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Abstract
In this paper, the focus is on a bifurcation of period-K orbit that can occur in a class of
Filippov-type four-dimensional homogenous linear switched systems. We introduce a
theoretical framework for analyzing the generalized Poincaré map corresponding to
switching manifold. This provides an approach to capturing the possible results
concerning the existence of a period-K orbit, stability, a number of invariant cones,
and related bifurcation phenomena. Moreover, the analysis identifies criteria for the
existence of multi-sliding bifurcation depending on the sensitivity of the system
behavior with respect to changes in parameters. Our results show that a period-two
orbit involves multi-sliding bifurcation from a period-one orbit. Further, the existence
of invariant torus, crossing-sliding, and grazing-sliding bifurcation is investigated.
Numerical simulations are carried out to illustrate the results.

Keywords: Period-K orbit; Invariant cones; Sliding motion; Poincaré map;
Multi-sliding bifurcation

1 Introduction
Higher dimensional systems (n > 3) are of great significance for applications as modeling
problems often require higher dimensions. Therefore, this paper aims to investigate the
existence of a period-K orbit, multiple periodic orbits, and related bifurcation in a linear
homogeneous switching system which are quite different from those in a smooth system.
These phenomena and bifurcation theory are extremely important in understanding the
qualitative change in the dynamical behavior that appears on the surface of discontinuity.
In smooth systems these topics are especially important phenomena which exist only in
the behavior of nonlinear systems and are closely related to system stability and may lead
to more complicated behavior such as chaos. As an example of the existence of multiple
periodic orbits, a subcritical Hopf bifurcation leads to multiple periodic orbits in a stage
structured population model [23]. Moreover, in a smooth system the necessary methods
have been developed, essentially based on the fact that smooth (differentiable) systems
can locally be approximated by linearized systems. Key ingredients developed within that
approach are the concepts of invariant manifolds, attractors, and a characterization by
characteristic numbers such as Lyapunov exponents. For instance, in the context of bifur-
cations of equilibria and stability analysis, center manifold theory is a well-established and
mathematically proven procedure to reduce the dimension of dynamical systems.
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Switched dynamical system (SDS for short) exhibits a wide variety of complex phenom-
ena which cannot be dealt with by the classical theory, but are typically observed in many
models of real systems; for instance, stick-slip, chattering, grazing-sliding, and jump phe-
nomena were observed in an automotive brake system, impact contact model of a church
bell, electronic switches, and genetic networks, respectively. For historical overviews and
references, see [3, 5, 6, 10, 17, 18, 22].

In addition, SDS provides a set of possible candidates for motion of transversal cross-
ing or attractive sliding. These systems can exhibit a wide range of nonlinear phe-
nomena including either classical bifurcations and chaos or unique phenomena, termed
discontinuity-induced bifurcations, that involve the interaction of the systems’ invariant
sets with the discontinuity boundaries.

Further, many researchers have used fractional differential equations to develop math-
ematical models that appeared in different areas of sciences. In addition, several different
control methods have been applied to synchronize the fractional order chaotic systems,
for instance, see [8, 9]. These results motivated us to combine the fractional differential
equations and certain types of discontinuities in vector fields as a future direction of the
current work.

Nowadays, there has been growing interest in the fact that the richness of dynamical
behavior found in linear SDS covers almost all types of bifurcations found in nonlinear
smooth systems such as limit cycles, period-doubling, chaotic transients, homoclinic and
heteroclinic, and strange attractors. Furthermore, it has been pointed out that linear SDS
can undergo a complex behavior and a great number of completely new bifurcations since
the characteristics of these bifurcations depend critically on both the class of SDSs and the
geometry of the involved boundaries. Recently, in [12] it was shown that the existence of a
novel bifurcation depends sensitively on the location of the return flow. Such an example
is the existence of an invariant cone for linear SDS which may exhibit that a periodic orbit
will be destroyed suddenly without any change in its stability. Further, in [19] it was shown
that the planar linear SDS which has no equilibria in each subsystem, neither real nor
virtual, can exhibit at least one limit cycle. For a review of the available results, see [3, 4,
6, 7, 12, 14, 19, 21, 27]. According to these researchers, we note that the current results
of bifurcation theory for SDS are still incomplete and scarce. What is more, there is no
general classification strategy proposed due to the lack of smoothness, suitable methods,
and techniques.

Our approach (in collaboration with Küpper and Weiss, see [12, 15, 16, 18, 25, 26]) is
linked with the existence of invariant surfaces in the phase space which is separated by a
discontinuity manifold. It has been shown that the existence of invariant cones for SDS
plays a central role in understanding the often complicated dynamical behavior near fixed
points. The investigation of the dynamical behavior of the original problem is reduced to
the dynamics on a two-dimensional invariant surface, carrying the essential dynamics and
stability analysis of the full system. Further, we have shown how the dynamics of sliding
flow can be achieved by using a generalized notion of the existence of invariant cones when
the sliding motion takes place on the switching surface. Here the notion of an invariant
cone appeared generalizing the focus to an object on a cone consisting of periodic orbits
or orbits spiraling “in” and “out” of zero, respectively. This approach allows us to prove
the existence of some sliding bifurcations for a class of linear SDSs related to invariant
cones. This approach has been generalized to nonlinear SDSs in two possible behaviors:
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transversal crossing and attractive sliding mode. Starting with a piecewise linear system as
basic system, it has been shown that the corresponding invariant cones will be deformed
to a cone-like surface if higher order terms are added. In that way, we have established a
similar reduction procedure to a lower dimensional system for nonlinear SDSs as has been
achieved for a smooth system via the center manifold approach.

One method of studying SDS is by constructing a suitable generalized Poincaré map
which has several useful properties [16] and then studying its dynamics. Therefore, the
existence of invariant cones is equivalent to the existence of positive real eigenvalues of
the return Poincaré map.

In this paper, we extend this approach to investigate the existence of the period-K orbit, a
number of invariant cones, and associated phenomena. We identify three main challenges
associated with finding period-K orbit (i.e., orbits intersecting the surface of discontinuity
K times). The first is to find the lowest positive times of intersection with the switching
surface that are dependent on ξ in a nonlinear way. The second is to construct a Poincaré
map analytically, which is not an easy task. The third is to find an eigenvector which forms
the period- K orbit.

One further aim of this work is to investigate the existence of multi-sliding, sliding bi-
furcation, and dynamics around period-K orbit (i.e., invariant torus). In this situation the
trajectories come back to the switching surface several times before close the orbit under
the Poincaré map. The main results are formulated in Theorem 1.

The contribution of this work is in the theory of discontinuous systems, particularly
in the case of Filippov-type flow. More specifically, we obtain crossing-sliding, grazing-
sliding, multiple periodic orbits, invariant cones, and their stability of a class of four-
dimensional switched systems. Further, this work provides novel results concerning the
existence of a period-K orbit with sliding mode, which is quite different from what is
known for a three-dimensional system with single discontinuity surface.

Let us start with a simple example in order to show that the basic reason for the existence
of period-doubling bifurcation is the presence of certain types of nonlinearities in SDS.

2 Model of the vibration system excited by a harmonic force
We consider a simple vibration system of a single-degree-of-freedom oscillator with a bi-
linear restoring force [22]. When the system is externally excited by a harmonic force, the
equation of motion may be written as follows:

ẍ + 2αẋ + x = β cos(wt), for x ≤ x0,

ẍ + 2αẋ + w̄2 +
(
1 – w̄2)x0 = β cos(wt), for x ≥ x0.

(1)

It is well known that the methods for analysis of nonlinear systems usually require a repre-
sentation of the system as a set of autonomous first order ODE. To preserve the property of
“nonsmoothness”, the system has to be rewritten as an autonomous system by introducing
time as an additional state variable.
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Figure 1 Transition of a period-one orbit to period-two orbits in nonlinear system (2)

By letting ξ1 = x, ξ2 = ẋ, ξ3 = wt (ξ3 mod 2π/w), the following system can be obtained:

ξ̇ =

⎛

⎜
⎝

ξ2

–ω̄ξ1 – 2αξ2 + β cos(ξ3)
ω

⎞

⎟
⎠ , eT

1 ξ < 0,

ξ̇ =

⎛

⎜
⎝

ξ2

–ξ1 – 2αξ2 + β cos(ξ3)
ω

⎞

⎟
⎠ , eT

1 ξ > 0,

(2)

where the discontinuity surface is defined by M = {ξ ∈R
3|eT

1 ξ = 0}.
We note that if α = β = 0, then system (2) has a continuous family of periodic orbits.

But if α �= β �= 0, then a variation of the dynamical process is a transition of an orbit with
period T into an orbit with period 2T . In this model the bifurcation parameter is taken
as ω and the other parameters are fixed as w̄ = 4, α = 0.125. The numerical simulation
illustrates that the bifurcation actually occurs between w = 2.40 and w = 2.42. Figure 1
shows the transition of a period-one orbit to period-two orbits. This transition is called
periodic doubling bifurcation which occurs due to the presence of nonlinear harmonic
force.

In the next section we introduce a class of four-dimensional homogenous linear SDSs
with two-zone and provide a methodology to ensure that the system has a period-K orbit.

3 The existence of a period-K orbit in SDS
3.1 Setting of the problem
We start our investigations by considering a four-dimensional homogenous linear SDS for
which the evolution of a variable ξ in some region is determined by the equations

ξ̇1 = λ–ξ1 – ξ2 + μβ–ξ3 + μ(α– – λ–)ξ4,
ξ̇2 = ξ1 + λ–ξ2 – μξ4, ξ1 < 0,
ξ̇3 = α–ξ3 – β–ξ4,
ξ̇4 = β–ξ3 + α–ξ4,

ξ̇1 = λ+ξ1 – ξ2,
ξ̇2 = ξ1 + λ+ξ2, ξ1 > 0,
ξ̇3 = α+ξ3 – β+ξ4,
ξ̇4 = β+ξ3 + α+ξ4.

(3)

This has a switching surface given by M = {ξ ∈ R4|ξ1 = 0}. At ξ ∈ M, the flow can
cross through or slide (attracting or repulsive) along the three-dimensional discontinu-
ity surface. These two behaviors are classified by means of a vector field evaluation at
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Figure 2 Schematic illustration regions of crossing and
sliding boundaries

M. Hence, the both sets of crossing regions (see Fig. 2) are given by Mc
– = {ξ ∈ M|

ξ2 > μ(β–ξ3 + (α– – λ–)ξ4) > 0} and Mc
+ = {ξ ∈ M|ξ2 < μ(β–ξ3 + (α– – λ–)ξ4) < 0}. The

sliding regions are given by Ms
– = {ξ ∈ M|0 < ξ2 < μ(β–ξ3 + (α– – λ–)ξ4)} and Ms

+ =
{ξ ∈ M|0 > ξ2 > μ(β–ξ3 + (α– – λ–)ξ4)}, where Ms

– is called attractive sliding mode and
Ms

+ is called repulsive sliding mode. Further, M0
– = {ξ ∈ M|ξ2 = μ(β–ξ3 + (α– – λ–)ξ4},

M0
+ = {ξ ∈ M|ξ2 = 0} define the boundaries between sliding and crossing modes, and

M0 = M0
– ∩M0

+ defines the intersection plane between two boundaries.
The flow in Ms itself is governed by Filippov’s extension as follows: ξ̇ = qA+ξ + (1 –

q)A–ξ , q ∈ [0, 1], where q(ξ ) = eT
1 A–ξ

eT
1 (A––A+)ξ

and A± is a Jacobian linearization of (3). There-
fore, we have an explicit form of the sliding vector field

ξ̇ = A+ξ –
eT

1 A+ξ

eT
1 (A– – A+)ξ

(
A– – A+)

ξ . (4)

This sliding system becomes a linear system if and only if there exist vectors x, y ∈R
4 such

that (A+ – A–)(I – e1eT
1 ) = xyT holds (see Theorem 5.3 in [18]). The choice of matrices in (3)

is taken in a more general form such that system (3) exhibits a rich variety of bifurcation
behaviors depending on different parameters. Thus, without loss of generality, assume that

A± =
(
S±)–1A±

N S±, S– =
[
e1, e2, e3,μ(e1 + e4/μ)

]
,

S+ = I, A±
N =

⎛

⎜
⎜⎜
⎝

λ± –1 0 0
1 λ± 0 0
0 0 α± –β±

0 0 β± α±

⎞

⎟
⎟⎟
⎠

.
(5)

The following lemma collects several useful properties of (3).

Lemma 1 For system (3), the following properties hold:
• Eigenvalues of A± are λ± ± i and α± ± iβ± (with λ±, α±, β± ∈R, β± > 0).
• The origin is the only equilibrium point in each sub-system.
• The ⊕-system possesses an invariant plane eT

3 ξ = eT
4 ξ = 0 with constant return time

t+(ξ ) = π .
• For the �-system, the surface generated by ξ2 = β–μξ3 + μ(α– – λ–)ξ4 determines the

boundary of the sliding motion area in the (ξ2, ξ3, ξ4)-phase space.
• The sliding motion is governed by linear equations if λ+ = λ–, α+ = α–, β± = 0.
• If μ = 0 there is no sliding motion area.
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• The intersection times (hit times) are constants on rays in all regions.
• If ξ ∈M0, then ξ is called a two-fold singularity or the Filippov system has a singular

point.

Proof By direct calculation of eigenvalues of A±, we have λ± ± i and α± ± iβ±, β± > 0, and
since A± are nonsingular matrices, then the origin is the only equilibrium point. For the
⊕-system, we have Mc

– = {ξ ∈ M|ξ2 > 0}, Mc
+ = {ξ ∈ M|ξ2 < 0}; hence, the intersection

time t+(ξ ) = π is constant and, by means of vector field evaluation at M, we find ξ2 =
β–μξ3 + μ(α– – λ–)ξ4 determines the boundary of the sliding motion area. In addition, let
λ+ = λ–, α+ = α–, β± = 0 in (4), the sliding flow becomes linear.

Further, when μ = 0, we find Ms := {φ}, which means that there is no sliding motion
area. Furthermore, the intersection times (hit times) are constants on rays in all regions
due to the homogeneity of system (3) (see [16]). Last, if ξ ∈M0, we find eT

1 A–ξ = eT
1 A+ξ = 0

in (4), and therefore the Filippov system has a singular point. �

Note that transformation (5) does not perturb the switching manifold M. Then the
general solution of (3) is given by

ψ(t±, ξ ) = eλ±t±{(
cos(t±)

(
S±)–1e1 + sin(t±)

(
S±)–1e2

)
ξ̄1

+
(
cos(t±)

(
S±)–1e2 – sin(t±)

(
S±)–1e1

)
ξ̄2

}

× eα±t±{(
cos

(
β±t±

)(
S±)–1e3 + sin

(
β±t±

)(
S±)–1e4

)
ξ̄3

+
(
cos

(
β±t±

)(
S±)–1e4 – sin

(
β±t±

)(
S±)–1e3

)
ξ̄4

}
,

(6)

where

S±ξ (0) = ξ̄ , ξ (0) =
(
0, ξ 0

2 , ξ 0
3 , ξ 0

3
)T ∈Mc.

The general solution (6) allows us to construct Poincaré maps P± for ⊕ and �-systems,
respectively. The flow starts from the initial point ξ 0 ∈ Mc

– and spends a time t– before
it returns to ψ(t–, ξ ) ∈ Mc

+, then we can define the map P–(ξ ) := Mc
– → Mc

+. At that
point, the flow starts once again and spends a time t+ before it reaches ψ(t+, ξ ) ∈ Mc

–,
we can define the map P+(ξ ) := Mc

+ → Mc
–. The return times t±(ξ ) depend on ξ and are

determined as the lowest positive root of eT
1 ψ±(t±, ξ ) = 0. If the flow of a subsystem of (3)

arrives at the attractive sliding region Ms
–, the sliding flow can be observed along a three-

dimensional discontinuity surface, where ξ ∈Ms, and let ts be the time spent in Ms. Then
we define the sliding map as Ps := Ms

– →Ms
–.

From a local point of view, a generalized Poincaré map can be thought of as a compo-
sition of sub-maps (P–, P+, Ps). Further, if the trajectories of (3) come back to M several
times before close the orbit, then PK represents the composition of P with itself or sub-
maps K times.

Lemma 2 Consider a generalized Poincaré mapping PK (where PK is the Kth iterate of P)
structure for period-K orbit either without sliding mode

PK(ξ ) = (Pi ◦ Pj)K(ξ ) = ξ , i, j ∈ {+, –}, i �= j,K > 1,

PK–1(ξ ) �= ξ
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or with sliding mode

PK(ξ ) = (Pi ◦ Pk ◦ Pj)K(ξ ) = ξ , i, j, k ∈ {+, –, s}, i �= j �= k,K > 1,

PK–1(ξ ) �= ξ ,

such that tK– , tK+ , tKs exist. Then SDS (3) has a period-K orbit without or with sliding mode,
respectively.

Proof We assume that the local Poincaré section is M and the time functions tK± , tKs exist.
By using the fact that a periodic point of the full system (3) with crossing the Poincarè
section K times is a fixed point of the PK iterate of P , by cyclic invariance, SDS (3) has a
period-K orbit without or with sliding mode. �

The existence of invariant cones for (3) depends on the existence of a positive eigenvalue
of the generalized Poincaré map (i.e., PK(ξ ) = μcξ ,μc > 0). This leads to the fact that the
existence of a period-K orbit is just a sufficient condition for the existence of invariant
cone foliated by orbits.

3.2 Main results
The main results focus on the classification of the possible bifurcation scenarios that
can occur in (3) and are summarized in the following theorem. This theorem provides
a general framework and conditions in which the existence of period-K orbit, stability,
a number of invariant cones, multi-sliding bifurcation, invariant torus, and crossing or
grazing-sliding bifurcation in system (3) take place. These results are carried out by using
the characterization of a generalized Poincaré map.

Theorem 1 For the linear SDS (3), the following statements hold:
(I) Suppose the case λ+ = –λ–. Then:

1. The system has a flat periodic orbit (degenerate situation) contained with the
invariant plane (ξ̄1, ξ̄2) and t– = π .

2. Assume also that α– = λ– = –λ+ = –α+, β– + β+ = K ∈ Z, to characterize
complex behaviors.
2.1 When ξ̄ ∈Mc

– and ξ̄2 > μβ–ξ̄3. Then the system has a family of
period-one orbits with period T = 2π if K is even and a family of
period-two orbits with period T = 4π if K is odd such that β+ is even (i.e.,
β– is odd). Further, if β+ is odd (i.e., β– is even), then the system has three
families of period-two orbits.

2.2 When ξ̄ ∈M0
– and ξ̄2 = μβ–ξ̄3. Then the system has two families of

period-one orbits with a segment of sliding motion if K is even, and these
orbits can also undergo a grazing-sliding bifurcation. As well there is a
transition from period-one orbit to period-two orbit with two segments of
sliding motion (multi-sliding) if K is odd.

(II) Assume that ξ̄ ∈M0
–, σ = (α– – λ–) < 0. Then:

1. The system has two families, namely short and long period-one orbits
generated by the boundary surface of sliding mode, such that the image of
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sliding periodic boundary surface under the Poincaré map is satisfied:

β– sin t– – eσ t– sinβt–

σ sin t– + cos t– – eσ t– cosβ–t–
=

β–(eλ+π+λ–t– cos(t–) + 1)
eλ+π+λ–t– (σ cos(t–) – sin t–) + σ

= 0.

2. The system has a family of period-one orbits generated by ξ̄ ∈M0
– with

t– ∈ (π , 2π ) and β± = 0 if and only if

eλ+π+λ–t–
(
σ cos(t–) – sin t–

)
+ σ = 0.

3. The system has a family of period-one orbits with sliding mode which is
generated by ξ̄ ∈M0

– with t– ∈ (π , 2π ) and β± = 0 if and only if

eT
1 P–(ξ̄ ) < μσ eT

3 P–(ξ̄ ) < 0, 0 < eT
1 P(ξ̄ ) < μσ eT

3 P(ξ̄ ).

Moreover, the system undergoes the crossing-sliding bifurcation due to the transition
between crossing and sliding modes.

(III) Assume that σ = 0 and λ+ = –λ–. Then:
1. There is a family of flat periodic orbits generated by the invariant

(ξ̄1, ξ̄2)-plane with period T = 2π .
2. There are two families of period-two orbits if β– = 1, α+ = –α–, one of them is

generated by the boundary surface of sliding region with period
T = 2π +

∑3
i=1 t(i)

– and the other is generated by any vector ξ̄ ∈Mc
– with

period T = 4π .
3. There are two families of period-one orbits if β– = 2, α+ = –α–, one of them is

generated by ξ̄ = {ξ̄ ∈M0
–|ξ̄4 = 0} with period T = 2π and the other is

generated ξ̄ = {ξ̄ ∈Mc
–|ξ̄4 = 0} with period T = 2π .

(IV) Suppose that μ = 0 (i.e., Ms = ∅) and α+ = –α–. Then:
1. The system has two families of period-one orbits, one of them is generated by

the invariant (ξ̄1, ξ̄2)-plane with period T = 2π and the other is generated by
any vector ξ̄ ∈M such that β– + β+ = K is even with T = 2π if λ+ = –λ–.
Further, there is a transition from period-one orbit to period- two orbit if K is
odd.

2. The system has a family of period-K orbits or an invariant torus if and only if
K is an irrational number.

The above results are tailored to the class of four-dimensional homogenous linear SDSs
(3) that form a specific subclass of Filippov-type discontinuous systems [5, 21]. In the liter-
ature [4, 12, 13, 18, 26], various results are available on the existence of invariant sets (such
as invariant cones, attractivity, and period-1 orbit) and their bifurcations (such as saddle-
node and sliding phenomena) of a three-dimensional homogenous linear system with sin-
gle discontinuity surface. Our current work covers most of these aspects and provides
novel results concerning the existence of invariant sets of SDS (3). In particular, although
the existing results for period-K orbit (K > 1) are only associated with the problems in-
volving nonlinear or non-homogeneous operators [5, 22], we point out in this paper that
the homogeneous linear four-dimensional SDS can exhibit period-K orbits with/without
sliding mode, which is quite different from what is known for three-dimensional SDSs
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with single discontinuity surface. Further, in such cases we observe a sudden transition
through the discontinuity manifold.

3.3 Construction of the generalized Poincaré map
For rigorous evaluation of the generalized Poincaré map, we use analytical formulas for
trajectories of system (3), which are given by (6). The Poincaré map P–(ξ ) := Mc

– → Mc
+

is given as follows:

P–(ξ ) =

⎛

⎜
⎝

eλ–t– cos(t–) 0 –μeλ–t– sin(t–)
0 eα–t– cos(β–t–) –eα–t– sin(β–t–)
0 eα–t– sin(β–t–) eα–t– cos(β–t–)

⎞

⎟
⎠

⎛

⎜
⎝

ξ2

ξ3

ξ4

⎞

⎟
⎠ .

Note that the return time t–(ξ ) depends on ξ in a nonlinear way, and it is actually the first
one possible in Mc

–. It means that the trajectory of �-system intersects M transversally
if we can find the smallest positive root of the following equation:

F
(
t–(ξ )

)
= sin(t–)ξ2 + μ cos(t–)ξ4 – μe(α––λ–)t–

(
sin

(
β–t–

)
ξ3 + cos

(
β–t–

)
ξ4

)
= 0. (7)

Further, the Poincaré map P+(ξ ) := Mc
+ →Mc

– is given as follows:

P+(ξ ) =

⎛

⎜
⎝

–eλ+π 0 0
0 eα+π cos(β+π ) –eα+π sin(β+π )
0 eα+π sin(β+π ) eα+π cos(β+π )

⎞

⎟
⎠

⎛

⎜
⎝

ξ2

ξ3

ξ4

⎞

⎟
⎠ .

We assume ξ ∈Mc
– (hence ξ2 > 0), then we get the generalized Poincaré map

P = P+ ◦ P–(ξ )

= B1

⎛

⎜
⎝

–B2 cos (t–) 0 μB2 sin (t–)
0 cos (β+π + β–t–) – sin (β+π + β–t–)
0 sin (β+π + β–t–) cos (β+π + β–t–)

⎞

⎟
⎠

⎛

⎜
⎝

ξ2

ξ3

ξ4

⎞

⎟
⎠ ,

(8)

where

B1 = eα+π+α–t– , and B2 = e(λ+–α+)π+(λ––α–)t– .

The second iterate of the generalized Poincaré return map is given as follows:

P2(ξ ) =

⎛

⎜
⎝

B D E

0 C –S
0 S C

⎞

⎟
⎠

⎛

⎜
⎝

ξ2

ξ3

ξ4

⎞

⎟
⎠ , (9)

where

B = e2λ+π+λ–(t(1)
– +t(2)

– ) cos
(
t(1)
–

)
cos

(
t(2)
–

)
,

D = μe(λ++α+)π+λ–t(2)
– +α–t(1)

– sin
(
t(2)
–

)
sin

(
β+π + β–t(1)

–
)
,



Hosham Advances in Difference Equations        (2018) 2018:388 Page 10 of 20

E = –μ
(
e2λ+π+λ–(t(1)

– +t(2)
– ) cos

(
t(2)
–

)
sin

(
t(1)
–

)

+ μe(λ++α+)π+λ–t(2)
– +α+t(1)

– sin
(
t(2)
–

)
cos

(
β+π + β–t(1)

–
))

,

C = e2α+π+α–(t(1)
– +t(2)

– ) cos
(
2β+π + β–(

t(1)
– + t(2)

–
))

,

S = e2α+π+α–(t(1)
– +t(2)

– ) sin
(
2β+π + β–(

t(1)
– + t(2)

–
))

.

The second return times t(2)
– is given as the smallest positive root of the following equation:

F2
(
t(2)
– (ξ )

)
= sin

(
t(2)
–

)
eT

1 P(ξ ) + μ cos
(
t(2)
–

)
eT

3 P(ξ ) – μe(α––λ–)t(2)
–

(
sin

(
β–t(2)

–
)
eT

2 P(ξ )

+ cos
(
β–t(2)

–
)
eT

3 P(ξ )
)

= 0.
(10)

In the same way, we can get K iterate of the Poincaré map.

Lemma 3 We assume that ξ̄ is a fixed point of the generalized Poincaré map P(ξ̄ ) = ξ̄ or
P2(ξ̄ ) = ξ̄ , respectively. If all eigenvalues of linearized P (resp. P2)) at ξ̄ satisfy |μc| < 1 (resp.
|μ̂c| < 1), then ξ̄ is asymptotically stable, and if |μc| > 1 (resp. |μ̂c| > 1), then ξ̄ is unstable.
If |μc| = 1 (resp. |μ̂c| = 1), then ξ̄ generates a periodic behavior.

If K = 2, the eigenvalues of the linearized Poincaré map (8) and (9), respectively, are given
as:

μ1
c = –B1B2 cos

(
t(1)
–

)
, μ(2,3)

c = B1
(
cos

(
β+π + β–t(1)

–
) ± i sin

(
β+π + β–t(1)

–
))

,

μ̂1
c = B, μ̂(2,3)

c = C± iS.

This lemma is true if ξ̄ is a fixed point of PK(ξ̄ ) which guarantees and determines the
existence of periodic behavior and stability of system (3). Now, we are ready to prove all
items of Theorem 1, respectively.

3.4 Proof of the main results
(I) Because ξ̄ ∈ Mc

–, then the result ξ̄2 > μβ–ξ̄3 directly follows from the definition of the
crossing region Mc

–. Let μ1
c = 1 corresponding to a period-one orbit of the Poincaré map

(8). Then we get one possible solution λ– = –λ+ and t– = π that must be verified by the
nonlinear equation (7). Hence, we get

F(π ) = –μξ4 – μe(α––λ–)π(
sin

(
β–π

)
ξ3 + cos

(
β–π

)
ξ4

)
= 0. (11)

If β– is odd, then we get e(α––λ–)π = 1, which leads to α– = λ–; and if β– is even, then we get
e(α––λ–)π = –1, which is not possible. Moreover, regarding Lemma 2, the corresponding
eigenvector, which is responsible for generating a period-one orbit, requires either ξ3 =
ξ4 = 0 or ξ3 �= 0, ξ4 �= 0.

(a) If ξ3 = ξ4 = 0 is invariant surface, then we obtain a flat period-one orbit contained
with the invariant plane (ξ̄1, ξ̄2), which is a trivial situation for our purposes.

(b) If ξ3 �= 0, ξ4 �= 0 lead to α– = –α+ and β– + β+ = K ∈ Z is even. Therefore we get a
nontrivial period-one orbit spanned by ξ̄ ∈Mc

–. For an example to show this
situation where α– = λ– = –λ+ = –α+ and β– + β+ = K ∈ Z is even, see Fig. 3(a).
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On the other hand, the existence of a period-two orbit is associated with an eigenvalue
of the Jacobian of the Poincaré map (8) equal –1 and P2(ξ̄ ) = ξ̄ (Lemma 3). Then, when
α– = λ– = –λ+ = –α+, we find that the positive roots t(1)

– = t(2)
– = π satisfy equations (7) and

(10) if and only if β– is odd where β– + β+ = K ∈ Z is odd (i.e., β+ is even). For instance,
see Fig. 3(b), (c).

If β– is even (i.e., β+ is odd), the three families of period-two orbits are made up for by
compensatory changes in the time spent in the �-system. Hence, we compute the pos-
sible intersection times under attraction of PK. Then there are three cases of existence
of the intersections times that are given by (7) and (10); if t(1)

– �= t(2)
– �= π , so there are two

possibilities, namely either t(1)
– ∈ (0,π ), t(2)

– ∈ (π , 2π ) or t(2)
– ∈ (0,π ), t(1)

– ∈ (π , 2π ), and we
find ξ̄ ∈Mc

– is a fixed point of P2(ξ̄ ). Further, if t(1)
– = t(2)

– = π , then ξ̄ = {ξ̄ ∈Mc
–|ξ̄4 = 0} is a

fixed point of P2(ξ̄ ). The commutative parameters have no effect on the stability of period-
two orbits but are introduced as a perturbation of switching times. Figure 4 illustrates the
existence of three different switching times, which leads to the existence of three families
of period-two orbits.

Figure 3 (a) Nontrivial period-one orbit when β– = β+ = –α– = 1 (K is even). (b), (c) Period-two orbits when
β– = 0.5β+ = –α– = 1 (K is odd)

Figure 4 Three different possible intersection times corresponding to three period-two orbits when
0.5β– = β+ = –α– = 1 (K is odd)
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The sliding trajectories (4) occur on the discontinuous three-dimensional surface Ms.
Subsequently, system (4) can be rewritten in the reduced form as follows:

ξ̇ = Fs =

⎛

⎜
⎝

λ+ξ2

α+ξ3 – β+ξ4

β+ξ3 + α+ξ4

⎞

⎟
⎠ +

ξ2

μβ–ξ3 + μ(α– – λ–)ξ4

⎛

⎜
⎝

λ–ξ2 – μξ4

α–ξ3 – β–ξ4

β–ξ3 + α–ξ4

⎞

⎟
⎠ . (12)

In our present situation, we have considered α– = λ– = –λ+ = –α+, β– + β+ = K , and ξ̄2 =
μβ–ξ̄3, then Fs = A–ξ , ξ ∈M0

–. It means that the dynamics on M0
– are given by the linear

system

ξ̇ =

⎛

⎜
⎝

α–ξ2 – μξ4
α–ξ2–μ(β–)2ξ4

μβ–
ξ2+μα–ξ4

μ

⎞

⎟
⎠ . (13)

Then one can easily get Ps to understand the behavior of the trajectory at M0
–.

The nongeneric bifurcation of limit cycles occurs when the sliding flow becomes tan-
gent to the surface of discontinuity; hence, the tangency points play an important role
precisely when the flow passes through one of these points. Further, three situations may
occur when a solution starts or reaches M0

–: (a) the trajectory will be forced to leave M0
–

to enter Mc
– if (eT

1 A–.A–ξ )|ξ̄ < 0; (b) the trajectory enters Ms
– if (eT

1 A–.A–ξ )|ξ̄ > 0; (c) the
trajectory remains (local minimum) on M0

– if (eT
1 A–.A–ξ )|ξ̄ = 0 with several future possi-

bilities depending on high time derivatives of q(ξ ) along the flow on M0
–. For our system

(3), we find that

eT
1 A–.A–ξ = –2λ–ξ2 + 2μα–β–ξ3 +

(
1 +

(
α–)2 –

(
λ–)2 –

(
β–)2)

ξ4,

eT
1
(
A–)2.A–ξ =

(
1 – 3

(
λ–)2)

ξ2 + μβ–(
3
(
α–)2 –

(
β–)2)

ξ3 + μ
((

α–)3

+ 3λ– –
(
λ–)3 – 3α–(

β–)2)
ξ4.

In the present situation, the above equations are reduced to eT
1 A–.A–ξ = μ(1 – (β–)2)ξ4,

eT
1 (A–)2.A–ξ = (1 – (β–)2)(ξ2 + 3μα–ξ4). Hence, the segment of the sliding flow lies en-

tirely in M0
– if β– = 1 or ξ4 = 0. Consequently, to find period-one orbit with a segment of

sliding motion if ξ4 = 0, we choose K = 2 (i.e., β– = 2,α– = –1,β+ = ξ4 = eT
1 A–.A–ξ̄ = 0).

Then the fixed point equation P(ξ̄ ) = P+P–Ps(ξ̄ ) = ξ̄ holds. Figure 5(a), (b) shows a peri-
odic orbit with a segment of sliding motion in the phase space. Moreover, depending on
bifurcation parameter β+, our system can exhibit complex bifurcation scenarios by fixing
β+ = 1 (i.e., K = 3). There is a transition from period-one orbit to period-two orbits with
two segments of sliding motion. This transition depends on the sensitivity of the system
behavior with respect to changes in parameters, and it is called multi-sliding bifurcation,
see Fig. 6. Whereas in the other situation when β– = 1, the existence of period-one or-
bit with a segment of sliding motion can also occur if the trajectory is forced to leave
negative region M0

– (i.e., ξ̄ = {ξ̄ ∈ M0
–|ξ̄2 < 0} and enter Mc

+. In this case we note that
β+ = 1, eT

1 A–.A–ξ̄ = 0, eT
1 A+.A+ξ̄ > 0); therefore the Poincaré map P(ξ̄ ) = PsP+(ξ̄ ) has a fixed

point corresponding to a period-one orbit with a segment of sliding motion, see Fig. 5(c).
Furthermore, this orbit undergoes a grazing-sliding bifurcation point which is character-
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Figure 5 Period-one orbit with a segment of sliding motion established by ξ̄ ∈M0
–. (a), (b) If ξ̄4 = 0, β– = 2.

(c) If ξ̄4 �= 0, β– = 1, the flow has no intersection withMc , which is called one-zonal orbit

Figure 6 Period-two orbit with a segment of sliding motion established by ξ̄ ∈ M0
– when ξ̄4 = 0, β– = 2,

K = 3

ized by a trajectory of the ⊕-system that becomes tangent to M. Strictly speaking, there is
a set of points that does not interact with M and a set of points that hits M. Therefore, by
varying parameters, the sliding segment becomes an infinitesimally small sliding segment
that is close to a grazing bifurcation point.

(II) If ξ ∈M0
– and σ < 0 imply that the trajectory enters Mc

–. Using (7) and without loss
of generality, we assume that ξ4

ξ3
= 1, we get

F(β–,σ )(t–) = β– sin t– – eσ t– sinβ–t– + σ sin t– + cos t– – eσ t– cosβ–t– = 0. (14)

It can be seen that F(β–,σ )(t–) = F(–β–,–σ )(–t–) for any (β–,σ , t–) ∈ R. Furthermore, we get
F(β–,σ )(0) = F ′

(β–,σ )(0) = 0, and where σ < 0, we get F(β–,σ )(π ) < 0, F ′′
(β–,σ )(0) = (β–)2 – 1 –

σ (σ + 2β–). Then t– ∈ (0,π ) if F ′′
(β–,σ )(0) > 0 (short period) and t– ∈ (π , 2π ) (long period)

if F ′′
(β–,σ )(0) < 0 . For instance, if β– = 1 then –2 < σ < 0 and t– ∈ (0,π ), and if σ < –2 then
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Figure 7 (a) The behavior of equation (14) for different values of σ . (b), (c) Short and long time periods
(t– = 1.6954, t– = 3.7296), respectively

t– ∈ (π , 2π ). In Fig. 7(a), the first positive solution of (14) is t– ∈ (0,π ) when σ = –1 (solid
curve) and becomes t– ∈ (π , 2π ) when σ = –2.1 (dashed curve).

Let μ2
c = 1 corresponding to a period-one orbit of the Poincaré map (8). Then we get

one possible solution β+ = (2π – β–t–)/π and t– = – α+

α– π . Hence, T = (1 – α+

α– )π , α+

α– < 0.
Because ξ̄ ∈ M0

–, which means that we have specified a value of ξ̄2 = μβ–ξ̄3 + μσ ξ̄4 > 0,
hence, we will get the image of the line ξ 0

4 = m0ξ
0
3 via a slope transition map S : R → R,

m1 = S(m0), where m1 = ξ1
4

ξ1
3

passes through (ξ 1
3 , ξ 1

4 ) = P(ξ 0
3 , ξ 0

4 ). Then system (3) has a family

of periodic orbits which is generated by P(ξ̄ ) = ξ̄ if and only if m1 = m0 (where ξ 1 = ξ 0),
then we get

β– sin t– – eσ t– sinβ–t–

σ sin t– + cos t– – eσ t– cosβ–t–
=

β–(eλ+π+λ–t– cos(t–) + 1)
eλ+π+λ–t– (σ cos(t–) – sin t–) + σ

.

This proves item 1. in (II). For example, we assume that σ = –0.5, β– = μ = 1, then by
the above result we get λ+ = 0.3022, α+ = 0.8095, and β+ = 1.4603 with short period T =
1.5397π , see Fig. 7(b). Further, if we change the parameter σ = –2.5, then we get λ+ =
–1.2457,α+ = 1.7808,β+ = 0.8128,μ = –1 with long period T = 2.1872π , see Fig. 7(c).

2. If β± = 0, then equation (14) becomes

F(0,σ )(t–) = σ sin t– + cos t– – eσ t– = 0. (15)

We can easily investigate the global behavior of solutions to (15). Then we get t– ∈ (π , 2π )
if σ < 0. It should be pointed out here that if σ > 0, then the trajectory leaves M0

– to enter
Mc

–, but it cannot leave Mc
– for all future times. Hence there is no finite return time, and

thus the existence of a close orbit is impossible.
Let μ

(2)
c = 1 corresponding to a period-one orbit of the Poincaré map (8). Then we get

t– = – α+

α– π . Hence, T = (1 – α+

α– )π , α+

α– < 0. Further, the fixed point equation P(ξ̄ ) = ξ̄ holds
if eλ+π+λ–t– (σ cos(t–) – sin t–) + σ = 0.

3. As we know from 2., the intersection time t– is uniquely determined as t– ∈ (π , 2π )
if σ < 0. The trajectory after reaching Mc

+ switches to the ⊕-system. This flow starting in
Mc

+ spends a time t+ = π before it reaches M again. At this point, in order to decide if the
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flow leaves M to enter the attractive sliding mode Ms
–, via Poincaré maps (P– and P) and

according to the definition of crossing and sliding modes, we get the necessary conditions:
eT

1 P–(ξ̄ ) < μσ eT
3 P–(ξ̄ ) < 0, 0 < eT

1 P(ξ̄ ) < μσ eT
3 P(ξ̄ ).

For example, we fix the parameter σ = –0.1, then t– = 5.2420,α+ = –0.1669, and at
λ+ = –1, we show that the period-one orbit hits tangentially the boundary of the sliding
region M0

– with zero time (i.e., ts = 0). The crossing-sliding bifurcation can be observed
by varying just one control parameter λ+, where the system possesses a period-one orbit
with a segment of sliding motion (ts = 0.11) if λ+ = –1.322.

Next we fix σ = 0, λ+ = –λ– and we prove that system (3) has different families of period
one or two orbits.

(III) If σ = 0, then equation (7) reduces to

F(β–)(t–) = sin t–ξ2 – μ sinβ–t–ξ3 + μ
(
cos t– – cosβ–t–

)
ξ4 = 0. (16)

1. If λ+ = –λ–, t– = π , then system (3) has a single family of flat periodic orbits. To see
this, note that P(ξ ) = ξ yields ξ3 = ξ4 = 0 and equation (7) is satisfied for all β– ∈R.

2. To prove the existence of two families of period-two orbits, we investigate the
Poincaré map which brings the point ξ back to itself after some iteration of
sub-maps.

If we fix β– = 1 and α+ = –α–, equation (7) reduces to

F
(
t(1)
–

)
= sin t(1)

– (ξ2 – μξ3) = 0. (17)

Then there are two solutions, namely either ξ2 – μξ3 = 0, which means that ξ ∈ M0
– with

t(1)
– �= π , or ξ ∈Mc

– with t(1)
– = π , respectively.

Firstly, we consider the situation that ξ ∈M0
– and t(1)

– �= π .
In this case, we consider the map P(ξ ) = P–(P2(ξ )) which generates a family of period-

two orbits starting with boundary of sliding surface. Because P2(ξ ) is given by (9), then we
get P(ξ ) as follows:

P(ξ ) = eα–t(3)
–

⎛

⎜
⎝

B cos t(3)
– D cos t(3)

– – μS sin t(3)
– E cos t(3)

– – μC sin t(3)
–

0 C cos t(3)
– – S sin t(3)

– –S cos t(3)
– – C sin t(3)

–

0 S cos t(3)
– + C sin t(3)

– C cos t(3)
– – S sin t(3)

–

⎞

⎟
⎠

⎛

⎜
⎝

ξ2

ξ3

ξ4

⎞

⎟
⎠ .

(18)

Further, the second intersection time for the �-system is given by (10) which is reduced
to

F
(
t(2)
–

)
= sin t(2)

–
(
eT

1 P(ξ ) – μeT
2 P(ξ )

)
= 0. (19)

Then there is only one solution t(2)
– = π where eT

1 P(ξ ) – μeT
2 P(ξ ) �= 0 due to P(ξ ) �= ξ

(Lemma 2), hence we get D = 0 in (18).
We now scrutinize the geometry of iterations of the Poincaré map. In this situation we

have considered M0
– as a Poincaré surface, then P(ξ ), P2(ξ ), and P(ξ ) return to M0

– again
such that P(ξ ) �= ξ , P2(ξ ) �= ξ , and P(ξ ) = ξ , respectively. Because P(ξ ) ∈M0

–, P2(ξ ) ∈M0
–,
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Figure 8 Period-two orbit established by: (a) ξ̄ ∈ M0
– the invariant surface of boundary of sliding mode,

(b) ξ̄ ∈ Mc
– which is any point in the crossing region

then we get eT
1 P(ξ ) > 0 and eT

1 P2(ξ ) > 0, which results in cos(t(1)
– ) = 0, hence t(1)

– = π
2 . Then

we find B = C = 0 and the Poincaré map (18) takes the form

P(ξ ) = eα–t(3)
–

⎛

⎜
⎝

0 –μS sin t(3)
– E cos t(3)

–

0 –S sin t(3)
– –S cos t(3)

–

0 S cos t(3)
– –S sin t(3)

–

⎞

⎟
⎠

⎛

⎜
⎝

ξ2

ξ3

ξ4

⎞

⎟
⎠ .

In addition, P(ξ̄ ) = ξ̄ is satisfied, which requires that eT
1 P(ξ ) – μeT

2 P(ξ ) = 0. Then we get
2eα–(t(3)

– – π
2 ) cos(t(3)

– )ξ4 = 0, where ξ4 �= 0, then t(3)
– = π

2 .
An example to illustrate this situation is shown in Fig. 8(a) with parameters values β– =

α+ = –α– = λ+ = –λ– = 1.
Secondly, we consider the situation that ξ ∈Mc

– and t(1)
– = π . The intersection time t(2)

– ,
which is given by (10), can be rewritten as follows:

F
(
t(2)
–

)
= sin t(2)

– (ξ2 + μξ3) = 0. (20)

Then there is only one solution t(2)
– = π , where ξ /∈ M0

– and P(ξ ) �= ξ . Further, we find
that P2(ξ ) = ξ holds for our fixed parameters. Figure 8(b) shows that a period-two orbit is
generated by any point in the crossing region ξ̄ ∈Mc

–, with the same parameter values as
in Fig. 8(a).

3. If ξ̄ = {ξ̄ ∈M0
–|ξ̄4 = 0} or ξ̄ = {ξ̄ ∈Mc

–|ξ̄4 = 0} and β– = 2, then equation (7) becomes

F
(
t(1)
–

)
= sin t(1)

–
(
ξ2 – 2μ cos t(1)

– ξ3
)

= 0. (21)

Therefore we have two possibilities: (a) sin t(1)
– = 0 (i.e., t(1)

– = π ), or (b) ξ2 – 2μ cos t(1)
– ξ3 = 0.

For case (a) the fixed point equation P(ξ̄ ) = ξ̄ is required to fix α+ = –α– and β+ is an even
number.

For case (b) where ξ̄ ∈M0
– (i.e., ξ2 – 2μξ3 = 0), it is not possible to find ξ2 – 2μ cos t(1)

– ξ3 =
0 if t(1)

– < 2π . Further, if ξ̄ ∈Mc
–, then P(ξ̄ ) = ξ̄ is required to fix t(1)

– = π ,α+ = –α– and β+ is
an even number. That means system (3) has two families of period-one orbits according to



Hosham Advances in Difference Equations        (2018) 2018:388 Page 17 of 20

Figure 9 Period-four orbit appears at K = 1.5

case (a), and it is not possible to consider case (b) in view of our choice of parametrization
of the periodic orbits.

(IV) If μ = 0 (i.e., Ms = ∅).
1. As a result of direct observation, we get t(1)

– = π where ξ̄2 �= 0. Further, via
investigating the first return map, we find one family of flat period-one orbits if
λ+ = –λ– and ξ̄3 = ξ̄4 = 0.

On the other hand, if ξ̄ ∈Mc
– and α+ = –α–, then it is easy to show that system (3)

has a family of period-one orbits if K is even and the transition from a period-one
orbit to period-two orbits if K is odd where t(2)

– = π . This proves item 1. in (IV).
2. Because the eigenvalues of linearized P have a complex form (Lemma 3), then an

invariant torus can occur when a complex-conjugate pair of eigenvalues with unit
modulus crosses the unit circle at an angle that is irrational of π . The presence of a
complex pair of eigenvalues within the unit circle means that the stable fixed point
(spiral in) of the generalized Poincaré map becomes unstable (spiral out) and close
invariant torus arises around the fixed point (this situation is equivalent to
Neimark–Sacker bifurcation). If there are no K iterations of PK bringing the
trajectory back to the same point on the curve, then it produces a quasi-periodic
orbit. We consider K to be a control parameter and fix all other parameters in the
most simple situation. Then a period-four orbit exists if K = 1.5, see Fig. 9.
Moreover, if K = 1.51, an invariant torus arises, see Fig. 10. Another example of a
bifurcation is when a control parameter K is changed. We fix the parameters
α– = –α+ = 2, λ– = –λ+ = 0.01. Then system (3) exhibits a period-one orbit when
K = 24, and there is a transition to period-two orbit, period-five orbit, and invariant
torus when K = 25, K = 24.4, and K = 24.4321, respectively (see Figs. 11 and 12).

4 Conclusion
In this paper, we have discussed the bifurcation of period-K orbit of a class of four-
dimensional homogeneous linear SDSs in two possible behaviors: transversal crossing and
attractive sliding mode. Using the generalized iterate of a Poincaré map, we have seen
that in the transition from period-one orbit into period-two orbit, the system has at least
three families of invariant cones. These phenomena cannot be predicted for certain three-
dimensional homogeneous linear SDSs. Moreover, we have proved the existence in this
system of several types of bifurcation boundaries such as multi-sliding bifurcation, invari-
ant torus, crossing-sliding, and grazing-sliding.
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Figure 10 Invariant torus appears at K = 1.51

Figure 11 Transition from period-one orbit to period-two orbit and period-five orbit due to varying of K = 24,
K = 25, and K = 24.4, respectively

In the forthcoming work, we will consider the situation that the boundaries of the sliding
region intersect transversally, where ξ ∈ M0 is a two-fold singularity (see Lemma 1 and
Fig. 2). This can have a dramatic effect, and we will give a classification of the existence of
invariant cones nearby.

What is more, the future direction of this work includes the studies of discontinuous
fractional-order systems due to the unique nature of these systems and effect of fractional
parameter. On the other hand, these systems are usually used to model various problems in
biological and engineering research. For instance, it was shown that the fractional-order
systems occur as models in many applications, see [1, 2, 11, 20, 24]. The mathematical
formulation of these examples leads naturally to theoretical and numerical analysis of
fractional-order systems. Therefore, we will begin to develop a numerical method for in-
tegrating discontinuous fractional-order systems. This method is based on the integration
of non-smooth parts and piecing these parts together with appropriate transition condi-
tions, also taking into account that phenomena of bifurcations between these parts can
also occur.
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Figure 12 Invariant torus appears at K = 24.4321
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