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Abstract
According to the principle of conservation of mass and the fractional Fick�s law, a new
two-sided space-fractional di�usion equation was obtained. In this paper, we present
two accurate and e�cient numerical methods to solve this equation. First we discuss
the alternating-direction �nite di�erence method with an implicit Euler method
(ADI�implicit Euler method) to obtain an unconditionally stable �rst-order accurate
�nite di�erence method. Second, the other numerical method combines the ADI
with a Crank�Nicolson method (ADI�CN method) and a Richardson extrapolation to
obtain an unconditionally stable second-order accurate �nite di�erence method.
Finally, numerical solutions of two examples demonstrate the e�ectiveness of the
theoretical analysis.

Keywords: Two-dimensional two-sided space-fractional di�usion equations; The
shifted left Grünwald formula; The standard right Grünwald formula; ADI methods;
Richardson extrapolation

1 Introduction
According to the principle of conservation of mass, the equation of continuity form is
given by

�u(x, t)
�t

+
�Q(x, t)

�x
= f (x, t), (1.1)

where u(x, t) is the distribution function of the di�using quantity, Q(x, t) is the di�usion
�ux, and f (x, t) is the source term. Then we modi�ed the classical Fick�s law by

Q(x, t) = �C(x)
�
�x

� x

a
K+(x, � )u(� , t)d� �D(x)

�
�x

� b

x
K�(x, � )u(� , t)d� , (1.2)

where C(x) and D(x) are nonnegative di�usion coe�cients, K+(x, � ) and K�(x, � ) are the
kernel functions de�ned by

�
�

�
K+(x, � ) = 1

�(1��) (x � � )�� , a � � � x;

K�(x, � ) = 1
�(1��) (� � x)�� , x � � � b,

(1.3)
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where 0 < � < 1. Combining Eqs. (1.1)�(1.3), we can get a one-dimensional two-sided
space-fractional di�usions equation [1]:

�u(x, t)
�t

=
�
�x

�
C(x)

��u(x, t)
�x� �D(x)

��u(x, t)
�(�x)�

�
+ f (x, t),

a� x � b, 0 < � < 1, t > 0. (1.4)

In this paper, we discuss the two-dimensional two-sided space-fractional di�usion equa-
tion as follows:

�u(x, y, t)
�t

=
�
�x

�
Cx(x, y)

��u(x, y, t)
�x� �Dx(x, y)

��u(x, y, t)
�(�x)�

�

+
�
�y

�
Cy(x, y)

��u(x, y, t)
�y� �Dy(x, y)

��u(x, y, t)
�(�y)�

�

+ f (x, y, t), (x, y) � �, t > 0, (1.5)

subject to the initial condition

u(x, y, 0) = �(x, y), (x, y) � fl�, (1.6)

and the zero Dirichlet boundary conditions

u(a1, y, t) = u(a2, y, t) = u(x,b1, t) = u(x,b2, t) = 0, t � 0, (1.7)

where� = (a1,a2)× (b1,b2) is a rectangular domain, 0 < �,� < 1, Cx(x, y),Dx(x, y), Cy(x, y),
and Dy(x, y) are the nonnegative di�usion coe�cients, f (x, y, t) is the source term. The
�	 u(x,y,t)

�x	 , �	 u(x,y,t)
�(�x)	 (	 = � or �) are respectively the left and right Riemann�Liouville frac-

tional derivatives [2, 3] which are de�ned by

�	u(x, y, t)
�x	 =

1
�(1 � 	 )

�
�x

� x

a1

u(s, y, t)
(x � s)	

ds, (1.8)

�	u(x, y, t)
�(�x)	

=
�1

�(1 � 	 )
�
�x

� a2

x

u(s, y, t)
(s � x)	

ds. (1.9)

The de�nitions of �	 u(x,y,t)
�y	 , �	 u(x,y,t)

�(�y)	 are similar to the de�nitions of the x direction. As
we cannot easily get the explicit analytical solutions of the fractional equations, so many
researchers resort to their numerical solutions [4�10].
Moreover, a second-order method which combines the alternating-direction implicit

approach with the Crank�Nicolson discretization and the Richardson extrapolation for
the two-dimensional fractional di�usion equations was studied in [11]. Chen et al. [12]
studied preconditioned iterative methods for the linear system arising in the numeri-
cal discretization of a two-dimensional space-fractional di�usion equation. Chen et al.
[13] discussed the practical alternating-directions implicit method to solve the two-
dimensional two-sided space fractional convection di�usion equation on a �nite domain.
Liu et al. [14] developed an alternating-direction implicit method for the two-dimensional
Riesz space fractional di�usion equations with a nonlinear reaction term. Zeng et al. [15]
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proposed a Crank�Nicolson alternating-direction implicit Galerkin�Legendre spectral
method for the two-dimensional Riesz space fractional nonlinear reaction-di�usion equa-
tions. Feng et al. [16] presented a second-order method for the space fractional di�usion
equation with variable coe�cient. Moroney et al. [17] developed a fast Poisson precondi-
tioner for the e�cient numerical solution of a class of two-sided nonlinear space-fractional
di�usion equations. Chen et al. [18] proposed a fast �nite di�erence approximation for
identifying parameters in a two-dimensional space-fractional nonlocal model.
However, less focus has been on the variable coe�cients FDE in a conservative form.

The di�usion coe�cient is generally space- or time- dependent in practical problems. In
the numerical aspect of these two-sided space-fractional di�usion equations in one di-
mension, Chen et al. [1] developed a fast semi-implicit di�erence method for a nonlinear
one-dimensional two-sided space-fractional di�usion equation with variable di�usivity
coe�cients. Feng et al. [19] presented a new �nite volume method for a one-dimensional
two-sided space-fractional di�usion equation. Feng et al. [20] discussed a fast second-
order accurate method for a one-dimensional two-sided space-fractional di�usion. To
our knowledge, the study on the �nite di�erence method computation of these two-sided
space-fractional di�usion equations in two dimensions is limited. This motivates us to
develop the alternating-direction �nite di�erence methods for this two-dimensional two-
sided space-fractional di�usion equation in this paper.
The rest of the paper is organized as follows. In Sect. 2, we begin with some notations

and properties. In Sect. 3, we present an ADI�implicit Euler method for this equation and
its theory analysis. In Sect. 4, we present an ADI�CN method for this equation and its
theory analysis. In Sect. 5, we present numerical experiments to check the accuracy of
these methods.

2 Notations and properties
For the numerical approximation of the implicit di�erence method, we de�ne a uniform
grid of mesh point (xi, yj, tk), xi = a1 + ih1 for i = 0, 1, . . . ,Nx; yj = b1 + jh2 for j = 0, 1, . . . ,Ny;
tk = k
 , where h1 = b1�a1

Nx
, h2 = b2�a2

Ny
, 
 are the mesh-width in the x�, y�, and the time

direction, respectively. Let Ci,j = Cx(xi, yj), Di,j = Dx(xi, yj), flCi,j = Cy(xi, yj), flDi,j = Dy(xi, yj),
f ki,j = f (xi, yj, tk). Denote Uk

i,j, u
k
i,j to be the exact and numerical solutions at the mesh point

(xi, yj, tk), respectively. We use the shifted left Grünwald formula and the standard right
Grünwald formula to approximate the left and right Riemann�Liouville fractional deriva-
tives, respectively [21, 22]. We have the following formulae:

�	u(xi, yj, tk)
�x	 =

1
h	
1

i+1�

s=0

g(	 )s uki+1�s,j +O(h1),

�	u(xi, yj, tk)
�(�x)	

=
1
h	
1

Nx�i�

s=0

g(	 )s uki+s,j +O(h1),

where g(µ)s (µ = � or �) are the normalized Grünwald weights [23]

g(µ)s = (�1)u
�

µ
s

�
.

The formulae of the y direction are similar to the formulae of the x direction.



Yin et al. Advances in Di�erence Equations        (2018) 2018:389 Page 4 of 17

Lemma 1 ([23]) The normalized Grünwald weights g(µ)s when 0 < µ < 1 satisfy the proper-
ties:

(i)
	�

j=0 g
(µ)
0 = 0;

(ii) g(µ)0 = 1, g(µ)j < 0 for j � 1;
(iii)

	n
j=0 g

(µ)
j > 0 for any n � 1;

(iv) g(µ)j+1 � g(µ)j = g(µ+1)j+1 for j � 1;
(v)

	n
j=0 g

(µ+1)
j < 0 for any n� 1.

De�ne the following �nite di�erence operators:

��,xuki,j =
1

h�+1
1


 i�

s=0

�
Ci,jg

(�)
i+1�s �Ci�1,jg

(�)
i�s

�
uks,j +Ci,jg

(�)
0 uki+1,j



+
1

h�+1
1


 Nx�

s=i

�
Di�1,jg

(�)
s�i+1 �Di,jg

(�)
s�i

�
uks,j

+Di�1,jg
(�)
0 uki�1,j



, (2.1)

�� ,yuki,j =
1

h�+1
2


 j�

s=0

� flCi,jg
(�)
j+1�s � flCi,j�1g

(�)
j�s

�
uki,s + flCi,jg

(�)
0 uki,j+1



+
1

h�+1
2


 Ny�

s=j

� flDi,j�1g
(�)
s�j+1 � flDi,jg

(�)
s�j

�
uki,s

+ flDi,j�1g
(�)
0 uki,j�1



. (2.2)

3 ADI�implicit Euler method and its theory analysis
In this paper, we use the backward Euler scheme for the �rst-order time derivative. We
use the shifted left Grünwald formulae and the standard right Grünwald formulae to ap-
proximate the left and right Riemann�Liouville fractional derivatives, respectively [1, 20].
We get a discrete approximation for Eq. (1.5) at the mesh point (xi, yj, tk):

uki,j � uk�1i,j



�

1
h1

�
Cx(x, yj)

��u(x, yj, tk)
�x� �Dx(x, yj)

��u(x, yj, tk)
�(�x)�

�����
xi

xi�1

+
1
h2

�
Cy(xi, y)

��u(xi, y, tk)
�y� �Dy(xi, y)

��u(xi, y, tk)
�(�y)�

�����
yj

yj�1

+ f ki,j.

We can obtain

uki,j � uk�1i,j



�

1
h�+1
1


�

Ci,j

i+1�

s=0

g(�)s uki+1�s,j �Di,j

Nx�i�

s=0

g(�)s uki+s,j

�

�

�

Ci�1,j

i�

s=0

g(�)s uki�s,j �Di�1,j

Nx�i+1�

s=0

g(�)s uki+s�1,j

�
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+
1

h�+1
2


�
flCi,j

j+1�

s=0

g(�)s uki,j+1�s � flDi,j

Ny�j�

s=0

g(�)s uki,j+s

�

�

�
flCi,j�1

j�

s=0

g(�)s uki,j�s � flDi,j�1

Ny�j+1�

s=0

g(�)s uki,j+s�1

�

+ f ki,j.

After some rearrangements, the implicit �nite di�erence equation is given by

uki,j � uk�1i,j



=

1
h�+1
1


�

Ci,j

i+1�

s=0

g(�)i+1�su
k
s,j �Di,j

Nx�

s=i

g(�)s�i u
k
s,j

�

�

�

Ci�1,j

i�

s=0

g(�)i�su
k
s,j �Di�1,j

Nx�

s=i�1

g(�)s�i+1u
k
s,j

�

+
1

h�+1
2


�
flCi,j

j+1�

s=0

g(�)j+1�su
k
i,s � flDi,j

Ny�

s=j

g(�)s�j u
k
i,s

�

�

�
flCi,j�1

j�

s=0

g(�)j�s u
k
i,j�s � flDi,j�1

Ny�

s=j�1

g(�)s�j+1u
k
i,s

�

+ f ki,j. (3.1)

Equation (3.1) may be written as

uki,j �



h�+1
1


 i�

s=0

�
Ci,jg

(�)
i+1�s �Ci�1,jg

(�)
i�s

�
uks,j +Ci,jg

(�)
0 uki+1,j



�



h�+1
1


 Nx�

s=i

�
Di�1,jg

(�)
s�i+1 �Di,jg

(�)
s�i

�
uks,j +Di�1,jg

(�)
0 uki�1,j



�



h�+1
2


 j�

s=0

� flCi,jg
(�)
j+1�s � flCi,j�1g

(�)
j�s

�
uki,s + flCi,jg

(�)
0 uki,j+1



�



h�+1
2


 Ny�

s=j

� flDi,j�1g
(�)
s�j+1 � flDi,jg

(�)
s�j

�
uki,s + flDi,j�1g

(�)
0 uki,j�1



= uk�1i,j + 
 f ki,j. (3.2)

Combining Eqs. (2.1)�(2.2), Eq. (3.2) can be written in the operator form

(1 � 
��,x � 
�� ,y)uki,j = uk�1i,j + 
 f ki,j. (3.3)

In the following proposition, we show that this method de�ned by Eq. (3.2) is consistent
with model (1.5) of the order O(
 + h1 + h2).

Remark 1 The implicit di�erence scheme Eq. (3.2) can be rewritten as

uki,j �



h�+1
1


 i�

s=0

(Ci,j �Ci�1,j)g
(�)
i�su

k
s,j +

i+1�

s=0

Ci,jg
(�+1)
i+1�su

k
s,j



�



h�+1
1


 Nx�

s=i

(Di�1,j �Di,j)g
(�)
s�i u

k
s,j +

Nx�

s=i�1

Di�1,jg
(�+1)
s+1�i u

k
s,j
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�



h�+1
2


 j�

s=0

( flCi,j � flCi,j�1)g
(�)
j�s u

k
i,s +

j+1�

s=0

flCi,jg
(�+1)
j+1�s u

k
i,s



�



h�+1
2


 Ny�

s=j

( flDi,j�1 � flDi,j)g
(�)
s�j u

k
i,s +

Ny�

s=j�1

flDi,j�1g
(�+1)
s+1�j u

k
i,s



= uk�1i,j + 
 f ki,j. (3.4)

Theorem 1 The implicit Euler method de�ned by Eq. (3.2) is consistent with model
Eq. (1.5) of the order O(
 + h1 + h2).

Proof Equation (1.5) may be written as

�u(x, y, t)
�t

=
�
�x

�
Cx(x, y)

���u(x, y, t)
�x� +Cx(x, y)

��+1u(x, y, t)
�x�+1

�
�
�x

�
Dx(x, y)

���u(x, y, t)
�(�x)�

�Dx(x, y)
��+1u(x, y, t)

�(�x)�+1

+
�
�y

�
Cy(x, y)

���u(x, y, t)
�y� +Cy(x, y)

��+1u(x, y, t)
�y�+1

�
�
�y

�
Dy(x, y)

���u(x, y, t)
�(�y)�

�Dy(x, y)
��+1u(x, y, t)

�(�y)�+1

+ f (x, y, t). (3.5)

From Eq. (3.4), we obtain the local truncation error term.

Rk
i,j =

Uk
i,j �Uk�1

i,j



�

1
h�+1
1


 i�

s=0

(Ci,j �Ci�1,j)g
(�)
i�sU

k
s,j +

i+1�

s=0

Ci,jg
(�+1)
i+1�sU

k
s,j



�
1

h�+1
1


 Nx�

s=i

(Di�1,j �Di,j)g
(�)
s�iU

k
s,j +

Nx�

s=i�1

Di�1,jg
(�+1)
s+1�iU

k
s,j



�
1

h�+1
2


 j�

s=0

� flCi,j � flCi,j�1g
(�)
j�s

�
Uk

i,s +
j+1�

s=0

flCi,jg
(�+1)
j+1�s U

k
i,s



�
1

h�+1
2


 Ny�

s=j

� flDi,j�1 � flDi,jg
(�)
s�j

�
Uk

i,s +
Ny�

s=j�1

flDi,j�1g
(�+1)
s+1�j U

k
i,s



� f ki,j. (3.6)

From Eq. (3.5), we get

Rk
i,j =

Uk
i,j �Uk�1

i,j



�

�u(x, y, t)
�t

����
k

i,j

�
1
h�
1


 i�

s=0

(Ci,j �Ci�1,j)
h1

g(�)i�sU
k
s,j +

�
�x

�
Cx(x, y)

���u(x, y, t)
�x�

����
k

i,j



�
1

h�+1
1


 i+1�

s=0

Ci,jg
(�+1)
i+1�sU

k
s,j �Cx(x, y)

��+1u(x, y, t)
�x�+1

����
k

i,j
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�
1
h�
1


 Nx�

s=i

(Di�1,j �Di,j)
h1

g(�)s�iU
k
s,j +

�
�x

�
Dx(x, y)

���u(x, y, t)
�(�x)�

����
k

i,j



�
1

h�+1
1


 Nx�

s=i�1

Di�1,jg
(�+1)
s+1�iU

k
s,j �Dx(x, y)

��+1u(x, y, t)
�(�x)�+1

����
k

i,j



�
1
h�
2


 j�

s=0

( flCi,j � flCi,j�1)
h2

g(�)j�s U
k
i,s �

�
�y

�
Cy(x, y)

���u(x, y, t)
�y�

����
k

i,j



�
1

h�+1
2


 j+1�

s=0

flCi,jg
(�+1)
j+1�s U

k
i,s �

�
Cy(x, y)

��+1u(x, y, t)
�y�+1

�����
k

i,j



�
1
h�
2


 Ny�

s=j

( flDi,j�1 � flDi,j)
h2

g(�)s�j U
k
i,s +

�
�y

�
Dy(x, y)

���u(x, y, t)
�(�y)�

����
k

i,j



�
1

h�+1
2


 Ny�

s=j�1

flDi,j�1g
(�+1)
s+1�j u

k
i,s �Dy(x, y)

��+1U(x, y, t)
�(�y)�+1

����
k

i,j



=O(
 + h1 + h2).

Therefore, the implicit Eulermethod de�ned by Eq. (3.2) is consistent withmodel Eq. (1.5)
of the order O(
 + h1 + h2). �

One standard method in the multi-dimensional PDEs is the ADI methods [11, 24]. For
thesemethods, the di�erence equations are speci�ed and solved in one direction at a time.
For the ADI methods, the operator form Eq. (3.3) is written in a directional separation
product form

(1 � 
��,x)(1 � 
�� ,y)uki,j � uk�1i,j + 
 f ki,j, (3.7)

which introduces an additional perturbation error equal to 
 2(��,x�� ,y)uki,j. Using Propo-
sition 4.1 in [11], we can conclude that the ADI�implicit Euler method is also consistent
with order O(
 + h1 + h2). Equation (3.8) can be written in the matrix form

flS flTUk =Uk�1 + 
Fk , (3.8)

where the matrices flS and flT represent the operators 1 � 
��,x and 1 � 
�� ,y, and

Uk =
�
uk1,1,u

k
2,1, . . . ,u

k
Nx�1,1, . . . ,u

k
1,Ny�1,u

k
2,Ny�1, . . . ,u

k
Nx�1,Ny�1

�
, (3.9)

and the vector Fk absorbs the source term and the boundary conditions in Eq. (3.9). Com-
putationally, the ADImethod for the above form is then set up and solved by the following
iterative scheme at time tk :
(1) First solve the problem in the x-direction (for each �xed yq) to obtain an intermediate

solution u�
i,q from

(1 � 
��,x)u�
i,q = uk�1i,q + 
 f ki,q. (3.10)



Yin et al. Advances in Di�erence Equations        (2018) 2018:389 Page 8 of 17

(2) Then solve in the y-direction (for each �xed xq) to obtain a solution ukq,j from

(1 � 
�� ,y)ukq,j = u�
q,j. (3.11)

From Eqs. (3.11)�(3.12), we can compute the boundary values for u� from u�
Nx ,j = (1 �


�� ,y)ukNx ,j, and using the zero Dirichlet boundary conditions, we can get

u�
Nx ,j = 0. (3.12)

Theorem 2 If Cx(x, y) and Cy(x, y) decrease monotonically along x and y, respectively;
Dx(x, y) and Dy(x, y) increase monotonically along x and y, respectively. Each one-
dimensional implicit system de�ned by the linear di�erence Eqs. (3.11)�(3.12) is uncon-
ditionally stable for all 0 < �,� < 1.

Proof At each grid point yq, for q = 1, 2, . . . ,Ny � 1, consider the linear system of equa-
tions de�ned by Eq. (3.11). This Eq. (3.11) can be written as flAq flU�

q = flUk�1
q + 
Fk

q , in-
corporating the boundary conditions from Eq. (3.13), where flU�

q = (u�
1,q,u�

2,q, . . . ,u�
Nx�1,q),

Fk
q = (f k1,q, f

k
2,q, . . . , f

k
Nx�1,q), and for each yq, the matrix flAq = [Ai,s] for i = 1, . . . ,Nx � 1 and

s = 1, . . . ,Nx � 1 of coe�cients is de�ned by

Ai,s =

�
���������

���������

�r1(Ci,qg
(�)
i+1�s �Ci�1,qg

(�)
i�s ), for s < i � 1;

�r1(Ci,qg
(�)
2 �Ci�1,qg

(�)
1 +Di�1,qg

(�)
0 ), for s = i � 1;

1 � r1(Ci,qg
(�)
1 �Ci�1,qg

(�)
0 ) � r1(Di�1,qg

(�)
1 �Di,qg

(�)
0 ), for s = i;

�r1(Ci,qg
(�)
0 +Di�1,qg

(�)
2 �Di,qg

(�)
1 ), for s = i + 1;

�r1(Di�1,qg
(�)
s�i+1 �Di,qg

(�)
s�i ), for s � i + 2,

(3.13)

here r1 = 

h�+1
1

. Cx(x, y) decreases monotonically along x; Dx(x, y) increases monotonically
along x. By Lemma 1 we have Ci�1,q � Ci,q � 0 ,Di,q � Di�1,q � 0 (i = 1, 2, . . . ,Nx), Ci,qg�

j+1 �
Ci,qg�

j � Ci�1,qg�
j ,Di�1,qg�

j+1 � Di�1,qg�
j � Ci,qg�

j (j � 2). Let flri be the sum of elements along
the ith row excluding the diagonal elements Ai,i, then

flri = r1
Nx�1�

s=1,s �=i

|Ai,s|

= r1


 i�2�

s=1

�
Ci,qg

(�)
i+1�s �Ci�1,qg

(�)
i�s

�

+Ci,qg
(�)
2 �Ci�1,qg

(�)
1 +Di�1,qg

(�)
0 +Ci,qg

(�)
0 +Di�1,qg

(�)
2

�Di,qg
(�)
1 +

Nx�1�

s=i+2

�
Di�1,qg

(�)
s�i+1 �Di,qg

(�)
s�i

�


= r1


� i�

s=0

g(�)s � g(�)1

�

Ci,q �

� i�1�

s=0

g(�)s � g(�)0

�

Ci�1,q

�

�Nx�i�

s=0

g(�)s � g(�)1

�

Di,q +

�Nx�i�1�

s=0

g(�)s � g(�)0

�

Di�1,q
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= r1


 i�

s=0

g(�)s (Ci,q �Ci�1,q) + g(�)i Ci,q +
Nx�i�1�

s=0

g(�)s (Di�1,q �Di,q) + g(�)Nx�iDi�1,q



� r1
�
Ci,qg

(�)
1 �Ci�1,qg

(�)
0

�
� r1

�
Di�1,qg

(�)
1 �Di,qg

(�)
0

�

< r1(�Ci,q +Ci�1,q + �Di�1,q +Di,q). (3.14)

We obtain

Ai,i = 1 � r1
�
Ci,qg

(�)
1 �Ci�1,qg

(�)
0

�
� r1

�
Di�1,qg

(�)
1 �Di,qg

(�)
0

�

= 1 + r1(�Ci,q +Ci�1,q + �Di�1,q +Di,q). (3.15)

As flri � Ai,i�1,matrix flAq is strictly diagonally dominant, which guarantees the invertibility
of the matrix flAq, so flAq flU�

q = flUk�1
q + 
Fk

q is uniquely solvable. According to the Gershgorin
theorem [23], every eigenvalue � of the matrix flAq has a real part larger than one, so the
spectral radius of each matrix flA�1

q is less than one. This proves that Eq. (3.11) is uncondi-
tionally stable. At each grid point xq, for q = 1, 2, . . . ,Nx � 1, consider the linear system of
equations de�ned by Eq. (3.12). This Eq. (3.12) can be written as �Eq �Uk

q = �U�
q , incorporating

the boundary conditions from Eq. (3.13), where �Uk
q = (ukq,1,u

k
q,2, . . . ,u

k
q,Ny�1), and for each

xq, the matrix �Eq = [Ej,s] for j = 1, . . . ,Ny � 1 and s = 1, . . . ,Ny � 1 of coe�cients is de�ned
by

Ej,s =

�
���������

���������

�r2( flCq,jg
(�)
j+1�s � flCq,j�1g

(�)
j�s ), for s < j � 1;

�r2( flCq,jg
(�)
2 � flCq,j�1g

(�)
1 + flDq,j�1g

(�)
0 ), for s = j � 1;

1 � r2( flCq,jg
(�)
1 �Cq,j�1g

(�)
0 ) � r2( flDq,j�1g

(�)
1 �Dq,jg

(�)
0 ), for s = j;

�r2( flCq,jg
(�)
0 + flDq,j�1g

(�)
2 �Dq,jg

(�)
1 ), for s = j + 1;

�r2( flDq,j�1g
(�)
s�j+1 � flDq,jg

(�)
s�j ), for s� j + 2,

(3.16)

here r2 = 

h�+1
2

. Similarly, we can obtain that each eigenvalue � of the matrix �Eq has a real

part larger than one, so the spectral radius of each matrix �E�1
q is less than one. This proves

that Eq. (3.5) is also unconditionally stable. �

From Eqs. (3.9), (3.11), and (3.12), the matrix flS is a block diagonal matrix of (Ny � 1)×
(Ny � 1) blocks whose blocks are the square (Nx � 1) × (Nx � 1) matrices resulting from
Eq. (3.11).We canwrite flS = diag( flA1, flA2, . . . , flANy�1). Similarly, thematrix flT is a blockmatrix
of (Nx � 1) × (Nx � 1) blocks whose blocks are the square (Nx � 1) × (Nx � 1) diagonal
matrices resulting from Eq. (3.12). In addition, we may write flT = [ flTi,j], where each flTi,j is
(Nx � 1) × (Nx � 1), flTi,j = diag(( �E1)i,j, ( �E2)i,j, . . . , ( �ENx�1)i,j), where the notation ( �Eq)i,j refers
to the (i, j)th entry of the matrix �Eq de�ned previously (see [24]). To prove the stability and
convergence of the ADI method, we need the following lemma. Let X = [x1,x2, . . . ,xm]T ,
	X	� = max1�i�m |xi|.

Lemma 2 ([25]) If the matrix D = (di,j)m×m satis�es the condition

m�

l=1,l �=i

|di,l| � di,i � 1,
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then

	X	� � 	DX	�. (3.17)

To discuss the stability of the numerical method, we denote by �uki,j (1 � i � Nx � 1, 1 �
j � Ny � 1) the approximate solution of the di�erence scheme with the initial condition �u0i,j
(1� i� Nx � 1, 1 � j � Ny � 1), and de�ne ki = uki,j � �uki,j, e

k
i =Uk

i,j � uki,j,

k =
�
k1,1, 

k
2,1, . . . , 

k
Nx�1,1, . . . , 

k
1,Ny�1, 

k
2,Ny�1, . . . , 

k
Nx�1,Ny�1

�T ,

ek =
�
ek1,1, e

k
2,1, . . . , e

k
Nx�1,1, . . . , e

k
1,Ny�1, e

k
2,Ny�1, . . . , e

k
Nx�1,Ny�1

�T .

Theorem 3 If Cx(x, y) and Cy(x, y) decrease monotonically along x and y, respectively;
Dx(x, y) and Dy(x, y) increase monotonically along x and y, respectively. The ADI�implicit
Euler method de�ned by Eq. (3.9) is unconditionally stable and convergent, and there exists
a positive constant C > 0 such that 	ek	� � C(
 + h1 + h2).

Proof First we consider stability of the ADI�implicit Euler method. From Eq. (3.9) and the
de�nition of k , we have

flS flTk = k�1. (3.18)

By Theorem 2, matrix flAq and matrix �Eq satisfy the condition of Lemma 2. According to
the relationship between thematrices flS and flAq, and the relationship between thematrices
flT and �Eq, we can obtain that flS and flT also satisfy the conditions of Lemma 2.

��k
��

� �
�� flTk

��
� �

��flS flTk
��

� �
��k�1

��
�. (3.19)

Repeating k times, we have

��k
��

� �
��0

��
�. (3.20)

Therefore the ADI method de�ned by Eq. (3.9) for the two-dimensional two-sided space-
fractional di�usion equations is unconditionally stable. Then we consider the conver-
gence of the ADI method. According to Eq. (3.2) and the de�nition of ek , we have flS flTek =
ek�1 + 
Rk and e0 = 0, where Rk = (Rk

1,1,R
k
2,1, . . . ,R

k
Nx�1,1, . . . ,R

k
1,Ny�1,R

k
2,Ny�1, . . . ,R

k
Nx�1,Ny�1)

T

and 	Rk	� � C1(
 + h1 + h2), C1 is a positive constant. Using Lemma 2, we obtain

��ek
��

� �
�� flTek

��
� �

��flS flTek
��

� �
��ek�1 + 
Rk��

� �
��ek�1| + |
Rk��

�. (3.21)

Repeating k times, we have 	ek	� � k
C1(
 + h1 + h2), so 	ek	� � C(
 + h1 + h2), here
C = k
C1. Therefore the ADI�implicit Euler method de�ned by Eq. (3.9) is O(
 + h1 + h2)
accurate. �
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4 ADI�CNmethod and its theory analysis
ACNmethod for Eq. (1.5) may be obtained into the di�erential equation centered at time
tk�1/2 = 1

2 (tk + tk�1) to obtain

uki,j � uk�1i,j



�

1
h1

�
Cx(x, yj)

��u(x, yj, tk�1/2)
�x� �Dx(x, yj)

��u(x, yj, tk�1/2)
�(�x)�

�����
xi

xi�1

+
1
h2

�
Cy(xi, y)

��u(xi, y, tk�1/2)
�y� �Dy(xi, y)

��u(xi, y, tk�1/2)
�(�y)�

�����
yj

yj�1

+ f k�1/2i,j

�
1

h�+1
1


�

Ci,j

i+1�

s=0

g(�)s uk�1/2i+1�s,j �Di,j

Nx�i�

s=0

g(�)s uk�1/2i+s,j

�

�

�

Ci�1,j

i�

s=0

g(�)s uk�1/2i�s,j �Di�1,j

Nx�i+1�

s=0

g(�)s uk�1/2i+s�1,j

�

+
1

h�+1
2


�
flCi,j

j+1�

s=0

g(�)s uk�1/2i,j+1�s � flDi,j

Ny�j�

s=0

g(�)s uk�1/2i,j+s

�

�

�
flCi,j�1

j�

s=0

g(�)s uki,j�s � flDi,j�1

Ny�j+1�

s=0

g(�)s uk�1/2i,j+s�1

�

+ f k�1/2i,j . (4.1)

After some rearrangements, combining Eqs. (2.1)�(2.2), Eq. (4.1) can be written in the
operator form

�
1 �



2
��,x �



2
�� ,y

�
uki,j =

�
1 +



2
��,x +



2
�� ,y

�
uk�1i,j + 
 f k�1/2i,j . (4.2)

For the ADI methods, the operator form Eq. (4.2) is rewritten in the following form:

�
1 �



2
��,x

��
1 �



2
�� ,y

�
uki,j =

�
1 +



2
��,x

��
1 +



2
�� ,y

�
uk�1i,j + 
 f k�1/2i,j , (4.3)

which introduces an additional perturbation error equal to

1
4
(
 )2(��,x�� ,y)

�
uki,j � uk�1i,j

�
.

Similar to Theorem 1, we can conclude that Eq. (4.3) is also consistent with order O(
 2 +
h1 +h2). Equation (4.3) can now be solved by the following set ofmatrix equations de�ning
the ADI method:

�
1 �



2
��,x

�
u�
i,j =

�
1 +



2
�� ,y

�
uk�1i,j +



2
f k�

1
2

i,j , (4.4)

�
1 �



2
�� ,y

�
uki,j =

�
1 +



2
��,x

�
u�
i,j +



2
f k�

1
2

i,j . (4.5)

The intermediate solution u�
i,j should be de�ned carefully on the boundary, prior to solv-

ing the system of equations de�ned by Eq. (4.4) and Eq. (4.5). Otherwise, the �rst-order
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spatial accuracy of the two-step ADI method outlined above will be impacted. This is ac-
complished by subtracting Eq. (4.4) from Eq. (4.5) to get the following equation to de�ne
u�
i,j:

2u�
i,j =

�
1 �



2
�� ,y

�
uki,j +

�
1 +



2
�� ,y

�
uk�1i,j . (4.6)

Thus, the boundary conditions for u�
i,j (i.e., i = 0 or Nx for j = 1, . . . ,Ny �1) needed to solve

each set of equations in Eq. (4.6) are set from

u�
0,j =

�
1 �



2
�� ,y

�
uk0,j +

�
1 +



2
�� ,y

�
uk�10,j = 0, (4.7)

u�
Nx ,j =

�
1 �


t
2

�� ,y

�
ukNx ,j +

�
1 +



2
�� ,y

�
uk�1Nx ,j

=
�
1 �



2
�� ,y

�
ukNx ,j +

�
1 +



2
�� ,y

�
uk�1Nx ,j. (4.8)

The corresponding algorithm is implemented as follows:
First, solve the problem in the x-direction (for each �xed yl) to obtain an intermediate

solution u�
i,l .

Second, solve it in the y-direction (for each �xed xl) to obtain a solutionukl,j . According to
the fact that the �rst step gives a set ofNx �1 linear equations, the system of the equations
may be written as

(I �Al)U�
l =Qk�1

l +


2
Fk� 1

2
l , (4.9)

where

U�
l =

�
u�
1,l,u

�
2,l, . . . ,u

�
Nx�1,l

�
,

Qk�1
l =


 Ny�

v=1

Bk�1
1,v u

k�1
1,v ,

Ny�

v=1

Bk�1
2,v u

k�1
2,v , . . . ,

Ny�

v=1

Bk�1
Nx�1,vu

k�1
Nx�1,v



,

Fk� 1
2

l =
�
f k�

1
2

1,l , f k�
1
2

2,l , . . . , f k�
1
2

Nx�2,l, f
k� 1

2
Nx�1,l �ANx�1,Xxu

�
Nx ,l

�
,

the matrix Al = [Ai,s] for i = 1, . . . ,Nx � 1 and s = 1, . . . ,Nx � 1 of coe�cients is de�ned by

Ai,s =

�
���������

���������

r1(Ci,qg
(�)
i+1�s �Ci�1,qg

(�)
i�s ), for s < i � 1;

r1(Ci,qg
(�)
2 �Ci�1,qg

(�)
1 +Di�1,qg

(�)
0 ), for s = i � 1;

r1(Ci,qg
(�)
1 �Ci�1,qg

(�)
0 ) + r1(Di�1,qg

(�)
1 �Di,qg

(�)
0 ), for s = i;

r1(Ci,qg
(�)
0 +Di�1,qg

(�)
2 �Di,qg

(�)
1 ), for s = i + 1;

r1(Di�1,qg
(�)
s�i+1 �Di,qg

(�)
s�i ), for s� i + 2,

(4.10)



Yin et al. Advances in Di�erence Equations        (2018) 2018:389 Page 13 of 17

and the coe�cients Bi,v for i = 1, . . . ,Nx � 1 are de�ned by

Bi,v =

�
���������

���������

�r2( flCq,lg
(�)
l+1�s � flCq,l�1g

(�)
l�s ), for v < l � 1;

�r2( flCq,lg
(�)
2 � flCq,l�1g

(�)
1 + flDq,l�1g

(�)
0 ), for v = l � 1;

1 � r2( flCq,lg
(�)
1 �Cq,l�1g

(�)
0 ) � r2( flDq,l�1g

(�)
1 �Dq,jg

(�)
0 ), for v = l;

�r2( flCq,lg
(�)
0 + flDq,l�1g

(�)
2 �Dq,lg

(�)
1 ), for v = l + 1;

�r2( flDq,l�1g
(�)
s�l+1 � flDq,jg

(�)
s�l ), for v� l + 2.

Similarly, according to the fact that the second step gives a set of Ny � 1 linear equations,
the system of the equations may be written as

(I � �Bl)Uk
l =O�

l +


2

�Fk� 1
2

l , (4.11)

where

Uk
l =

�
ukl,1,u

k
l,2, . . . ,u

k
l,Ny�1

�
,

O�
l =


 Nx�

v=1

�Ak�1
1,v u

�
v,1,

Nx�

v=1

�Ak�1
2,v u

�
v,2, . . . ,

Nx�

v=1

�Ak�1
Ny�1,vu

�
v,Ny�1



,

�Fn+ 1
2

l =
�
f k�

l
2

l,1 , f k�
1
2

l,2 , . . . , f k�
1
2

l,Ny�2, f
k� 1

2
l,Ny�1 � �BNy�1,Nyu

�
l,Ny�1

�
,

the matrix �Bl = [ �Bj,v] for i = 1, . . . ,Nx � 1 and v = 1, . . . ,Nx � 1 of coe�cients is de�ned by

�Bj,v =

�
���������

���������

r2( flCq,jg
(�)
j+1�s � flCq,j�1g

(�)
j�s ), for v < j � 1;

�r2( flCq,jg
(�)
2 � flCq,j�1g

(�)
1 + flDq,j�1g

(�)
0 ), for v = j � 1;

1 � r2( flCq,jg
(�)
1 �Cq,j�1g

(�)
0 ) � r2( flDq,j�1g

(�)
1 �Dq,jg

(�)
0 ), for v = j;

�r2( flCq,jg
(�)
0 + flDq,j�1g

(�)
2 �Dq,jg

(�)
1 ), for v = j + 1;

�r2( flDq,j�1g
(�)
s�j+1 � flDq,jg

(�)
s�j ), for v� j + 2,

(4.12)

and the coe�cients �Aj,v for j = 1, . . . ,Ny � 1 are de�ned by

�Aj,v =

�
���������

���������

�r1(Cl,qg
(�)
l+1�s �Cl�1,qg

(�)
l�s ), for V < l � 1;

�r1(Cl,qg
(�)
2 �Ci�1,qg

(�)
1 +Di�1,qg

(�)
0 ), for s = l � 1;

1 � r1(Cl,qg
(�)
1 �Cl�1,qg

(�)
0 ) + r1(Di�1,qg

(�)
1 �Di,qg

(�)
0 ), for s = l;

�r1(Cl,qg
(�)
0 +Dl�1,qg

(�)
2 �Dl,qg

(�)
1 ), for s = l + 1;

�r1(Dl�1,qg
(�)
s�l+1 �Dl,qg

(�)
s�l ), for s� l + 2.

(4.13)

Equation (4.2) can be written in the matrix form

(I � S)(I � T)Uk = (I + S)(I + T)Uk�1 + Fk�1/2, (4.14)

where the matrices S and T represent the operators 1 � 

2 ��,x and 1 � 


2 �� ,y, which are
matrices of size (Nx�1)(Ny�1)×(Nx�1)(Ny�1), Fk�1/2 absorbs the source terms f k�1/2 and
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the boundary conditions in the discretized equation, and Uk = (uk�11,1 ,u
k�1
2,1 , . . . ,u

k�1
Nx�1,1, . . . ,

uk�11,Ny�1,u
k�1
2,Ny�1, . . . ,u

k�1
Nx�1,Ny�1). From Eqs. (4.9), (4.11), and (4.14), the matrix S is a block

diagonal matrix of (Ny � 1)× (Ny � 1) blocks whose blocks are the square (Nx � 1)× (Nx �
1) matrices resulting from Eq. (4.9). We can write flS = diag(A1,A2, . . . ,ANy�1). Similarly,
the matrix T is a block matrix of (Nx � 1) × (Nx � 1) blocks whose blocks are the square
(Nx � 1)× (Nx � 1) diagonal matrices resulting from Eq. (4.11). In addition, we may write
T = [Ti,j], where each Ti,j is (Nx�1)× (Nx�1), Ti,j = diag(( �B1)i,j, ( �B2)i,j, . . . , ( �BNx�1)i,j), where
the notation ( �Bq)i,j refers to the (i, j)th entry of the matrix �Bq de�ned previously.

Theorem 4 If Cx(x, y) and Cy(x, y) decrease monotonically along x and y, respectively;
Dx(x, y) and Dy(x, y) increase monotonically along x and y, respectively, and the matrices S
and T commute, then the ADI�CNmethod de�ned by Eq. (4.14) is unconditionally stable,
and the ADI�implicit Euler method de�ned by Eq. (3.9) is O(
 2 + h1 + h2) accurate.

Proof From Theorem 2, if flri is the sum of elements along the ith row of the matrix Al

excluding the diagonal elements Ai,i, we have

flri � �Ai,i.

According to the Gershgorin theorem, the eigenvalues of the matrix Al lie in the union
of the disks centered at Ai,i with the radius

	m1�1
v=1,j �=i |Ai,v|; therefore, the eigenvalues of the

matrixAl have negative real parts. Similarly, the eigenvalues of thematrix �Bl have negative
real parts. Since S = diag(A1,A2, . . . ,Am2�1), the eigenvalues of thematrix S are in the union
of the Gershgorin disks for the matrices A�

ls; therefore, every eigenvalue of the matrix S
has a negative real part. Similarly, every eigenvalue of the matrix T has a negative real
part.
Because the matrices S and T commute, if �1, �2 are eigenvalues of matrices S and T ,

respectively, we can obtain (1+�1)(1+�2)
(1��1)(1��2)

is an eigenvalue of the matrix (I � S)�1(I + S)(I �
T)�1(I + T), thus the spectral radius of matrix (I � T)�1(I � S)�1(I + S)(I + T) is less than
one, then the ADI�CNmethod de�ned by Eq. (4.14) is unconditionally stable. Therefore,
according to Lax�s equivalence theorem [26], the ADI�implicit Euler method de�ned by
Eq. (3.9) is O(
 2 + h1 + h2) accurate. �

Remark 2 (Richardson extrapolation) The extrapolated solution is computed from

utk ,x,y = 2utk ,x,h1/2,y,h2/2 � utk ,x,h1,y,h2 ,

where (x, y) is a common grid point, and utk ,x,h1,y,h2 , utk ,x,h1/2,y,h2/2 denote the ADI�CN
method solutions at the grid point (x, y) on the coarse grid (h1/2,h2/2) and the �ne grid
(h1/2,h2/2), then we can get O(
 2 + h21 + h22) accurate.

5 Numerical examples
In this section, we carry out numerical experiments to demonstrate the e�ectiveness of
the ADI methods.
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Example The following two-dimensional two-sided space-fractional di�usion equation
was considered:

�u(x, y, t)
�t

=
�
�x

�
Cx(x, y)

��u(x, y, t)
�x� �Dx(x, y)

��u(x, y, t)
�(�x)�

�

+
�
�y

�
Cy(x, y)

��u(x, y, t)
�y� �Dy(x, y)

��u(x, y, t)
�(�y)�

�
+ f (x, y, t),

0 < x < 1, 0 < y < 1, 0� t � Tend, (5.1)

where Tend is the end time. The nonnegative di�usion coe�cient Cx(x, y) = �(4��)
�(3) • (�x),

Cy(x, y) = �(3��)
�(2) • (�y), Dx(x, y) = �(4��)

�(3) • (x � 1), Dy(x, y) = �(3��)
�(2) (y � 1). The source term

f (x, y, t) is given by

f (x, y, t) = �3e�3t
�
x2 � x3

��
y � y2

�
+

�
(2 � �)2

�
y1�� � (1 � y)1���

� 2(3 � �)
�
y2��

� (1 � y)2����
e�3t

�
x2 � x3

�
+

�
(3 � �)2

�
x2�� � 2(1 � x)2���

� 3(4 � �)
�
x3�� + (1 � x)3���

�
(3 � �)(2 � �)2

2
(1 � x)1��

�
e�3t

�
y � y2

�
, (5.2)

which satis�es the initial function

�(x, y) =
�
x2 � x3

��
y � y2

�
, (5.3)

and the zero Dirichlet boundary condition is

u(0, y, t) = u(1, y, t) = u(x, 0, t) = u(x, 1, t) = 0. (5.4)

The exact solution to this problem is

u(x, y, t) = e�3t
�
x2 � x3

��
y � y2

�
. (5.5)

Table 1 shows the maximum absolute numerical error and temporal convergence or-
ders for the ADI�implicit Euler method with Tend = 1. From this table, we see that the
convergence order of the scheme is O(
 + h1 + h2).
Table 2 shows the maximum error and temporal convergence orders for ADI�CN ex-

trapolated solution with Tend = 1. From this table, we see that the convergence order of
the scheme is O(
 2 + h21 + h22).

Table 1 Maximum errors and temporal convergence orders for the ADI�implicit Euler method with
Tend = 1

�t = h1 = h2 � = 0.6, � = 0.8 � = 0.7, � = 0.9

Maximum error Order Maximum error Order

1/10 4.8003e�3 - 1.7678e�3 -
1/20 2.6001e�3 0.885 8.8503e�4 0.999
1/40 1.3000e�3 1.000 4.4357e�4 0.996
1/80 6.7261e�4 0.956 2.2553e�4 0.976
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Table 2 Maximum errors and temporal convergence orders for ADI�CN extrapolated solution with
Tend = 1

�t = h1 = h2 � = 0.6, � = 0.8 � = 0.7, � = 0.9

Maximum error Order Maximum error Order

1/5 3.7326e�3 - 9.4226e�4 -
1/10 9.3601e�4 1.996 2.3674e�4 2.078
1/20 2.3732e�4 1.980 5.5934e�5 2.081
1/40 5.9725e�5 1.990 1.4838e�5 1.914

6 Conclusions
We use the shifted left Grünwald formula and the standard right Grünwald formula to
approximate the left and right Riemann�Liouville fractional derivatives, respectively; we
present an implicit Euler method and a CN method for the two-dimensional two-sided
space-fractional di�usion equation. Two methods both combine with the ADI method to
obtain unconditionally one-order accurate and two-order accurate �nite di�erence meth-
ods.
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