered formula (13) with
respect to the weighed average formula (14) at the times tm and tm+1 as

δtym
j –

{
λδ

1–αm
j

t δxxym
j + (1 – λ)δ

1–αm
j

t δxxym+1
j

}
+ δ

1–αm
j

t ym
j – g(xj, tm) = Tm

j ,

with λ ∈ [0, 1] being the weight factor and Tm
j is the resulting truncation error. The stan-

dard difference formula is given by

δtym
j –

{
λδ

1–αm
j

t δxxym
j + (1 – λ)δ

1–αm
j

t δxxym+1
j

}
+ δ

1–αm
j

t ym
j – g(xj, tm) = 0.

Now, by substituting for the difference operators given by (12), (13) and (15), we can obtain
the following scheme:

–φY m+1
j–1 + (1 + 2φ)Y m+1

j – φY m+1
j+1 = R, (17)

where

φ = (1 – λ)S̄, S̄ =
(�t)α

m
j

(�x)2 , S = (�t)α
m
j , (18)
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and

R = Y m
j + S̄

m∑
r=0

[
λρ

(1–αm
j )

r + (1 – λ)ρ
(1–αm

j )
r+1

][
Y m–r

j–1 – 2Y m–r
j + Y m–r

j+1
]

– S
m∑

r=0

ρ
(1–αm

j )
r Y m–r

j + (�t)g(xj, tm), j = 1, 2, . . . , N – 1. (19)

The boundary conditions were treated using the backward difference formula. Equation
(17) is the variable order weighted average finite difference scheme considered in this pa-
per. Fortunately, Eq. (17) is a tridiagonal system. In the case of λ = 1 and λ = 1

2 , we have the
forward Euler fractional quadrature method and the Crank–Nicolson fractional quadra-
ture methods, respectively, which have been studied, e.g., in [30], but at λ = 0 the scheme
is called fully implicit.

Now, to study the solvability of the proposed FDM, let

Y 0 =
[
w(x1), w(x2), . . . , w(xN–1)

]T and

Y m =
[
Y m

1 , Y m
2 , . . . , Y m

N–1
]T , m = 0, 1, . . . , M,

respectively. Therefore, the explicit difference approximation scheme (17) can be written
in matrix from as

AUm+1 = bm, (20)

where

A =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

(1 + 2φ) –φ

–φ (1 + 2φ) –φ

. . . . . . . . .
–φ (1 + 2φ) –φ

–φ (1 + 2φ) –φ

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

and bm = R.

Remark 1 It is worthy to report here that the number of arithmetic operations required
to solve the system of equations (20) is approximately 2

3 (m + 1)3, see [31].

Theorem 1 The difference equations (20) are uniquely solvable.

Proof Because φ > 0, the coefficient matrix of the difference equations (20) is a strictly
diagonally dominant matrix. Therefore, A is a nonsingular matrix, which proves the the-
orem. �

Lemma 1 The coefficients ρ1–α
k , (k = 0, 1, . . . ), satisfy:

(1) ρ1–α
0 = 1; ρ1–α

1 = α – 1; ρ1–α
k < 0, k = 2, 3, . . . ;

(2)
∑∞

k=0 ρ1–α
k = 1; ∀n ∈ N+, –

∑n
k=1 ρ1–α

k < 1.

Proof See [32]. �
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4 Stability analysis
In this section, we use the John von Neumann method in the stability analysis of the
weighted average scheme (17). In our study we neglected the source term (i.e., g(x, t) = 0).

Proposition 1 Assuming that Y m
j = ξmeiqj�x,

[
1 + 4(1 – λ)S̄ sin2

(
q�x

2

)]
ξm+1 + S

m∑
r=0

ρ
(1–αm

j )
r ξm–r – ξm

+ 4S̄ sin2
(

q�x
2

) m∑
r=0

[
λρ

(1–αm
j )

r + (1 – λ)ρ
(1–αm

j )
r+1

]
ξm–r = 0. (21)

Proposition 2 Assuming in Proposition 1 that ξm+1 = ηξm, the scheme will be stable as long
as

–1 ≤ 1 – 4S̄ sin2( q�x
2 )

∑m
r=0[λρ

(1–αm
j )

r + (1 – λ)ρ
(1–αm

j )
r+1 ]η–r – S

∑m
r=0 ρ

(1–αm
j )

r η–r

1 + 4(1 – λ)S̄ sin2( q�x
2 )

≤ 1. (22)

Proposition 3 Assuming in Proposition 2 that ψ = S̄ sin2( q�x
2 ) and that

Lm =
2 – S

∑m
r=0 ρ

(1–αm
j )

r (–1)–r

4{(2λ – 1)[1 –
∑m

r=1(–1)r–1ρ
(1–αm

j )
r ] + (–1)m(1 – λ)ρ

(1–αm
j )

m+1 }
, (23)

the scheme will be stable when

ψ ≤ Lm. (24)

Theorem 2 The variable order fractional weighted average finite difference scheme (de-
rived in (17)) is stable under the following stability criterion:

1
S̄

≥ 4(2λ – 1)2–αm
j

1 – S2–αm
j

. (25)

Proof Since Lm depends on m, it turns out that Lm tends towards its limit value

L = lim
m→∞ Lm. (26)

In this limit the stability condition is

ψ ≤ 2 – S
∑∞

r=0 ρ
(1–αm

j )
r (–1)–r

4{(2λ – 1)[1 –
∑∞

r=1(–1)r–1ρ
(1–αm

j )
r ] + limm→∞(–1)m(1 – λ)ρ

(1–αm
j )

m+1 }
, (27)

but from Eq. (16) with z = –1 one can see that
∑∞

r=0(–1)rρ
(1–αm

j )
r = 21–αm

j , so that

L =
2 – S21–αm

j

4{(2λ – 1)[2 – 21–αm
j ] + limm→∞(–1)m(1 – λ)w

(1–αm
j )

m+1 }
, (28)
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and by replacing sin2( q�x
2 ) by its highest value, one gets ψ → S̄ as sin2( q�x

2 ) → 1 and

limm→∞(–1)m(1 – λ)ρ
(1–αm

j )
m+1 = 0, therefore we find a sufficient condition for the presented

method to be stable and this completes the proof of the theorem. �

5 Numerical results
In this section we present a numerical example to illustrate the efficiency and the valida-
tion of the proposed numerical method when applied to solve numerically the variable
order linear and nonlinear reaction–subdiffusion equation. In the second example our re-
sults are compared with those obtained in [33] under the same conditions listed in Table 1.

Example 5.1 Consider the following initial–boundary problem of the variable fractional
reaction–subdiffusion equation:

yt(x, t) = D1–α(x,t)
t

[
yxx(x, t) – y(x, t)

]
+ f (x, t), (29)

on a finite domain 0 < x < 1, with 0 ≤ t ≤ T , 0 < α < 1 and the following source term:

g(x, t) = 2
(

t(Γ (2 + α(x, t))) + (π2 + 1)tα(x,t)+1

Γ (2 + α(x, t))

)
sin(πx).

Under the boundary conditions y(0, t) = y(1, t) = 0, and the initial condition y(x, 0) = 0, the
exact solution is y(x, t) = t2 sin(πx).

We will compare the numerical with the exact solution for some different values of
α(x, t), �t, �x, λ and the final time T (see Figures 1–5). Then in Table 2, we will show
the dependency of the maximum absolute error on �x and �t.

According to Remark 1, the number of arithmetic operations required to solve the sys-
tem in this case is approximately 2

3 (91 + 1)3 � 519,125.

Table 1 Absolute error between the exact and numerical solutions of the variable order nonlinear
reaction–subdiffusion equation (30) for different values of α(x, t), �t and �x

α(x, t) �x = 1
5 ,�t = 1

25 �x = 1
10 ,�t = 1

100 �x = 1
20 ,�t = 1

400

ext–5 5.449× 10–3 2.604× 10–3 8.085× 10–4

[33] 3.9838× 10–3 1.0056× 10–3 4.5969× 10–4

10–(xt)2
300 5.585× 10–3 2.776× 10–3 8.532× 10–4

[33] 4.0042× 10–3 1.0109× 10–3 4.3241× 10–4

15–x2+t4
400 5.594× 10–3 2.791× 10–3 8.566× 10–4

[33] 4.0025× 10–3 1.0093× 10–3 4.2750× 10–4
15+cos(xt)

300 5.672× 10–3 2.912× 10–3 8.881× 10–4

[33] 4.0133× 10–3 1.0128× 10–3 4.1130× 10–4

5xt–cos(xt)
40 5.341× 10–3 2.598× 10–3 8.018× 10–4

[33] 3.9431× 10–3 9.9547× 10–3 4.3483× 10–4

ext+sin(xt)
50 5.451× 10–3 2.728× 10–3 8.356× 10–4

[33] 3.9715× 10–3 1.0019× 10–3 4.2391× 10–4

10–sin3(xt)
300 5.583× 10–3 2.776× 10–3 8.532× 10–4

[33] 4.0037× 10–3 1.0103× 10–3 4.3143× 10–4

25–x4+sin3(t)
500 5.653× 10–3 2.881× 10–3 8.794× 10–4

[33] 4.0097× 10–3 1.0118× 10–3 4.1491× 10–4

20–sin3(x)+cos5(t)
400 5.668× 10–3 2.898× 10–3 8.843× 10–4

[33] 4.0148× 10–3 1.0132× 10–3 4.1486× 10–4
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Figure 1 Numerical solution of the variable order fractional reaction–subdiffusion equation at λ = 0 for

�x = 1
90 , �t = 1

100 , final time T = 0.02, α(x, t) = 10+(xt)4–(xt)5
130 and the maximum absolute error is

6.973845× 10–5

Figure 2 Absolute error between the exact and numerical solutions of the variable order fractional

reaction–subdiffusion equation at λ = 0 for �x = 1
90 , �t = 1

100 , final time T = 0.02, α(x, t) = 10+(xt)4–(xt)5
130 , and

the maximum absolute error is 6.973845× 10–5

Example 5.2 Consider the following variable-order nonlinear reaction–subdiffusion
equation

yt(x, t) = D1–α(x,t)
t

[
yxx(x, t) – y(x, t)

]
+ g

(
x, t, y(x, t)

)
, (30)

with the initial and boundary conditions:

y(x, 0) = 0, 0 ≤ x ≤ 1,

y(0, t) = t2, y(1, t) = et2, 0 ≤ t ≤ 1,
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Figure 3 Numerical solution of the variable order fractional reaction–subdiffusion equation at λ = 0.5 for

�x = 1
20 , �t = 1

200 , final time T = 0.1, α(x, t) = 12–sin3(xt)
12 , and the maximum absolute error is 3.456× 10–3

Figure 4 Unstable numerical solution of the variable order fractional reaction–subdiffusion equation at λ = 1

for �x = 1
40 , �t = 1

200 , final time T = 0.2, α(x, t) = 12–sin3(xt)
12 , the stability condition does not hold

where

g
(
x, t, y(x, t)

)
= y2(x, t) + ext

(
2 – ext3). (31)

The exact solution is

u(x, t) = ext2. (32)
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Figure 5 Unstable numerical solution of the variable order fractional reaction–subdiffusion equation at λ = 1

for �x = 1
25 , �t = 1

160 , final time T = 1, α(x, t) = 16+(xt)5
17 , the stability condition does not hold

Table 2 Dependency of maximum absolute error on �x, �t with λ = 0, α(x, t) = 12–sin3(xt)
12 , where

the final time is T = 0.1

�x �t Maximum absolute error
1
10

1
20 3.208× 10–3

1
10

1
30 2.756× 10–3

1
20

1
40 2.607× 10–3

1
30

1
50 2.589× 10–3

1
40

1
50 2.562× 10–3

6 Conclusion and remarks
This paper presents a class of numerical methods for solving the variable order linear and
nonlinear reaction–subdiffusion equation. The contribution in this paper is a generaliza-
tion of the work done by Sweilam et al. [3]. This class of methods is very close to the
weighted average FDM. Special attention is given to the stability of the fractional finite
weighted average FDM. For this we have resorted to a kind of fractional John von Neu-
mann stability analysis. From the theoretical study we can conclude that this procedure is
suitable for the fractional finite weighted average FDM and leads to very good predictions
for the stability bounds. The stability of the fractional finite weighted average FDM pre-
sented strongly depends on the value of the weighting parameter λ. Numerical solutions
and exact solutions of the proposed problem are compared and the derived stability con-
dition is checked numerically. From this comparison, we can conclude that the numerical
solutions are in excellent agreement with the exact solutions. By comparing the results in
this paper with the results in [33], we found that the same order of maximum error was
obtained under the same values of α(x, t), �x and �t.

All computations in this paper were performed using MATLAB software.
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