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Abstract
In this paper, based on the white noise theory for d-parameter Lévy random fields
given by (Holden et al. in Stochastic Partial Differential Equations: A modeling, white
noise functional approach, 2010), we develop a white noise frame for anisotropic
fractional Lévy random fields to solve the stochastic Poisson equation and the
stochastic Schrödinger equation driven by the d-parameter fractional Lévy noise. The
solutions for the two kinds of equations are all strong solutions given explicitly in the
Lévy–Hida stochastic distribution space.
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1 Introduction
In recent years, fractional Lévy processes are getting popular since they are more flexible in
modeling the distributions of noises than fractional Brownian motions (FBMs). More pre-
cisely, they can capture large jumps and model high variability in the real systems appear-
ing in finance, telecommunications, and so on. Meanwhile, they can also capture the long
memory effect in a similar way as FBMs do (see [1, 6–9, 12, 13], etc.). Currently, more and
more researchers have been attracted to the studies of fractional Lévy processes, stochastic
calculus for fractional Lévy processes, and stochastic differential equations driven by these
processes. In [14], the authors defined a stochastic integral for a class of deterministic inte-
grands with respect to real-valued fractional Lévy processes. In [13], we defined a stochas-
tic integral for a class of real deterministic functions and deterministic operator-valued
processes with respect to fractional Lévy processes on Gel’fand triple. In [1], by using S-
transform the authors investigated the Skorokhod integral for fractional Lévy processes
whose underlying Lévy processes have finite moments of any order by avoiding Malliavin
calculus and white noise analysis. In [11], a white noise theory for fractional Lévy process
was developed by considering it as a generalized functional of the sample path of Lévy
process and solving several kinds of stochastic ordinary differential equations driven by
fractional Lévy noises.

The object of this paper is developing white noise theory for fractional Lévy random
fields and then the study of stochastic partial differential equations (SPDEs) driven by a
fractional Lévy noise, that is, solving stochastic Poisson and Schrödinger equations driven
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by a d-parameter fractional Lévy noise. The white noise theory for fractional Lévy random
fields is based on the results of white noise theory for d-parameter Lévy random fields
given by [5]. The technique used in solving our SPDEs is based on the method developed
in [5, 10], and so on, where the SPDEs are driven by Guassian and Lévy white noises. For
convenience, we introduce a generalized approach for our study as follows. Consider an
SPDE driven by fractional Lévy noise and expressed by

A(t, x, ∂t ,∇x, U ,ω) = 0, (1.1)

where A is a given function, U = U(t, x,ω) is an unknown random field, ∂t = ∂
∂t , and

∇x = ( ∂
∂x1

, . . . , ∂
∂x1

). Note that here we interpret all products as Wick products and all func-
tions as their versions through replacing the existing driving noise by the fractional Lévy
noise, which can be considered as generalized Lévy–Hida stochastic distribution func-
tions. Then we have

A�(t, x, ∂t ,∇x, U ,ω) = 0. (1.2)

We take the Hermite transform of (1.2), which turns Wick products into ordinary products
(between possibly complex numbers). Then the equation takes the form

˜A(t, x, ∂t ,∇x,˜U , τ ) = 0, (1.3)

where ˜U = HU is the Lévy–Hermite transform, and τ = (τ1, τ2, . . .) is a complex sequence.
Suppose we can find a solution u = u(t, x, τ ) of the equation

˜A(t, x, ∂t ,∇x, u, τ ) = 0 (1.4)

for each τ ∈ Kq(R) for some q, R, where Kq(R) is defined on page 6. Then, under certain
conditions, we can take the inverse Lévy–Hermite transform ˜U = H–1u and thereby obtain
a solution of the original (Wick) equation. In fact, this method can be also applied to other
kinds of SPDEs driven by fractional Lévy noises. Here we just investigate the Poisson and
Schrödinger types just because they all involve the Laplace operator and contain no first-
order derivatives.

The remainder of this paper is organized as follows. In Sect. 2, we briefly recall the basic
results on the white noise analysis for a d-parameter Lévy random field given by [5]. In
Sect. 3, we define the formal derivative of a fractional Lévy random field as the fractional
Lévy noise Ẋβ (x). Then by using the Wick product we define the Skorokhod integral with
respect to fractional Lévy random field:

∫

Rd
F(x)δXβ(x) :=

∫

Rd
F(x) � Ẋβ (x) dx.

Furthermore, we investigate the integrable conditions for F . In Sects. 4 and 5, based on
the white noise theory developed in Sects. 2 and 3, we respectively solve the stochastic
Poisson and Schrödinger equations driven by the d-parameter fractional Lévy noise, and
the solutions are obtained in the strong sense in the Lévy–Hida stochastic distribution
space.
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2 White noise analysis for a Lévy random field
In this section, we briefly review the white noise analysis for a Lévy random field given by
[5, 10], and [15] for convenience of the reader and citations in the subsequent discussion.

Denote by S(Rd) the Schwartz space of rapidly decreasing C∞-functions on R
d and by

S ′(Rd) the space of tempered distributions, let Ω = S ′(Rd), F = B(S ′(Rd)) be the Borel σ -
algebra on S ′(Rd). By the Bochner–Minlos theorem there exists a probability P on S ′(Rd)
such that

∫

Ω

eiu〈ω,f 〉P(dω) = exp

{∫

Rd
ψ
(

uf (y)
)

dy
}

, u ∈R, f ∈ S
(

R
d), (2.1)

where 〈ω, f 〉 denotes the action of ω ∈ S ′(Rd) on f ∈ S(Rd),

ψ(u) = exp

{∫

R

[

eiuz – 1 – iuz
]

dν(z)
}

, u ∈R, (2.2)

ν is the Lévy measure satisfying ν({0}) = 0 and
∫

R0
(|z|2 ∧ 1) dν(z) < +∞, and R0 = R \ {0}.

Moreover, we assume that

∫

|z|>1
|z|2 dν(z) < +∞. (2.3)

For f ∈ S(Rd), define Ẋ(f )(ω) := 〈ω, f 〉. Then by (2.1) we have

E
[

Ẋ(f )
]

= 0,

E
[

Ẋ(f )
]2 =

∫

Rd
f 2(y) dy

∫

R0

z2 dν(z).

We can extend the definition of Ẋ(f )(ω) for f ∈ S(Rd) to any f ∈ L2(Rd) by choosing fn ∈
S(Rd) such that fn → f in L2(Rd) and defining Ẋ(f )(ω) := limn→∞ Ẋ(fn)(ω) (in L2(P)).

For x = (x1, . . . , xd), define η(x) := Ẋ(1[0,x](·)), where

1[0,x](y) =
d
∏

i=1

1[0,xi](yi), y = (y1, . . . , yd)

with

1[0,xi](yi) =

⎧

⎨

⎩

1, 0 < yi < xi or xi < yi < 0,

0 otherwise.

The stochastic process {η(x), x ∈ R
d} has a càdlàg version, denoted by X. This process

{X(x), x ∈ R
d} is a pure jump Lévy field with Lévy measure ν . The process X admits the

stochastic integral representation

X(x) =
∫ x

0

∫

R0

z˜N(dy, dz) =
∫ xd

0

∫ xd–1

0
· · ·

∫ x1

0

∫

R0

z˜N(dy, dz), (2.4)
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where N((0, x] × A) =
∑

y∈(0,x] 1A(�X(y)), A ∈ B(R) is a Poisson random measure on R
d ×

R0, and ˜N((0, x] × A) = N((0, x] × A) –
∏d

i=1 xiν(A) is its compensator. In this case, X is a
pure-jump Lévy martingale.

Let f = f (x1, z1, . . . , xn, zn) be a symmetric function that is invariant under all permuta-
tions of the index set {1, 2, . . . , n}. If f ∈ L2((Rd × R)n, (λ × ν)n), where λ is the Lebesgue
measure on R

d , then define

In(f ) := n!Jn(f ),

where

Jn(f ) =
∫

Gn

f
(

x1, z1, . . . , xn, zn
)

˜N
(

dx1, dz1
) · · ·˜N(

dxn, dzn
)

with Gn = {(x1, z1, . . . , xn, zn) ∈ (Rd ×R)n : x1
j ≤ x2

j ≤ · · · ≤ xn
j ,∀1 ≤ j ≤ d}.

From now on we assume that the Lévy measure ν is such that, for any constant ε > 0,
there exists a constant λ > 0 such that

∫

R0\(–ε,ε)
exp

(

λ|x|)dν(x) < +∞. (2.5)

Property (2.5) implies that the polynomials are dense in L2(ρ), where ρ(dz) = z2ν(dz)
(see[15]). Let {l0, l1, l2, . . .} be the orthogonalization of {1, z, z2, . . .} with respect to the inner
product of L2(ρ). Define

pj(z) := ‖lj–1‖–1
L2(ρ)zlj–1(z), j = 1, 2, . . . .

In particular, p1(x) = m–1
2 x, where m2 = (

∫

R0
z2 dν(z)) 1

2 . Then {pj(x), j ≥ 1} is an orthonor-
mal basis for L2(ν).

Let h : Nd → N be a bijective map, where N
d is the d-fold Cartesian product of N =

{1, 2, . . .} such that if i = h(i1, . . . , id), then ik ≤ i for k = 1, . . . , d. As for the existence of such
h, for d = 3, define κ(i, j) = j + (i+j–2)(i+j–1)

2 , which is a bijective map from N
2 to N such that

i, j ≤ κ(i, j); then define i = h(i1, i2, i3) = κ(κ(i1, i2), i3). It is easy to see that h is a bijective
map N

3 → N satisfying the demand. In general, we can define h by induction in d.
If i = h(i1, . . . , id), then define ζi(x) = ξi1 (x1) · · · ξid (xd) for x = (x1, . . . , xd), where {ξi, i ≥ 1}

are the Hermite functions. Then {ζi(x), i ≥ 1} is an orthogonal basis of L2(Rd).
Let δκ(i,j)(x, z) = ζi(x)pj(z), let J be the set of all sequences α = (α1,α2, . . . ,αi, . . .) with

αi ∈ {0, 1, 2, . . .} for all i and with finitely αi �= 0, and define index(α) := max{i : αi �= 0}, |α| :=
∑

i αi, α! :=
∏

i αi! where 0! = 1. For α ∈ J with index(α) = j, |α| = m, we define

δ⊗α
(

x1, z1, . . . , xm, zm
)

= δ
⊗α1
1 ⊗ · · · ⊗ δ

⊗αj
j

(

x1, z1, . . . , xm, zm
)

= δ1
(

x1, z1
) · · · δ1

(

xα1 , zα1

)

︸ ︷︷ ︸

α1 factors

· · · δj
(

xm–αj+1, zm–αj+1
) · · · δj

(

xm, zm
)

︸ ︷︷ ︸

αj factors

,
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where ⊗ is the tensor product. We set δ⊗0
j = 1 and δ

̂⊗α(x1, z1, . . . , xm, zm) := δ
̂⊗α1
1 ⊗ · · · ⊗

δ
̂⊗αj
j (x1, z1, . . . , xm, zm), where ̂⊗ is the symmetric tensor product, and define

Kα := I|α|
(

δ
̂⊗α

)

.

Theorem 2.1 ([5]) Any F ∈ L2(P) has a unique expansion of the form

F =
∑

α∈J
cαKα

with cα ∈R. Moreover,

‖ F ‖2
L2(P)=

∑

α∈J
α!c2

α .

By Theorem 2.1, for h ∈ L2(Rd),

Ẋ(h) =
∫

Rd
h(x) dX(x) = m2

∑

i≥1

∫

Rd
h(x)ζi(x) dxKε(i,1), (2.6)

where Kε(i,1) = I1(ξi(x)p1(z)), ε(i, 1) = (0, 0, . . . , 1, 0, . . .) with the 1 on the κ(i, 1)th place.

Definition 2.2 (The Lévy–Hida spaces, [5, 10])
(1) Stochastic test functions (S)

Let (S) consist of all ϕ =
∑

α∈J cαKα such that

‖ϕ‖2
k :=

∑

α∈J
c2
α(α!)2(2N)kα < +∞ for all k ∈N,

equipped with the projective topology, where

(2N)kα =
∏

j≥1

(2j)kαj .

(2) Stochastic distribution (S)–1

Let S–p consist of all ϕ =
∑

α∈J cαKα such that

‖ϕ‖2
–p :=

∑

α∈J
c2
αα!(2N)–pα < +∞,

and define (S)–1 as the inductive limit of {S–p, p ∈ N}, (S)–1 is the dual of (S). If F =
∑

α∈J aαKα ∈ (S)–1 and ϕ =
∑

α∈J bαKα ∈ (S), then the action of F on ϕ is

〈〈F ,ϕ〉〉 =
∑

α∈J
aαbαα!.

Definition 2.3 (Wick product, [10]) If F =
∑

α∈J aαKα ∈ (S)–1 and G =
∑

α∈J bαKα ∈
(S)–1, then the Wick product of F and G is defined as

F � G :=
∑

α,β∈J
aαbβKα+β .
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More generally,

F�n := F � F � · · · � F
︸ ︷︷ ︸

n times

,

exp� F :=
∞
∑

n=0

F�n

n!
.

Proposition 2.4 Suppose F =
∑

α∈J aαKα ∈ S–k and G =
∑

α∈J bαKα ∈ S–l with k > l + 1.
Then

‖F � G‖–k ≤ A(k – l)‖F‖–k‖G‖–l,

where

A(k – l) =
∑

α∈J
(2N)(l–k)α < +∞.

Proof Analogous to the proof of Proposition 3.3.2 in [5]. �

Definition 2.5 ([10]) If F =
∑

α∈J aαKα ∈ (S)–1, then the Lévy–Hermite transform of F
is defined by

HF(τ ) :=
∑

α∈J
aατα =

∑

α∈J
aα

∏

k

τ
αk
k (2.7)

for τ = (τ1, τ2, . . .) ∈ C
N, where C is the complex plane, and C

N is the set of all sequences
τ = (τ1, τ2, . . .) with τi ∈C.

An important property of the Lévy–Hermite transform is that it transforms the Wick
product into an ordinary product, that is,

H(F � G)(τ ) = HF(τ )HG(τ ).

For 0 < R < +∞, q ∈N, define

Kq(R) :=
{

τ = (τ1, τ2, . . .) ∈C
N :

∑

α �=0

∣

∣τα
∣

∣

2(2N)qα < R2
}

.

In [10], the following characterization theorem for the stochastic distribution (S)–1 is
given.

Theorem 2.6 ([10])
(1) If F =

∑

α∈J aαKα ∈ (S)–1, then there exist q ∈N and 0 < Mq < +∞ such that

∣

∣HF(z)
∣

∣ ≤
∑

α

|aα|∣∣τα
∣

∣ ≤ Mq

(

∑

α �=0

∣

∣τα
∣

∣

2(2N)qα

) 1
2

for all τ ∈ (CN)C , where (CN)C is the set of all finite sequences in C
N.

In particular, HF is a bounded analytic function on Kq(R) for all 0 < R < +∞.
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(2) Conversely, assume that f (τ ) =
∑

α aατα is absolutely convergent and bounded on
Kq(R) for some R > 0 and 0 < q < ∞. Then there exists a unique F ∈ (S)–1 such that
HF = f and

F =
∑

α∈J
aαKα .

Definition 2.7 ([5]) Suppose F : Rd −→ (S)–1 is a given function such that 〈〈F(x), f 〉〉 ∈
L1(Rd, dx) for all f ∈ S . Then

∫

Rd F(x) dx is defined to be the unique element of (S)–1 such
that

〈〈∫

Rd
F(x) dx, f

〉〉

=
∫

Rd

〈〈

F(x), f
〉〉

dx.

Lemma 2.8 Let F(x) =
∑

α∈J cα(x)Kα with

∑

α∈J

∥

∥cα(·)∥∥2
L1(Rd)(2N)–pα < +∞

for some p ∈N. Then F is (S)–1-integrable, and

∫

Rd
F(x) dx =

∑

α∈J

∫

Rd
cα(x) dxKα . (2.8)

Proof Analogous to the proof of Lemma 2.5.6 in [5]. �

Theorem 2.9 ([5]) Suppose u = u(t, x, τ ) is a solution (usually in strong pointwise sense) of
the equation

˜A(t, x, ∂t ,∇x, u, τ ) = 0 (2.9)

for all (t, x) in some bounded open set G ⊂ R × R
d and for all τ ∈ Kq(R) for some q, R.

Moreover, suppose that u = u(t, x, τ ) and all its partial derivatives involved in (2.9) are
bounded on (x, τ ) ∈ D × Kq(R), continuous with respect to x ∈ D for each τ ∈ Kq(R), and
analytic with respect to τ ∈ Kq(R) for all x ∈ D. Then there exists U(t, x) ∈ (S)–1 such that
u(t, x, τ ) = (HU(t, x))(τ ) for all (t, x, τ ) ∈ G × Kq(R) and U(t, x) solves (in the strong sense in
(S)–1) the equation

A�(t, x, ∂t ,∇x, U ,ω) = 0.

3 White noise analysis for an anisotropic fractional Lévy random field
In this section, according to the result of Sect. 2, we give the white noise analysis for the
anisotropic fractional Lévy random field. First, we give its chaos expansion by consider-
ing it as a generalized functional of the path of the Lévy random field. Second, based on
the chaos expansion of the anisotropic fractional Lévy random field, we define its formal
derivative as a d-parameter fractional Lévy noise. Finally, we define the stochastic integra-
tion and give an integrability condition.
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Let 0 < β < 1
2 and f ∈ S(R). The Riemann–Liouville fractional integral operator Iβ

± is
defined by

(

Iβ
– f

)

(t) =
1

Γ (β)

∫ +∞

t
(s – t)β–1f (s) ds, (3.1)

(

Iβ
+ f

)

(t) =
1

Γ (β)

∫ t

–∞
(t – s)β–1f (s) ds, (3.2)

where Γ is the gamma function. (For more detail about the Riemann–Liouville fractional
integral operator, see[16].)

Definition 3.1 For β = (β1, . . . ,βd), 0 < βk < 1
2 , k = 1, 2, . . . , d, the anisotropic fractional

Lévy random field is defined by

Xβ (x) := Ẋ
(

Iβ
–···–χ[0,x]

)

=
∫

Rd
Iβ

–···–χ[0,x](y) dX(y), x ∈R
d, (3.3)

where Iβ
–···–χ[0,x](y) =

∏d
k=1 Iβk

– χ[0,xk ](yk),

χ[0,xi](yi) =

⎧

⎪

⎪

⎨

⎪

⎪

⎩

1, 0 < yi < xi,

–1, xi < yi < 0,

0 otherwise.

Note that Iβ
–···–χ[0,x](·) ∈ L2(Rd), Xβ (x) is well defined. The field (3.3) can be represented as

Xβ (x) =
1

Γ (β + 1)

∫ x1

–∞
. . .

∫ xd

–∞

d
∏

k=1

[

(xk – yk)βk – (yk)βk
+
]

dX(y), (3.4)

where x+ = max{x, 0} and Γ (β) =
∏d

k=1 Γ (βk + 1). From (3.4) we see that the fractional inte-
gral parameters along different time axes are different. Thus, the fractional Lévy random
field {Xβ (x), x ∈R

d} is anisotropic. By (2.6), Xβ (x) has the chaos representation

Xβ (x) = m2
∑

i≥1

∫

Rd
Iβ

–···–χ[0,x](y)ζi(y) dyKε(i,1). (3.5)

Thus, by (2.7) we get the Lévy–Hermite transform of the anisotropic fractional Lévy ran-
dom field

HXβ (x)(τ ) = m2
∑

i≥1

∫

Rd
Iβ

–···–χ[0,x](y)ζi(y) dyτε(i,1). (3.6)

On the other hand, by the fractional integral by parts formula of the operator Iβ
±,

∫

R

f (x)Iβ
+ g(x) dx =

∫

R

g(x)Iβ
– f (x) dx, f , g ∈ S(R),
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which can be extended to f ∈ Lp(R) and g ∈ Lr(R) with p > 1, r > 1, and 1
p + 1

r = 1 + β

(see[16]), (3.5) can be written as

Xβ (x) = m2
∑

i≥1

∫

Rd
Iβ

–···–χ[0,x](y)ζi(y) dyKε(i,1)

= m2
∑

i≥1,h(i1,...,id)=i

d
∏

k=1

∫

R

Iβk
– χ[0,xk ](yk)ξik (yk) dykKε(i,1)

= m2
∑

i≥1,h(i1,...,id)=i

d
∏

k=1

∫

R

χ[0,xk ](yk)Iβk
+ ξik (yk) dykKε(i,1)

= m2
∑

i≥1

∫ x1

0
. . .

∫ xd

0
Iβ

+···+ζi(y) dyKε(i,1), (3.7)

where Iβ
+···+ζi(y) :=

∏d
k=1 Iβk

+ ξik (yk), h(i1, . . . , id) = i. We denote by Ẋβ̄ (x) the fractional Lévy
noise in the following sense:

Ẋβ (x) :=
∂d

∂x1 · · · ∂xd
Xβ (x) = m2

∑

i≥1

Iβ
+···+ζi(x)Kε(i,1). (3.8)

Next, we prove that Ẋβ (x) is a generalized stochastic distribution function.

Theorem 3.2 Ẋβ (x) ∈ S–p for all p > 2.

Proof We will use the estimate

∫

R

(t – u)β–1
+ ξn(u) du ≤ Cn

2
3 – β

2 (3.9)

from Sect. 4 of [4], where C is a certain positive constant independent of t. From now on,
we denote by C all positive constants. We have

∥

∥Ẋβ (x)
∥

∥

2
–p = m2

2

∑

i≥1

(

Iβ
+···+ζi(x)

)22–pε(i, 1)–p

= m2
2

∑

i≥1,h(i1,...,id)=i

(

Iβ1
+ ξi1 (x1) · · · Iβd

+ ξid (xd)
)22–pκ(i, 1)–p

= m2
2

∑

i≥1,h(i1,...,id)=i

d
∏

k=1

(

1
Γ (βk)

∫

R

(xk – u)βk –1
+ ξik (u) du

)2

2–p
(

1 +
i(i – 1)

2

)–p

≤ C
∑

i≥1,h(i1,...,id)=i

2–pi–p
d
∏

k=1

i–βk + 4
3

k ≤ C
∑

i1,...,id

2–p
d
∏

k=1

i–p–βk + 4
3

k

≤ C
d
∏

l=1

∑

ik

2–pi–p+ 4
3 –βk

k

< +∞ for p > 2.
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Here we use the assumption on h that if i = h(i1, . . . , id), then ik ≤ i for k = 1, . . . , d. Thus,
Ẋβ (x) ∈ S–p for all p > 2. �

Now, we define the Skorokhod integral for (S)–1-valued random fields with respect
to Xβ .

Definition 3.3 Suppose that F : Rd −→ (S)–1 is such that F(x) � Ẋβ̄ (x) is dx-integrable in
(S)–1. Then we define the Skorokhod integral of F with respect to Xβ̄ by

δβ̄ (F) :=
∫

Rd
F(x)δXβ̄(x) :=

∫

Rd
F(x) � Ẋβ̄ (x) dx.

In particular, for Borel sets A ⊂R
d , we have

∫

A
F(x)δXβ̄(x) :=

∫

Rd
1A(x)F(x) � Ẋβ̄ (x) dx.

Proposition 3.4 If F(x) =
∑

α∈J cα(x)Kα for all x ∈R
d with

L := sup
α∈J

{‖cα‖2
L1(Rd)(2N)–qα

}

< +∞

for some q ∈N, then F is integrable with respect to Xβ , and

∫

Rd
F(x)δXβ(x) = m2

∑

α∈J ,i≥1

∫

Rd
cα(x)

(

Iβ
+ ζi

)

(x) dxKα+ε(i,1).

Proof Since

F(x) � Ẋβ (x) = m2
∑

α∈J ,i≥1

cα(x)
(

Iβ
+ ζi

)

(x)Kα+ε(i,1) = m2
∑

γ

[

∑

α+ε(i,1)=γ

cα(x)
(

Iβ
+ ζi

)

(x)
]

Kγ

by Lemma 2.8, we wish to show that

M(p) =
∑

γ

∥

∥

∥

∥

∑

α+ε(i,1)=γ

cα(·)(Iβ
+ ζi

)

(·)
∥

∥

∥

∥

2

L1(Rd)
(2N)–pγ < +∞

for some p > 0. By (3.9) we have

∫

Rd

∣

∣cα(x)
∣

∣

∣

∣

(

Iβ
+ ζi

)

(x)
∣

∣dx ≤ C
d
∏

k=1

i
2
3 – β

2
k ‖cα‖L1(Rd), where h(i1, . . . , id) = i.

Note that, for all γ , α, there is at most one i satisfying α + ε(i, 1) = γ , and such i is no more
than index (γ ); therefore

∥

∥

∥

∥

∑

α+ε(i,1)=γ

cα(·)(Iβ
+ ζi

)

(·)
∥

∥

∥

∥

2

L1(Rd)

≤
(

∑

α+ε(i,1)=γ

∥

∥

∥

∥

∥

cα(·)
d
∏

k=1

(

Iβk
+ ξik

)

(·)
∥

∥

∥

∥

∥

L1(Rd)

)2
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≤ C

(

∑

α+ε(i,1)=γ

d
∏

k=1

i
2
3 – β

2
k ‖cα‖L1(Rd)

)2

≤ C
(

∑

α+ε(i,1)=γ

(

index(γ )
)( 2

3 – β
2 )d‖cα‖L1(Rd)

)2

≤ C
(

index(γ )
)2d+2 ∑

α:∃iα+ε(i,1)=γ

‖cα‖2
L1(Rd),

where C is a positive constant. Note that index(γ ) ≤ (2N)γ , then

M(p) ≤ C
∑

α,i

(index
(

α + ε(i, 1)
)2d+2‖cα‖2

L1(R)(2N)–p(α+ε(i,1))

≤ C
∑

α,i

(2N)(2d+2)(α+ε(i,1))(2N)–pε(i,1)(2N)–(p–q)α‖cα‖2
L1(R)(2N)–qα

≤ CL
∑

α

(2N)–(p–q–2d–2)α
∑

i

[

2
(

1 +
i(i – 1)

2

)]–(p–2d–2)

< +∞

for p > q + 2d + 2. Thus,

∫

Rd
F(x)δXβ(t) =

∫

Rd

∑

α∈J
cα(x)Kα �

∑

i≥1

m2
(

Iβ
+ ζi

)

(x)Kε(i,1) dx

= m2
∑

α∈J ,i≥1

∫

Rd
cα(x)

(

Iβ
+ ζi

)

(x) dxKα+ε(i,1). �

Proposition 3.5 Let F : Rd −→ (S)–1 be Skorokhod integrable with respect to Xβ , Y ∈
(S)–1. Then

Y � δβ̄ (F) = δβ̄ (Y � F),

provided that one side exists.

4 The stochastic Poisson equation driven by the d-parameter fractional Lévy
noise

In this section, we investigate the stochastic Poisson equation driven by the d-parameter
fractional Lévy noise:

⎧

⎨

⎩

�U(x) = –Ẋβ (x), x ∈ D,

U(x) = 0, x ∈ ∂D,
(4.1)

where � =
∑d

k=1
∂2

∂x2
k

is the Laplace operator in R
d , D ⊂ R

d is a given domain with regular

boundary, and Ẋβ (x) is the d-parameter fractional Lévy noise. For example, this equation
models the temperature U(x) in D when the boundary temperature is kept equal to 0 and
there is a fractional noise heat source in D.
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Lemma 4.1 ([10]) Suppose U and F are functions from D in (4.1) to (S)–1 such that

�HU(x, τ ) = HF(x, τ ), x ∈ D,

for all (x, τ ) ∈ D × Kq(R) for some q < +∞ and R > 0.

Furthermore, assume that, for all j, ∂2

∂xj
HU(x, τ ) is bounded on (x, τ ) ∈ D × Kq(R), con-

tinuous with respect to x ∈ D for each τ ∈ Kq(R), and analytic with respect to τ ∈ Kq(R)
for all x ∈ D. Then

�U(x) = F(x), x ∈ D.

Theorem 4.2 The stochastic Poisson equation (4.1) has a unique continuous solution U :
D −→ (S)–1. The solution is twice continuously differentiable in (S)–1 and takes the form

U(x) =
∫

D
G(x, y)Ẋβ (y) dy = m2

∑

i≥1

∫

D
G(x, y)Iβ

+···+ζi(y) dyKε(i,1),

where G is the classical Green function of D with G = 0 outside D.

Proof Taking the Lévy–Hermite transform of (4.1), we get

⎧

⎨

⎩

�u(x, τ ) = –HẊβ (x)(τ ), x ∈ D,

u(x, τ ) = 0, x ∈ ∂D.
(4.2)

where u(x, τ ) = HU(x)(τ ) and HẊβ (x)(τ ) = m2
∑

i≥1 Iβ
+···+ζi(x)τε(i,1).

Based on the corresponding solution in the deterministic case, the solution of (4.2) is

u(x, τ ) =
∫

D
G(x, y)HẊβ (y)(τ ) dy. (4.3)

Since G(x, ·) ∈ L1(Rd), the right-hand side of (4.3) exists for all τ ∈ (CN)C and x ∈ D. Hence,
u(x, τ ) is defined for such τ , x. Further, by (3.9) we see that

∣

∣u(x, τ )
∣

∣ ≤ m2
∑

i≥1

|τε(i,1)|
∫

D

∣

∣G(x, y)
∣

∣

∣

∣Iβ
+···+ζi(y)

∣

∣dy

≤ C
∑

i≥1

|τε(i,1)|
d
∏

k=1,h(i1,...,id)=i

1
Γ (βk)

i– βk
2 + 2

3
k

∫

D

∣

∣G(x, y)
∣

∣dy

≤ C
∑

i≥1

|τε(i,1)|i 2
3 d

≤ C
(

∑

i≥1

|τε(i,1)|2(2N)qε(i,1)
) 1

2
(

∑

i≥1

i
4
3 d(2N)–qε(i,1)

) 1
2

≤ CR
(

∑

i≥1

i
4
3 d–q

) 1
2

< +∞ (4.4)
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for all τ ∈ Kq(R), where q > 4
3 d + 1. Relations (4.3)–(4.4) show that u(x, τ ) is analytical

in τ . Thus, we conclude by the characterization theorem (Theorem 2.6) that there exists
a function U : D −→ (S)–1 such that u(x, τ ) = HU(x)(τ ). Next, we want to verify the as-
sumptions of Lemma 4.1. It is known from the deterministic PDEs that, for all open and
relatively compact V in D,

∥

∥u(·, τ )
∥

∥

C2+α (V ) ≤ C
(∥

∥�u(·, τ )
∥

∥

Cα (V ) +
∥

∥u(·, τ )
∥

∥

C(V )

)

(4.5)

for all τ ∈ (CN)C (see [2]). Since �u(x, τ ) = –HẊβ
x (τ ) and u are bounded on D × Kq(R), it

follows that ∂2

∂xj
u(x, τ ) is bounded for such x, τ . Thus, by Lemma 4.1, U is a solution of

(4.1).
Further, by the proof of Theorem 3.2 and the fact that G(x, ·) ∈ L1(Rd), for p > 1, we have

∥

∥U(x)
∥

∥

–p ≤
∫

D

∥

∥Ẋβ
y
∥

∥

–p

∣

∣G(x, y)
∣

∣dy < +∞,

that is, the Bochner integral
∫

D G(x, y)Ẋβ
y dy exists in (S)–1, and

∫

D
G(x, y)Ẋβ

y dy = m2
∑

i≥1

∫

D
G(x, y)Iβ

+···+ζi(x)Kε(i,1). (4.6)

Then the right-hand side of (4.3) is the Lévy–Hermite transform of (4.6). Thus, we finish
the proof of the theorem. �

Remark The solution U(x) is a strong solution in (S)–1, that is, for each x,

〈〈

U(x), f
〉〉

=
∫

D
G(x, y)

〈〈

Ẋβ
y , f

〉〉

dy, ∀f ∈ (S).

5 The stochastic Schrödinger equation driven by the d-parameter fractional
Lévy noise

In this section, we investigate the stochastic Schrödinger equation driven by the d-
parameter fractional Lévy noise:

⎧

⎨

⎩

1
2�U(x) + V (x) � U(x) = –f (x), x ∈ D,

U(x) = 0, x ∈ ∂D,
(5.1)

where � =
∑d

k=1
∂2

∂x2
k

is the Laplace operator in R
d , D is a given bounded domain in R

d , and
V (x) and f (x) are given stochastic distribution-valued processes. We replace the potential
V (x) proportional to the d-parameter fractional Lévy noise Ẋβ (x), that is,

⎧

⎨

⎩

1
2�U(x) + ρẊβ(x) � U(x) = –f (x), x ∈ D,

U(x) = 0, x ∈ ∂D,
(5.2)

where ρ ∈R is a constant. If ρ > 0, then this case is called the attractive case.
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Let λ0 be the smallest eigenvalue for the operator – 1
2� in R

d , that is, λ0 is the smallest
λ such that the boundary value problem

⎧

⎨

⎩

1
2�u(x) = λu(x), x ∈ D,

u(x) = 0, x ∈ ∂RD,
(5.3)

where ∂RD is the regular boundary of D, has a solution u ∈ C2(D).
Let {bt , t ≥ 0} denote an auxiliary Brownian motion independent of X, and let̂Ex denote

the expectation with respect to the law ̂Px of {bt , t ≥ 0} starting at x. Define the first exit
time τD for bt from D by

τD = inf{t > 0 : bt∈D}.

In fact,

λ0 = sup
{

ρ ∈R :̂Ex[exp[ρτD]
]

< +∞}

, ∀x ∈ D.

(See, e.g., Durrett[3].)

Theorem 5.1 Suppose that f (x) is a stochastic distribution process such that ˜f (x, τ ) =
Hf (x)(τ ) is bounded for (x, z) ∈ D × Kq(R) with some q, R. Let D be a bounded domain
in R

d with all its points regular for the classical Dirichlet problem in D. Let ρ < λ0 be a
constant. Then, there exist a unique (S)–1 solution U(x) of (5.2) expressed as

U(x) =̂Ex
[∫ τD

0
exp�

[

ρ

∫ t

0
exp�(Ẋβ (bs)

)

ds
]

� f (bt) dt
]

. (5.4)

Proof Choose τ ∈ (CN)C . By taking the Lévy–Hermite transform of (5.2) we get

⎧

⎨

⎩

1
2�u(x, τ ) + ρ(HẊβ )(x)(τ ) � u(x, τ ) = –˜f (x, τ ), x ∈ D,

U(x) = 0, x ∈ ∂D,
(5.5)

where u(x, τ ) = HU(x)(τ ), (HẊβ (x))(τ ) = m2
∑

i≥1 Iβ
+···+ζi(x)τε(i,1). Then, by a complex ver-

sion of the Feynman–Kac formula we get the unique solution of (5.5)

u(x, τ ) =̂Ex
[∫ τD

0
exp

[

ρ

∫ t

0
exp

(

HẊβ (bs)(τ )
)

ds
]

˜f (bt , τ ) dt
]

, (5.6)

provided that the expression converges. Note that

∣

∣

(

HẊβ (bs)
)

(τ )
∣

∣

2 = m2
2

∣

∣

∣

∣

∑

i≥1

Iβ
+···+ζi(bs)τε(i,1)

∣

∣

∣

∣

2

≤ m2
2

(

∑

i≥1

sup
x

∣

∣Iβ
+···+ζi(x)

∣

∣|τε(i,1)|
)2

≤ Cm2
2

(

∑

i≥1

i
2
3 d–

∑d
i=1

βi
2 |τε(i,1)|

)2
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≤ Cm2
2

∑

i≥1

i
4
3 d–

∑d
i=1 βi (2N)–qε(i,1)

∑

i≥1

|τε(i,1)|(2N)qε(i,1)

≤ Cm2
2

∑

i≥1

i
4
3 d–

∑d
i=1 βi–q

∑

α

|τε(i,1)|(2N)qα := C(q, R)2 < +∞

for all τ ∈ Kq(R) and q > 4
3 d –

∑d
i=1 βi + 1. Therefore, by the assumption on f , for τ ∈ Kq(R),

we have

∣

∣u(x, τ )
∣

∣ ≤ M̂Ex
[∫ τD

0
exp

[

ρ

∫ t

0
exp C(q, R) ds

]

dt
]

≤ M̂Ex
[∫ τD

0
exp

[

ρt exp C(q, R)
]

dt
]

≤ M
ρ exp C(q, R)

̂Ex[exp
[

ρτD exp C(q, R)
]]

,

where M = sup{˜f (x, τ ), (x, τ ) ∈ D × Kq1 (R1)}.
Now choose q2, R2, and ε > 0 such that

ρ
[

exp C(q2, R2)
]

< (1 – ε)λ0.

Then, for q > max{q1, q2} and R < min{R1, R2}, we have

∣

∣u(x, τ )
∣

∣ <
M

ρ exp C(q, R)
̂Ex[exp

[

(1 – ε)λ0τD
]]

< +∞

for all τ ∈ Kq(R).
Since u(x, τ ) is analytical in τ ∈ Kq(R), we conclude by the characterization theorem

(Theorem 2.6) that there exists a function U : D −→ (S)–1 such that u(x, τ ) = HU(x)(τ ).
Next, we want to verify the assumptions of Theorem 2.9. It is known from the determin-
istic PDEs that, for all open and relatively compact V in D,

∥

∥u(·, τ )
∥

∥

C2+α (V ) ≤ C
(∥

∥�u(·, z)
∥

∥

Cα (V ) +
∥

∥u(·, τ )
∥

∥

C(V )

)

for all τ ∈ (CN)C . It follows that ∂2

∂xj
u(x, τ ) is uniformly bounded for such (x, τ ) ∈ V ×Kq(R)

for each open set V � D. Thus, by Theorem 2.9, U is a solution of (5.1). Moreover, we can
verify directly that the right-hand side of (5.6) is the Lévy–Hermite transform of (5.4).
Thus, we finish the proof of the theorem. �

Remark The solution U(x) is a strong solution in (S)–1, that is, for each x,

⎧

⎨

⎩

1
2�〈〈U(x), f 〉〉 + 〈〈ρẊβ(x) � U(x), f 〉〉 = –〈〈f (x), f 〉〉, x ∈ D

〈〈U(x), f 〉〉 = 0, x ∈ ∂D,

Funding
The research work is supported by Natural Science Foundation of Jiangsu Province with grant No. BK20150935, National
Natural Science Foundation of China with grants Nos. 11771006, 11801267, 11371010, Natural Science Fund for Colleges
and Universities in Jiangsu Province of China (17KJB180005), and the Second Chinese-Foreign Cooperatively-Run High
Level Demonstrative Construction Projects Incubation Centre in Jiangsu Province (Second Batch).



Lü and Dai Advances in Difference Equations        (2018) 2018:420 Page 16 of 16

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
The authors have made the same contribution. Both authors read and approved the final manuscript.

Author details
1Department of Applied Mathematics, School of Physical and Mathematical Sciences, Nanjing Tech University, Nanjing,
P.R. China. 2Department of Mathematics, Nanjing University, Nanjing, P.R. China.

Publisher’s Note
Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 23 May 2018 Accepted: 23 October 2018

References
1. Bender, C., Marquardt, T.: Stochastic calculus for convoluted Lévy processes. Bernoulli 14(2), 499–518 (2008)
2. Bers, L., John, F., Schechter, M.: Partial Differential Equations, Interscience (1964)
3. Durrett, R.: Brownian Motion and Martingales in Analysis. Wadsworth, Belmont (1984)
4. Elliott, R.C., Van der Hoek, J.: A general fractional white noise theory and applications to finance. Math. Finance 13,

301–330 (2003)
5. Holden, H., Oksendal, B., Uboe, J., Zhang, T.: Stochastic Partial Differential Equations: a modeling, white noise

functional approach, 2nd edn. Springer, (2010)
6. Huang, Z., Li, C.: On fractional stable processes and sheets: white noise approach. J. Math. Anal. Appl. 325, 624–635

(2007)
7. Huang, Z., Li, P.: Generalized fractional Lévy processes: a white noise approach. Stoch. Dyn. 6, 473–485 (2006)
8. Huang, Z., Li, P.: Fractional generalized Lévy random fields as white noise functionals. Front. Math. China 2, 211–226

(2007)
9. Huang, Z., Lü, X., Wan, J.: Fractional Lévy processes and noises on Gel’fand triple. Stoch. Dyn. 10, 37–51 (2010)
10. Lokka, A., Oksendal, B., Proske, F.: Stochastic partial differential equations driven by Lévy space-time white noise. Ann.

Appl. Probab. 14(3), 1506–1528 (2004)
11. Lü, X., Dai, W.: White noise analysis for fractional Lévy processes and its applications. (to appear)
12. Lü, X., Huang, Z., Dai, W.: Generalized fractional Lévy random fields on Gel’fand triple: a white noise approach. Front.

Math. China 6, 493–506 (2011)
13. Lü, X., Huang, Z., Wan, J.: Fractional Lévy processes on Gel’fand triple and stochastic integration. Front. Math. China 3,

287–303 (2008)
14. Marquardt, T.: Fractional Lévy processes with an application to long memory moving average processes. Bernoulli 12,

1099–1126 (2006)
15. Nualart, D., Schoutens, W.: Chaotic and predictable representations for Lévy processes. Stoch. Process. Appl. 90(1),

109–122 (2000)
16. Samko, S.G., Kilbas, A.A., Marichev, O.I.: Fractional Integrals and Derivatives: Theory and Applications. Gordon &

Breach, New York (1987)


	A white noise approach to stochastic partial differential equations driven by the fractional Levy noise
	Abstract
	Keywords

	Introduction
	White noise analysis for a Lévy random ﬁeld
	White noise analysis for an anisotropic fractional Lévy random ﬁeld
	The stochastic Poisson equation driven by the d-parameter fractional Lévy noise
	The stochastic Schrödinger equation driven by the d-parameter fractional Lévy noise
	Funding
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


