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Abstract
In this paper, we consider the existence of solutions to the p(r)-Laplacian equation
with multi-point boundary conditions. Under some new criteria and by utilizing
degree methods and also the Leray–Schauder fixed point theorem, the new existence
results of the solutions have been established. Some results in the literature can be
generalized and improved. And as an application, two examples are provided to
demonstrate the effectiveness of our theoretical results.
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1 Introduction
In recent years, there has been extensive interest in boundary value problems (BVPs) with
variable exponent in a Banach space, see [1–9]. Such problems usually arise in the study
of image processing, elastic mechanics, electrorheological fluids dynamics, etc. (see [10–
18]).

In the case when p is a constant and f (r, u(r), u′(r)) = f (r, u(r)), the first differential equa-
tion of Eq. (1.1) subjected to some other boundary conditions becomes the classical p-
Laplacian problem, which has been extensively researched in [19–21]:

⎧
⎨

⎩

(|u′(r)|p–2u′(r))′ + a(r)f (r, u(r)) = 0, r ∈ (0, 1),

u(0) = 0, u(1) = 1,

and we have obtained the existence of solutions for the addressed equations. For more in-
formation on the problems of differential equations with p-Laplacian operator, the readers
may refer to [22–30].

This paper focuses on the following p(r)-Laplacian differential equations with multi-
point boundary conditions:

⎧
⎨

⎩

(|u′(r)|p(r)–2u′(r))′ + a(r)f (r, u(r), u′(r)) = 0, r ∈ (0, 1),

u(0) – αu′(ξ ) = 0, u(1) +
∑m–3

i=1 βiu(ηi) = 0,
(1.1)

where the functions f , p, a and the constants α, βi, ξ , ηi (1 ≤ i ≤ m – 3) satisfy:
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(H1) f ∈ C([0, 1] ×R×R,R), p ∈ C([0, 1],R), p(r) > 1, a ∈ C((0, 1),R) is possibly
singular at r = 0 or r = 1 and satisfies 0 <

∫ 1
0 |a(r)|dr < +∞;

(H2) α,βi > 0, 0 < ξ < η1 < η2 < · · · < ηm–3 < 1.
Compared with some new achievements in the articles, such as [19–30], the major con-

tributions of our research contain at least the following three:
(1) f is the nonlinear term and a(r) is allowed to be singular at r = 0 or r = 1.

Additionally, compared to two-point or three-point BVPs, which have been
extensively studied, we discuss a multi-point BVP in this article.

(2) The model we are concerned with is more generalized, some ones in the articles
[19–22] are the special cases of it. p(r) is a general function, which is more
complicated than the case when p is a fixed constant. That is to say, the
comprehensive model is originally considered in the present paper.

(3) An innovative approach based on degree methods and the Leray–Schauder fixed
point theorem are utilized to obtain the existence of solutions for the addressed
equations (1.1). The results established are essentially new.

The following article is organized as follows: In Sect. 2, we introduce some necessary
notations and important lemmas, while Sect. 3 is devoted to establishing the existence
of solutions for problem (1.1) by a fixed point theorem and degree methods, and then
we come up with the main theorems. To explain the results clearly, we finally give two
examples in Sect. 4.

2 Preliminaries
In this section, we are going to present some basic notations and lemmas which are used
throughout this paper.

Let U = C1[0, 1]. It is well known that U is a Banach space with the norm ‖ · ‖1 defined
by

‖u‖1 = ‖u‖ +
∥
∥u′∥∥,

where

‖u‖ = max
r∈[0,1]

∣
∣u(r)

∣
∣,

∥
∥u′∥∥ = max

r∈[0,1]

∣
∣u′(r)

∣
∣.

Besides, we denote

p– = min
r∈[0,1]

p(r), p+ = max
r∈[0,1]

p(r).

Set

ϕ(r, x) = |x|p(r)–2x for fixed r ∈ [0, 1], x ∈R,

and set ϕ–1(r, ·) as

ϕ–1(r, x) = |x| 2–p(r)
p(r)–1 x for fixed r ∈ [0, 1], x ∈ R \ {0},

where ϕ–1(r, 0) = 0.
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Obviously, ϕ–1(r, ·) is continuous and sends a bounded set into a boundary set. Aiming
to obtain the existence of solutions to problem (1.1), we need the following lemmas. The
proofs are standard, thus some details can be omitted.

Lemma 2.1 ([31]) ϕ is a continuous function and satisfies that, for any x1, x2 ∈R, x1 �= x2,
for any r ∈ [T1, T2],

(
ϕ(r, x1) – ϕ(r, x2), x1 – x2

)
> 0,

which implies it is monotone increasing.

Lemma 2.2 Let U be a Banach space. Provided that the operator T(u,λ) : U × [0, 1] → U
is a map satisfying the conditions as follows:

(S1) T is a compact map;
(S2) For any u ∈ U , T(u, 0) = 0;
(S3) If one has u = T(u,λ) for some λ ∈ [0, 1], then there exists M > 0 such that ‖u‖1 ≤ M

for any u ∈ U . Then T(u, 1) has a fixed point in U .

Lemma 2.3 Suppose that g ∈ L1[0, 1] and g(r) �= 0 on any subinterval of [0, 1]. Then the
BVP

⎧
⎨

⎩

(ϕ(r, u′))′ + g(r) = 0, 0 < r < 1,

u(0) – αu′(ξ ) = 0, u(1) +
∑m–3

i=1 βiu′(ηi) = 0,
(2.1)

has a unique solution u(r), which is

u(r) = αϕ–1
(

ρ –
∫ ξ

0
g(s) ds

)

+
∫ r

0
ϕ–1

(

ρ –
∫ s

0
g(t) dt

)

ds

or

u(r) =
m–3∑

i=1

βiϕ
–1

(

ρ –
∫ ηi

0
g(s) ds

)

–
∫ 1

r
ϕ–1

(

ρ –
∫ s

0
g(t) dt

)

ds,

where ρ = ϕ(0, u′(0)) and ρ is dependent on g .

Now, for any h ∈ C[0, 1], we define

	h(ρ) = αϕ–1
(

ρ –
∫ ξ

0
h(s) ds

)

+
m–3∑

i=1

βiϕ
–1

(

ρ –
∫ ηi

0
h(s) ds

)

–
∫ 1

0
ϕ–1

(

ρ –
∫ s

0
h(r) dr

)

ds.

The properties of the operator 	h are described in the following lemma.

Lemma 2.4 For any h ∈ C[0, 1], the equation

	h(ρ) = 0 (2.2)

has a unique solution ρ(h) ∈R.
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Proof From Lemma 2.1, it is apparent that

(
	h(a1) – 	h(a2), a1 – a2

)
> 0 for a1 �= a2.

Hence, if Eq. (2.2) has a solution, then it is unique.
Since h ∈ C[0, 1], and let R0 = 2‖h‖. It is easy to see that if |ρ| > R0, then for any r ∈ [0, 1]

we have (ρ –
∫ r

0 h(s) ds) · ρ > 2‖h‖2.
Denote

s(r) = ϕ–1
(

r,ρ –
∫ r

0
h(s) ds

)

,

then

ρ –
∫ r

0
h(s) ds = ϕ

(
r, s(r)

)
,

it follows that

ρ –
∫ r

0
h(s) ds =

∣
∣s(r)

∣
∣p(r)–1s(r).

While |s(r)|p(r)–1s(r) · ρ = (ρ –
∫ r

0 h(s) ds) · ρ > 2‖h‖2 > 0, thus s(r) · ρ > 0.
From |ρ| > R0 we have s(r) �= 0, then we also have

∫ 1

0
ϕ–1

(

r,ρ –
∫ r

0
h(s) ds

)

dr �= 0.

So, when |ρ| > R0, 	h(ρ) �= 0.
Let us consider the following equation:

f (λ,ρ) � λ	h(ρ) + (1 – λ)a = 0, λ ∈ [0, 1]. (2.3)

It is easy to prove that all the solutions of Eq. (2.3) belong to b(R0) � {x ∈ R : |x| < R0}.
From the homotopy invariance property on Leray–Schauder degree theory, we have

deg
(
	h(ρ), b(R0), 0

)
= deg

(
f (0,ρ), b(R0), 0

)

= deg
(
f (1,ρ), b(R0), 0

)
= deg

(
I, b(R0), 0

) �= 0,

which implies the existence of solution of 	h(ρ) = 0. Consequently, 	h(ρ) = 0 has a solu-
tion ρ(h) ∈R. �

Lemma 2.5 Assume that u is the solution of problem (2.1), then it can also be rewritten in
the following form:

u(r) =

⎧
⎨

⎩

αϕ–1(
∫ σ

ξ
g(s) ds) +

∫ r
0 ϕ–1(

∫ σ

s g(t) dt) ds, 0 ≤ r ≤ σ ,
∑m–3

i=1 βiϕ
–1(

∫ ηi
σ

g(s) ds) +
∫ 1

r ϕ–1(
∫ s
σ

g(t) dt) ds, σ ≤ r ≤ 1,
(2.4)

where σ ∈ (0, 1).
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Proof Assume that u(r) is the solution of problem (2.1), then there exists σ ∈ (0, 1) such
that u′(σ ) = 0. Otherwise, suppose that u′(r) < 0 for any r ∈ (0, 1), which means that u(t) is
nonincreasing. From the boundary value conditions, it follows that

u(0) = αu′(ξ ) < 0,

but

u(1) = –
m–3∑

i=1

βiu′(ξi) > 0,

which is a contradiction. Similarly, if u′(r) > 0 for any t ∈ (0, 1), we know that u(t) is non-
decreasing, which with boundary conditions yields a contradiction. Then, through direct
computations, (2.4) holds. �

3 Existence of solutions
In this section, we will show that under some suitable conditions solutions to problem
(1.1) do exist.

Theorem 3.1 Suppose that (H1), (H2) hold and f satisfies

lim|u|+|v|→∞
f (r, u, v)

(|u| + |v|)q(r)–1 = 0, 1 < q– ≤ q+ < p–.

Then problem (1.1) has at least one solution.

Proof To obtain the existence of solutions of problem (1.1), consider the BVP

⎧
⎨

⎩

(|u′(r)|p(r)–2u′(r))′ + λa(r)f (r, u(r), u′(r)) = 0, r ∈ (0, 1),λ ∈ [0, 1],

u(0) – αu′(ξ ) = 0, u(1) +
∑m=3

i=1 βiu′(ηi) = 0,

and define the integral operator T : U × [0, 1] → U by

T(u,λ)(r) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

αϕ–1(
∫ σ

ξ
λa(s)f (s, u(s), u′(s)) ds)

+
∫ r

0 ϕ–1(
∫ σ

s λa(t)f (t, u(t), u′(t)) dt) ds, 0 ≤ r ≤ σ ,
∑m–3

i=1 βiϕ
–1(

∫ ηi
σ

λa(s)f (s, u(s), u′(s)) ds)

+
∫ 1

r ϕ–1(
∫ s
σ
λa(t)f (t, u(t), u′(t)) dt) ds, σ ≤ r ≤ 1.

(3.1)

From the continuity of f ,ϕ–1 and also the definition of a, it is easy to see that u is a
solution of problem (1.1) if and only if u is a fixed point of the integral operator T when
λ = 1. In order to apply Lemma 2.2, the proof includes three steps:

(1) T is a compact map.
Let D ⊂ U × [0, 1] be an arbitrary bounded subset, then there exists M > 0 such that

‖u‖1 ≤ M.
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And let {(un,λn)} be a sequence in D. Firstly, we prove that {T(un,λn)} has a convergent
subsequence in C[0, 1]. According to (H1), we find that there exists N > 1 such that

∣
∣f

(
r, un(r), u′

n(r)
)∣
∣ ≤ N , r ∈ [0, 1],‖un‖1 ≤ M.

Thus, for any (un,λn) ∈ D, if 0 ≤ r ≤ σ , then

∣
∣T(un,λn)(r)

∣
∣

≤ αϕ–1
(∫ σ

ξ

λn
∣
∣a(s)f

(
s, un(s), u′

n(s)
)∣
∣ds

)

+
∫ r

0
ϕ–1

(∫ σ

s
λn

∣
∣a(t)f

(
t, un(t), u′

n(t)
)∣
∣dt

)

ds

≤ αϕ–1
(∫ σ

ξ

∣
∣a(s)f

(
s, un(s), u′

n(s)
)∣
∣ds

)

+
∫ r

0
ϕ–1

(∫ σ

s

∣
∣a(t)f

(
t, un(t), u′

n(t)
)∣
∣dt

)

ds

≤ (α + 1)N
1

p––1 max

{(∫ 1

0

∣
∣a(s)

∣
∣ds

) 1
p––1

,
(∫ 1

0

∣
∣a(s)

∣
∣ds

) 1
p+–1

}

.

Similarly, if σ ≤ r ≤ 1, then

∣
∣T(un,λn)(r)

∣
∣

≤
m–3∑

i=1

βiϕ
–1

(∫ ηi

σ

∣
∣a(s)f

(
s, un(s), u′

n(s)
)∣
∣ds

)

+
∫ r

0
ϕ–1

(∫ s

σ

∣
∣a(t)f

(
t, un(t), u′

n(t)
)∣
∣dt

)

ds

≤
(m–3∑

i=1

βi + 1

)

N
1

p––1 max

{(∫ 1

0

∣
∣a(s)

∣
∣ds

) 1
p––1

,
(∫ 1

0

∣
∣a(s)

∣
∣ds

) 1
p+–1

}

.

On the other hand,

∣
∣T ′(un,λn)(t)

∣
∣

=
∣
∣ϕ–1|a(t)f

(
t, un(t), u′

n(t)
)|dr

∣
∣

≤ N
1

p––1 max

{(∫ 1

0

∣
∣a(s)

∣
∣ds

) 1
p––1

,
(∫ 1

0

∣
∣a(s)

∣
∣ds

) 1
p+–1

}

.

Therefore,

∣
∣T(un,λn)(t)

∣
∣ ≤ max

{

α + 1,
m–3∑

i=1

βi + 1

}

N
1

p––1

· max

{(∫ 1

0

∣
∣a(s)

∣
∣ds

) 1
p––1

,
(∫ 1

0

∣
∣a(s)

∣
∣ds

) 1
p+–1

}

,
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and

∣
∣T ′(un,λn)(t)

∣
∣ ≤ N

1
p––1 max

{(∫ 1

0

∣
∣a(s)

∣
∣ds

) 1
p––1

,
(∫ 1

0

∣
∣a(s)

∣
∣ds

) 1
p+–1

}

.

Besides, we find that, for any 0 ≤ t1 ≤ t2 ≤ 1,

∣
∣T(un,λn)(t1) – T(un,λn)(t2)

∣
∣

=
∣
∣
∣
∣

∫ t2

t1

T ′(un,λn)(t) dt
∣
∣
∣
∣

≤ N
1

p––1 max

{(∫ 1

0

∣
∣a(s)

∣
∣ds

) 1
p––1

,
(∫ 1

0

∣
∣a(s)

∣
∣ds

) 1
p+–1

}

|t1 – t2|.

Hence, {T(un,λn)} is equi-continuous and uniformly bounded.
Applying the Ascoli–Arzelà theorem, there exists a convergent subsequence of

{T(un,λn)} in C[0, 1]. Without loss of generality, we denote the convergent subsequence
again by {T(un,λn)}.

Next, we should show that {T ′(un,λn)} also has a convergent subsequence in C[0, 1].
Denote

Fn(t) =
∫ t

σ

λna(s)f
(
s, un(s), u′

n(s)
)

ds.

Similar to the proof above, we can find that {Fn(t)} has a convergent subsequence in
C[0, 1], which we still denote by {Fn(t)}. From the continuity of ϕ–1, we can easily get that
{T ′(un,λn)} is convergent in C[0, 1].

From the above, we know that T is a compact operator, which implies that condition
(S1) in Lemma 2.2 holds.

(2) Evidently, T(u, 0) = 0 for u ∈ U , so condition (S2) is satisfied.
(3) Now, we verify condition (S3) in Lemma 2.2.
If condition (S3) does not hold, then we would find that there exists a subsequence

{(un,λn)} such that ‖un‖1 → ∞ as n → ∞ and ‖un‖1 > 1. According to Lemma 2.5, we
have

∣
∣u′

n(r)
∣
∣p(r)–2u′

n(r) =
∫ r

σ

((∣
∣u′

n(s)
∣
∣p(s)–2)u′

n(s)
)′ ds

= –
∫ r

σ

λna(s)f
(
s, un(s), u′

n(s)
)

ds.

Note that

lim
|u|+|u′|→∞

f (r, u, u′)
(|u| + |u′|)q(r)–1 = 0,

then we get that there exist M1 > 0, c1 > 0 such that

∣
∣f

(
r, u, u′)∣∣ ≤ c1

(|u| +
∣
∣u′∣∣)q(r)–1, r ∈ [0, 1], |u| +

∣
∣u′∣∣ ∈ [M, +∞).
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Thus, for |un| + |u′
n| ∈ [M1, +∞) and r ∈ [0, 1], we have

∣
∣
∣
∣u′

n(r)
∣
∣p(r)–2u′

n(r)
∣
∣ ≤ λn

∫ r

σ

∣
∣a(s)f

(
s, un(s), u′

n(s)
)∣
∣ds

≤ c1

∫ 1

0

∣
∣a(s)

∣
∣
(∣
∣u(s)

∣
∣ +

∣
∣u′

n(s)
∣
∣
)q(s)–1 ds

≤ c1 |un |q+–1
∫ 1

0

∣
∣a(s)

∣
∣ds,

it follows that

∣
∣u′

n(r)
∣
∣p(r)–1 ≤ c1‖un‖q+–1

∫ 1

0

∣
∣a(s)

∣
∣ds.

Hence,

∣
∣u′

n(r)
∣
∣ ≤ C‖un‖

q+–1
p––1 max

{(∫ 1

0

∣
∣a(s)

∣
∣ds

) 1
p––1

,
(∫ 1

0

∣
∣a(s)

∣
∣ds

) 1
p+–1

}

,

and

∣
∣un(r)

∣
∣ =

∣
∣
∣
∣

∫ r

σ

u′
n(s) ds

∣
∣
∣
∣

≤ C‖un‖
q+–1
p––1 max

{(∫ 1

0

∣
∣a(s)

∣
∣ds

) 1
p––1

,
(∫ 1

0

∣
∣a(s)

∣
∣ds

) 1
p+–1

}

,

where C is a constant.
We can conclude that {(un,λn)} is bounded, which leads to a contradiction. Therefore,

condition (S3) in Lemma 2.2 holds.
Applying Lemma 2.2, we can obtain that T(u, 1) has a fixed point in U , that is to say,

problem (1.1) has at least one solution. This completes the proof. �

Furthermore, we prove the existence of solutions to problem (1.1) under other innova-
tive conditions.

Theorem 3.2 Suppose that �t = {u ∈ C1[0, 1] : ‖u‖1 < t} is a bounded open set in U and
(H1), (H2) hold. If there exists t > 0 such that

∣
∣f

(
r, u, u′)∣∣ ≤ min

{(
t
3

)p––1

,
(

t
3

)p+–1} 1
∫ 1

0 |a(r)|dr
, (3.2)

where u ∈ �t , r ∈ [0, 1], then problem (1.1) has at least one solution.

Proof Let us consider the following BVP:

⎧
⎨

⎩

(|u′(r)|p(r)–2u′(r)) + λa(r)f (r, u(r), u′(r)) = 0, r ∈ (0, 1),λ ∈ [0, 1],

u(0) – αu′(ξ ) = 0, u(1) +
∑m–3

I=1 βiu′(ηi) = 0,
(3.3)
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and define an integral operator T : U × [0, 1] → U by

T(u,λ)(r) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

αϕ–1(
∫ σ

ξ
λa(s)f (s, u(s), u′(s)) ds)

+
∫ r

0 ϕ–1(
∫ σ

s λa(t)f (t, u(t), u′(t)) dt) ds, 0 ≤ r ≤ σ ,
∑m–3

i=1 βiϕ
–1(

∫ ηi
σ

λa(s)f (s, u(s), u′(s)) ds)

+
∫ 1

r ϕ–1(
∫ s
σ
λa(t)f (t, u(t), u′(t)) dt) ds, σ ≤ r ≤ 1,

where σ ∈ (0, 1). Similar to the above proof, we know that T is compact. Moreover, u is
a fixed point of u = T(u, 1) if and only if u is a solution of problem (1.1). To achieve the
result by Leray–Schauder degree theory, we just need to prove that

(i) for any λ ∈ [0, 1), u = T(u,λ) has no solution on ∂�t ;
(ii) deg(I – T(u, 0),�t , 0) �= 0.

Firstly, we verify that (i) holds. Without loss of generality, there exist λ ∈ [0, 1) and u ∈ ∂�t

such that u = T(u,λ), then we have

∣
∣u′(r)

∣
∣p(r)–2u′(r) = –λ

∫ 1

σ

a(s)f
(
s, u(s), u′(s)

)
ds, r ∈ (0, 1).

Since u ∈ ∂�t , it is easy to see that

‖u‖ +
∥
∥u′∥∥ = t.

If ‖u‖ ≥ 2t/3, then ‖u′‖ ≤ t/3, but

∣
∣u(r)

∣
∣ =

∣
∣
∣
∣

∫ r

σ

u′(s)
∣
∣
∣
∣ds ≤

∫ 1

0

∣
∣u′(s)

∣
∣ds ≤ t

3
,

which is a contradiction.
Similarly, if ‖u‖ ≤ 2t/3, then ‖u′‖ > t/3. Hence, there exists r0 ∈ [0, 1] such that

∣
∣u′(r0)

∣
∣p(r0)–1 >

(
t
3

)p(r0)–1

.

According to condition (3.2), we get that

∣
∣u′(r0)

∣
∣p(r0)–1 =

∣
∣
∣
∣

∫ r0

σ

λa(s)f
(
s, u(s), u′(s)

)
ds

∣
∣
∣
∣

≤
∫ 1

0

∣
∣a(s)f

(
s, u(s), u′(s)

)∣
∣ds

≤ min

{(
t
3

)p––1

,
(

t
3

)p+–1}

,

which together with ‖u′‖ ≤ t/3 leads to a contradiction. So problem (3.3) has no solution
on ∂�t .

Secondly, when λ = 0, problem (3.3) becomes the following one:
⎧
⎨

⎩

(|u′(r)|p(r)–2)u′(r) = 0, r ∈ (0, 1),

u(0) – αu′(ξ ) = 0, u(1) +
∑m–3

i=1 βiu′(ηi) = 0.
(3.4)
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We can easily find that problem (3.4) has a solution on �t . From the solvability on Leray–
Schauder degree theory, we get that

deg
(
I – T(u, 0),�t , 0

) �= 0.

Thus condition (ii) is satisfied.
Therefore, upon an application of Leray–Schauder degree method, we obtain that prob-

lem (1.1) has at least one solution. This completes the proof. �

4 Example
In the section, we will present the following two examples to illustrate our main results.

Example 4.1 Consider the following p(r)-Laplacian differential equations with six-point
boundary conditions:

⎧
⎨

⎩

(|u′(r)|er+2u′(r))′ + sin r(r + u(r) + u′(r)) = 0, r ∈ (0, 1),

u(0) – 5u′( 1
6 ) = 0, u(1) + u( 1

5 ) + 2u( 1
4 ) + 3( 1

3 ) = 0.
(4.1)

Conclusion Problem (4.1) has at least one solution.

Proof Corresponding to Eq. (1.1), we have

p(r) = er+4, a(r) = sin r, f
(
r, u(r), u′(r)

)
= r + u(r) + u′(r), r ∈ (0, 1),

m = 6, α = 5, β1 = 1, β2 = 2, β3 = 3,

ξ =
1
6

, η1 =
1
5

, η2 =
1
4

, η3 =
1
3

.

Thus, conditions (H1), (H2) are satisfied.
Choose q(r) = er + 2 > 2, we can easily get that 1 < q– < q+ < p– and, when |u|+ |u′| → ∞,

r ∈ (0, 1), we also get that

f (r, u, u′)
(|u| + |u′|)q(r)–1 =

r + u + u′

(|u| + |u′|)q(r)–1 ≤ r
(|u| + |u′|)q(r)–1 +

|u| + |u′|
(|u| + |u′|)q(r)–1 → 0.

Hence, by applying Theorem 3.1, we can see that Eq. (4.1) has at least one solution. �

Example 4.2 Consider the following p(r)-Laplacian differential equations with four-point
boundary conditions:

⎧
⎨

⎩

(|u′(r)|er–2u′(r))′ + r2 cos(r + u(r) + u′(r)) = 0, r ∈ (0, 1),

u(0) – 3
2 u′( 2

5 ) = 0, u(1) + 2
7 u( 4

5 ) = 0.
(4.2)

Conclusion Problem (4.2) has at least one solution.

Proof Corresponding to Eq. (1.1), we have

f
(
r, u(r), u′(r)

)
= cos

(
r + u(r) + u′(r)

)
,
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p(r) = er , p– = e0 = 1, p+ = e1 = e, a(r) = r2, r ∈ (0, 1),

m = 4, α =
3
2

, β1 =
7
2

, ξ =
2
5

, η1 =
4
5

.

So conditions (H1), (H2) are satisfied.
Choose t = 3, then, when u ∈ �t = {u ∈ U : ‖u‖ < 3}, we have

∣
∣f

(
r, u, u′)∣∣ =

∣
∣cos

(
r + u + u′)∣∣

≤ min

{(
t
3

)p––1

,
(

t
3

)p+–1} 1
∫ 1

0 |a(r)|dr

= 3 · min

{

1,
(

t
3

)e–1}

= 3,

and inequality (3.2) holds, which implies that all the conditions in Theorem 3.1 are satis-
fied. Thus, we can see that Eq. (4.2) has at least one solution. �

5 Conclusions
In this paper, we are concerned with a class of differential equations involving a p(r)-
Laplacian operator. The addressed equation with the multi-point boundary value is quite
different from the related references discussed in the literature [26–28, 32]. The nonlinear
differential system studied in the present paper is more generalized and more practical. By
applying the degree methods (see Lemma 2.4, Theorem 3.2) and the fixed point theorem
(see Theorems 3.1, 3.2), we employ innovative arguments, and easily verifiable sufficient
conditions have been provided to determine the existence of the solutions to the consid-
ered equation. Consequently, this paper shows theoretically that some related references
known in the literature can be enriched and complemented.
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