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Abstract
The aim of this paper is using an elementary method and the properties of the
Bernoulli polynomials to establish a close relationship between the Euler numbers of
the second kind E∗

n and the Dirichlet L-function L(s,χ ). At the same time, we also
prove a new congruence for the Euler numbers En. That is, for any prime p ≡ 1 mod 8,
we have E p–3

2
≡ 0 mod p. As an application of our result, we give a new recursive

formula for one kind of Dirichlet L-functions.
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1 Introduction
For any integer n ≥ 0 and real number 0 ≤ x < 1, the Euler polynomials En(x) (see [1, 2] and
[3]) and the Bernoulli polynomials Bn(x) (see [2, 4] and [5]) are defined by the coefficients
of the power series

2ezx

ez + 1
=

∞∑

n=0

En(x)
n!

· zn and
z · ezx

ez – 1
=

∞∑

n=0

Bn(x)
n!

· zn.

When x = 0, En = En(0) is called the nth Euler number, Bn = Bn(0) is called the nth Bernoulli
number. For example, the initial values of En and Bn are E0 = 1, E1 = – 1

2 , E2 = 0, E3 = 1
4 , E4 =

0, E5 = – 1
2 , E6 = 0, . . . ; B0 = 1, B1 = – 1

2 , B2 = 1
6 , B3 = 0, B4 = – 1

30 , B5 = 0, B6 = 1
42 , . . . .

The Euler numbers of the second kind E∗
n (see [2, 6, 7] and [8]) are also defined by the

coefficients of the power series

2
ez + e–z =

∞∑

n=0

E∗
n

n!
· zn =

∞∑

n=0

E∗
2n

(2n)!
· z2n,

where E∗
0 = 1, E2 = –1, E∗

4 = 5, E∗
6 = –61, and E∗

2i+1 = 0 for all integers i ≥ 0.
It is clear that E∗

n = 2n · En( 1
2 ). These polynomials and numbers arise in many combina-

torial and number theory contexts. As for the elementary properties of these sequences,
various authors have studied them and obtained many interesting results. For example,
W. Zhang [9] obtained some combinational identities. As an application of the result in
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[9], he proved that for any prime p, one has the congruence

(–1)
p–1

2 E∗
p–1 ≡

⎧
⎨

⎩
0 mod p if p ≡ 1 mod 4;

–2 mod p if p ≡ 3 mod 4.

Richard K. Guy [10] (see problem B45 and [11]) proposed the following two problems:
Is it true that for any prime p ≡ 1 mod 8, p � E∗

p–1
2

? Is the same true for p ≡ 5 mod 8?
G. Liu [6] solved the second problem by an elementary method. Later, W. Zhang and

Z. Xu [7] solved the above two problems completely. In fact, they proved the following
general conclusion: For any prime p ≡ 1 mod 4 and positive integer α, one has the con-
gruence

pα � E∗
φ(pα )/2,

where φ(n) denotes the Euler function.
Recently, J. Zhao and Z. Chen [12] proved the following conclusion: For any positive

integers n and k ≥ 2, one has the identity

∑

a1+a2+···+ak =n

Ea1

(a1)!
· Ea2

(a2)!
· · · Eak

(ak)!
=

2k–1

(k – 1)!
· 1

n!

k–1∑

i=0

C(k – 1, i)En+k–1–i,

where the sequence {C(k, i)} is defined as follows: For any positive integer k and integers
0 ≤ i ≤ k, we define C(k, 0) = 1, C(k, k) = k! and

C(k + 1, i + 1) = C(k, i + 1) + (k + 1)C(k, i), for all 0 ≤ i < k,

provided C(k, i) = 0, if i > k.
As corollaries of this result, J. Zhao and Z. Chen [12] also obtained the following results:

For any odd prime p, one has the congruences

Ep+1 ≡ 0(mod p), 2Ep ≡ 1(mod p) and Ep–1 ≡ –1(mod p).

T. Kim et al. (see [2, 13–17] and [18]) also obtained many interesting identities related to En

and E∗
n . Especially in [19], T. Kim also proved a series of important conclusions involving

Euler numbers and polynomials associated with zeta functions.
In this paper, we will use elementary methods and the properties of the Bernoulli num-

bers to establish a close relationship between the Euler numbers of the second kind E∗
n and

the Dirichlet L-function L(s,χ ). Meanwhile, we will also prove a new congruence for the
Euler numbers En. That is to say, we will prove the following several facts.

Theorem 1 For any positive integer n, we have the identity

E∗
2n = (–1)n · 22n+2 · (2n)!

π2n+1 · L(2n + 1,χ4),
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where χ4 denotes the non-principal character mod 4, and L(s,χ4) denotes the Dirichlet L-
function corresponding to χ4. In fact, we have

χ4(n) =

⎧
⎨

⎩
0 if 2 | n;

(–1) n–1
2 if 2 � n.

Theorem 2 For any positive integer n, we have the identity

E2n–1 = –
(22n – 1)

n
· B2n. (1)

From Theorems 1 and 2 we may immediately deduce the following:

Corollary 1 For any positive integer n, we have the recursive formula

n∑

k=0

(–1)k

(2n – 2k)!
· 4k

π2k+1 · L(2k + 1,χ4) = 0,

where L(1,χ4) = π
4 .

Corollary 2 Let p be a prime with p ≡ 1 mod 8, then we have the congruence

E p–3
2

≡ 0 mod p.

Corollary 3 For any positive integer n with (n, 3) = 1, we have the congruence

E2n–1 ≡ 1 mod 3.

Corollary 4 For any positive integer n with (n, 5) = 1, we have the congruence

E4n–1 ≡ –1 mod 5.

Corollary 5 For any positive integer n with (n, 7) = 1, we have the congruence

E6n–1 ≡ 3 mod 7.

Corollary 6 For any positive integer n with (n, 11) = 1, we have

E10n–1 ≡ 1 mod 11.

From Theorem 2 we can also deduce the following identities:

L(1,χ4) =
π

4
; L(3,χ4) =

π3

32
; L(5,χ4) =

5 · π5

1536
and L(7,χ4) =

61 · π7

184,320
.

Some notes Since En is not necessarily an integer, it can still be written as En = Hn
Kn

with
(Hn, Kn) = 1. So En ≡ 0 mod p in this paper implies that p | Hn while p � Kn.

For a prime p ≡ 5 mod 8, whether E p–3
2

≡ 0 mod p is true is an interesting open problem.
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2 Several simple lemmas
In this section, we will give two simple lemmas. Hereafter, we may use facts from number
theory and the properties of the Bernoulli numbers, all of which can be found in [4]. Thus
we will not repeat them here.

Lemma 1 For any positive integer n and real number x, we have the identity

2n · Bn(x) =
n∑

k=0

(
n
k

)
Ek · Bn–k(2x) =

n∑

k=0

(
n
k

)
Ek(2x) · Bn–k .

Proof First from the definitions of the Euler numbers and Bernoulli polynomials we have

2ze2xz

e2z – 1
=

2
ez + 1

· ze2zx

ez – 1
=

( ∞∑

n=0

En

n!
· zn

)
·
( ∞∑

n=0

Bn(2x)
n!

· zn

)

=
∞∑

n=0

1
n!

( n∑

k=0

(
n
k

)
Ek · Bn–k(2x)

)
· zn. (2)

On the other hand, from the definition of the Bernoulli polynomials and the Euler poly-
nomials, we also have

2ze2xz

e2z – 1
=

∞∑

n=0

Bn(x)
n!

· (2z)n =
∞∑

n=0

2n · Bn(x)
n!

· zn (3)

and

2ze2xz

e2z – 1
=

2e2xz

ez + 1
· z

ez – 1
=

( ∞∑

n=0

En(2x)
n!

· zn

)( ∞∑

n=0

Bn

n!
· zn

)

=
∞∑

n=0

1
n!

( n∑

k=0

(
n
k

)
Ek(2x) · Bn–k

)
· zn. (4)

Combining (2)–(4) and comparing the coefficients of the power series, we have the identity

2n · Bn(x) =
n∑

k=0

(
n
k

)
Ek · Bn–k(2x) =

n∑

k=0

(
n
k

)
Ek(2x) · Bn–k .

This proves Lemma 1. �

Lemma 2 For any positive integer n, we have the identity

B2n+1

(
1
4

)
= (–1)n+1 2(2n + 1)!

(2π )2n+1 L(2n + 1,χ4),

where χ4 denotes the non-principal character mod 4.

Proof For any real number 0 < x < 1, from [4, Theorem 12.19] we have

B2n+1(x) = (–1)n+1 2(2n + 1)!
(2π )2n+1

∞∑

k=1

sin(2πkx)
k2n+1 . (5)
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Taking x = 1
4 in (5), we have

B2n+1

(
1
4

)
= (–1)n+1 2(2n + 1)!

(2π )2n+1

∞∑

k=1

sin( 2πk
4 )

k2n+1

= (–1)n+1 2(2n + 1)!
(2π )2n+1

∞∑

k=1

sin( 2π (2k–1)
4 )

(2k – 1)2n+1

= (–1)n+1 2(2n + 1)!
(2π )2n+1

∞∑

k=1

(–1)k–1

(2k – 1)2n+1 = (–1)n+1 2(2n + 1)!
(2π )2n+1

∞∑

k=1

χ4(k)
k2n+1

= (–1)n+1 2(2n + 1)!
(2π )2n+1 L(2n + 1,χ4).

This proves Lemma 2. �

3 Proofs of the theorems
In this section, we will complete the proofs of our theorems. First, we prove Theorem 1.
For any positive integer m, taking x = 1

4 and n = 2m+1 in Lemma 1, and noting that B1 = – 1
2

and B2i+1 = E2i+1( 1
2 ) = 0 for all integers i ≥ 1, we have

22m+1 · B2m+1

(
1
4

)
=

2m+1∑

k=0

(
2m + 1

k

)
Ek

(
1
2

)
B2m+1–k

=
(

2m + 1
2m

)
E2m

(
1
2

)
· B1 = –

2m + 1
2

E2m

(
1
2

)
= –

2m + 1
22m+1 E∗

2m. (6)

From (6) and Lemma 2 we have

22m+1 · (–1)m+1 2(2m + 1)!
(2π )2m+1 L(2m + 1,χ4) = –

2m + 1
22m+1 E∗

2m

or

E∗
2m = (–1)m · 22m+2 · (2m)!

π2m+1 · L(2m + 1,χ4).

This proves Theorem 1.
Taking x = 0, n = 2m and m ≥ 1 in Lemma 1, we have

22m · B2m(0) = 22m · B2m =
2m∑

k=0

(
2m
k

)
Ek · B2m–k(0) =

2m∑

k=0

(
2m
k

)
Ek · B2m–k . (7)

Note that B2i+1 = 0 for all i ≥ 1, and B1 = – 1
2 , E0 = 1 and E2i = 0 for all i ≥ 1. From (7) we

have

22m · B2m =
(

2m
0

)
E0 · B2m +

(
2m

2m – 1

)
E2m–1 · B1 = B2m – m · E2m–1,

which implies

E2m–1 = –
22m – 1

m
· B2m.

This proves Theorem 2.
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Now we prove Corollary 1. For any positive integer n, note that the power series

ez + e–z

2
=

∞∑

n=0

z2n

(2n)!
,

from the definition of E∗
2n satisfies the identity

1 =

( ∞∑

n=0

1
(2n)!

· z2n

)
·
( ∞∑

n=0

E∗
2n

(2n)!
· z2n

)
=

∞∑

n=0

( n∑

k=0

E∗
2k

(2k)!
· 1

(2n – 2k)!

)
· z2n.

That is, for any positive integer n, we have the identity

n∑

k=0

E∗
2k

(2k)!
· 1

(2n – 2k)!
= 0. (8)

Combining (8) and Theorem 1, we may immediately deduce the identity

n∑

k=0

(–1)k

(2n – 2k)!
· 4k

π2k+1 · L(2k + 1,χ4) = 0.

This proves Corollary 1.
To prove other corollaries, taking a prime p = 4k + 1 and n = p–1

4 in Theorem 2, we have

E p–3
2

= –
4

p – 1
· (2

p–1
2 – 1

) · B p–1
2

. (9)

From Euler’s criterion (see [4, Theorem 9.2]) we have

2
p–1

2 ≡
(

2
p

)
≡ (–1)

p2–1
8 ≡

⎧
⎨

⎩
1 mod p if p ≡ 1 mod 8;

–1 mod p if p ≡ 5 mod 8,
(10)

where ( ∗
p ) denotes the Legendre’s symbol mod p.

For the Bernoulli numbers B2n, we also have

B2n = In –
∑

p–1|2n

1
p

, (11)

where In is an integer and the sum is over all primes p such that p – 1 divides 2n.
In fact, formula (11) was discovered in 1840 by von Staudt and Clausen (independently);

see [4, Exercises for Chap. 12].
Now in (11), we let 2n = p–1

2 and B2n = U2n
V2n

, where U2n and V2n are two integers with
(U2n, V2n) = 1. Since p – 1 � p–1

2 , from (11) we know that (V2n, p) = 1 and (2
p–1

2 – 1) · B p–1
2

is
an integer.

If p ≡ 1 mod 8, then from (9), (10) and (11) we have the congruence

E p–3
2

= –
4

p – 1
· (2

p–1
2 – 1

) · B p–1
2

≡ 0 mod p.

This proves Corollary 2.
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Corollaries 3–6 can also be easily deduced from Theorem 2 and the method used when
proving Corollary 2.

This completes the proofs of all our results.
If p ≡ 5 mod 8, then we have 2

p–1
2 ≡ –1 mod p and p � (2

p–1
2 – 1). So in this case, whether

one has E p–3
2

≡ 0 mod p remains an open problem.
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