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1 Introduction
According to the principle of conservation of mass, the equation of continuity form is
given by

u(x, t) . Q(x, 1)
t X

=f(x,1), (1.1)

where u(x, t) is the distribution function of the di using quantity, Q(x,t) is the di usion
ux, and f (x,t) is the source term. Then we modi ed the classical Fick s law by
X b
Q(x,t) = C(x)—X Ki(x, Ju( ,t)d D(x)—X K (x, Ju( ,t)d , 1.2)
a X
where C(x) and D(x) are nonnegative di usion coe cients, K.(x, ) and K (x, ) are the
kernel functions de ned by

Kilx, )=~ ) , a X;

13)
K& )=75( 9 . x b
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where 0 < < 1. Combining Egs. (1.1) (1.3), we can get a one-dimensional two-sided
space-fractional di usions equation [1]:

u(x,t) u(x, t) u(x, t)
T x C(x) » D(x) (% +f(x,t),
a x b0< <1t>0. (1.4)

In this paper, we discuss the two-dimensional two-sided space-fractional di usion equa-
tion as follows:

M =~ Cx(x,y)—u(i’y’t) Dx(x.y)—u((x)’(;/ &
= oD Dy D
+f(xy.1), (xy) .,t>0, (1.5)
subject to the initial condition
uxy,0= (xy), xy (1.6)
and the zero Dirichlet boundary conditions
u(ag,y,t) =u(az,y,t) =u(x, by, t) =u(x, b, t)=0, t 0O, a.7)

where =(ag,az) (b1,by)isarectangulardomain, 0< , <1, Cyx(X,Y), Dx(X,y), Cy(X,y),

and Dy(x,y) are the nonnegative di usion coe cients, f(x,y,t) is the source term. The

) D (= or ) are respectively the left and right Riemann  Liouville frac-

tional derivatives [2, 3] which are de ned by

u(x,y,t) _ 1 Xu(s,y,t)
X T ) X o4 (X 9) o 9
u(x,y,t) _ 1 a2 y(s,y,t)

(0 @ Jxx 60 ™ (19)

The de nitions of M W are similar to the de nitions of the x direction. As
we cannot easily get the explicit analytical solutions of the fractional equations, so many
researchers resort to their numerical solutions [4 10].

Moreover, a second-order method which combines the alternating-direction implicit
approach with the Crank Nicolson discretization and the Richardson extrapolation for
the two-dimensional fractional di usion equations was studied in [11]. Chen et al. [12]
studied preconditioned iterative methods for the linear system arising in the numeri-
cal discretization of a two-dimensional space-fractional di usion equation. Chen et al.
[13] discussed the practical alternating-directions implicit method to solve the two-
dimensional two-sided space fractional convection di usion equation ona nite domain.
Liu et al. [14] developed an alternating-direction implicit method for the two-dimensional
Riesz space fractional di usion equations with a nonlinear reaction term. Zeng et al. [15]
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proposed a Crank Nicolson alternating-direction implicit Galerkin Legendre spectral
method for the two-dimensional Riesz space fractional nonlinear reaction-di usion equa-
tions. Feng et al. [16] presented a second-order method for the space fractional di usion
equation with variable coe cient. Moroney et al. [17] developed a fast Poisson precondi-
tioner forthee cient numerical solution of a class of two-sided nonlinear space-fractional
di usion equations. Chen et al. [18] proposed a fast nite di erence approximation for
identifying parameters in a two-dimensional space-fractional nonlocal model.

However, less focus has been on the variable coe cients FDE in a conservative form.
The di usion coe cient is generally space- or time- dependent in practical problems. In
the numerical aspect of these two-sided space-fractional di usion equations in one di-
mension, Chen et al. [1] developed a fast semi-implicit di erence method for a nonlinear
one-dimensional two-sided space-fractional di usion equation with variable di usivity
coe cients. Feng et al. [19] presented a new nite volume method for a one-dimensional
two-sided space-fractional di usion equation. Feng et al. [20] discussed a fast second-
order accurate method for a one-dimensional two-sided space-fractional di usion. To
our knowledge, the study on the nite di erence method computation of these two-sided
space-fractional di usion equations in two dimensions is limited. This motivates us to
develop the alternating-direction nite di erence methods for this two-dimensional two-
sided space-fractional di usion equation in this paper.

The rest of the paper is organized as follows. In Sect. 2, we begin with some notations
and properties. In Sect. 3, we present an ADI implicit Euler method for this equation and
its theory analysis. In Sect. 4, we present an ADI CN method for this equation and its
theory analysis. In Sect. 5, we present numerical experiments to check the accuracy of
these methods.

2 Notations and properties

For the numerical approximation of the implicit di erence method, we de ne a uniform
grid of mesh point (x;,yj, t), Xi =ay +ihy fori=0,1,...,Ny; yj=bs +jhy forj=0,1,...,Ny;
t, =k , where h; = bleal, h, = sz_yaz are the mesh-width in the x ,y , and the time
direction, respectively. Let Cij = Cx(x;,Y;), Dij = Dx(%;, ), &ij = Cy(xi,y;), Bij = Dy(xi, ),
f% = (xi,y;, t). Denote U, uf; to be the exact and numerical solutions at the mesh point
(i, yj, t), respectively. We use the shifted left Gr nwald formula and the standard right
Gr nwald formula to approximate the left and right Riemann Liouville fractional deriva-

tives, respectively [21, 22]. We have the following formulae:

i+1

u(xi,yj, t) _ 1
AR = g, v
s=0
Ny i
U(Xi:Yj:tk) 1 ( )k
- @ = . .+ h
(0 Ry, % O
where gs( )( = or )arethe normalized Gr nwald weights [23]
="

The formulae of the y direction are similar to the formulae of the x direction.
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Lemma 1 ([23]) The normalized Gr nwald weights g ’ when 0 < < 1 satisfy the proper-
ties:
: o\ ) =0.
(l) ]:0 gO )
(i) g5’ =19 <0forj 1;
(iii) jn:0 gj( )> 0 foranyn 1;
(iv) gj(+1) gj( )= gj(+1+1)f0’”j L
) jn:0 gj( < Oforanyn 1.
De ne the following nite di erence operators:

1
kK _ k K
xUjj = b Ci,jgi(d s G 1,jgi(s) Us +Ci,jg(() )ui+1,j
1 s=0
Nx
k
+ ) Di 1,jg§ i)+1 Di,jg§ |) us,j
1 s=i
+D; l,jg((J )UE( 1j 21)
o 1] 0) () |k )k
yUij = o @i,jgjﬂ s & 195 s Ui,s+@i,jgo Ujje1
2 s=0
1V
() () k
t— ®i,j 195 jo1 ®ixl'gs i Yis
2 s=j
+[fbi,j 19(() )uli(,j 1 (2.2)

3 ADI implicit Euler method and its theory analysis

In this paper, we use the backward Euler scheme for the rst-order time derivative. We
use the shifted left Gr nwald formulae and the standard right Gr nwald formulae to ap-
proximate the left and right Riemann Liouville fractional derivatives, respectively [1, 20].
We get a discrete approximation for Eq. (1.5) at the mesh point (x;, yj, t):

k k 1 Xj
Ujj Ui 1 u(x,yj t) ulxyjt)
— Xy Dy(X Y —————=
™ (%, ¥5) X (%, Y5) (%) -
1 u(xi, Y, t) uliyt) I
+— CyX,y)——— DyXi,Y)—f—— +1ij.
h2 A y i ( y) Vi1 .
We can obtain
k k 1 i+1 Ny i
b1 Ci,j gs( )uli(+l S Dij s( )u|i(+s,j
1 s=0 s=0
i Ny i+1
Ci 1 gs( )UE( s Di 1 gs( )uhs 1j

s=0 s=0
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1 j+1 Ny j
k k
+ P @i of )ui,j+1 s By g )ui,j+s
2 s=0 s=0
j Ny j+1
k k k
¢, o )ui,j s Bija o )ui,j+s 1t
s=0 s=0

After some rearrangements, the implicit nite di erence equation is given by

k 1 i+1 Nx

1
ij ij _ K
- h1+1 Ci,j g|(+:?. sUsj DiJ

s=0 s=i

( ),k
gs ius,j

i Nx
Ciy ol Digy ol b
s=0 s=i 1
1 j+l Ny
() ,k (), k
+ F @i,j Oi+1 sUis I‘fbi,j Os jUis
2 s=0 s=j
i Ny
&;; 4 gj( s)Uik,j o by o j)+1Uik,s + K, (3.1)
s=0 s=j 1

Equation (3.1) may be written as

k k k
Uij |1 Ci,jgi(+i s Ci 1,jgi(s) Us; +Ci,jg(() )ui+l,j
1 s=0
Nx
Di 1,0 iy Dijo ) u+D;
h, *1 i 19 i1 ij9 i i 1JgO | 1
1 s=i
: ) ) ()
k k
1 @i,jgm s & 195 s ufs + &0 Uij+1
h2 s=0
Ny
() (
h. L lfbi,j 105 j+1 EbiJQSj U +|be] lgO I] 1
2 s=j
=uft+ f (3.2)

]

Combining Egs. (2.1) (2.2), Eq. (3.2) can be written in the operator form
1 M MIEITIEE. (33)

In the following proposition, we show that this method de ned by Eq. (3.2) is consistent
with model (1.5) of the order O( +h; +hy).

Remark 1 The implicit di erence scheme Eq. (3.2) can be rewritten as

i i+l
k k +1), .k
Ui h. 1 (Cid' Ci 1,j)gi( s)us,j + CIJg|(+1 s) Ug)
1 s=0 s=0

Nx Nx
1)k
+1 (Di 1j IJ)gs |) it Di ngs(+I|) Sj

s=i s=i 1

>
fiy
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i i+l
k 1),k
P @ & 1)9,-( s)ui,s+ @i,jgj(+fs)ui,s
2 s=0 s=0
Ny Ny
1

— (i, ;o j)UEs‘* thi; 1057 j)UE(,s
h2 s=j s=j 1

Ut K (34)

Theorem 1 The implicit Euler method de ned by Eq. (3.2) is consistent with model
Eqg. (1.5) of the order O( +hy +hy).

Proof Equation (1.5) may be written as

7U(X,ty, t) = —X Cx(X,y) 7U(§lylt) +Cx(X,y) +1L:(()4(.‘1y‘ t)
u(x,y, t) “u(x,y, 1)
~ Dxy) o Dx(X,V)W
= Cy(x.Y) —u(;(’y’t) +Cy(X,y)7+ll;()f1y' !
+1
~ D,k % Dy(x,y)%
+f(x,y, 1). (3.5)

From Eq. (3.4), we obtain the local truncation error term.

Uk Uk 1 1 i i+1
Rij= ——— ror o (G G 1)l JUs+ Gl Ul
1 5=0 s=0

1 Nx Nx

T (Di 1; Dija! i)Usk,j + Db 1,jg§+Ili)Usk,j

1 s=i s=i 1
1 ¢ & 00 Uk " & o DUk

hl ij  Cij 19 Uis+ ii+1 s Yis

2 s=0 5=0
1 B Boal) Uk v B g DUk

— ij 1 Dijgs ) Ui+ ij 101 Uis i (3:6)

h2 s=j s=j 1

From Eq. (3.5), we get
k k 1
Rk = Ui Yij u(xy.t) -
1) t IJ

1" (Cy Cig) (o u(x,y,t)

- : : g U i t— C (le)

hl =0 h1 bl X X X i
1 ™ *u(x,y, t)

h 1 Ci,jgi(+1+ls)usk,j Cx(xl)/)T -
1 s=0 ij
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Ny k
1 (i 1j Dij) (), « u(x,y, t)
- A POk 4 py(xy) —— 7
h hy o sidsit x(X.Y) (0 4
Nx k
1 Hu(x,y, 1)
D 1 ( +1_)Uk_ Dy (X, y)——2
hl+1 i1 i 1j0s+1 i s X(X y) ( X) +1 i
1! @i &0 ()« u(x,y,t)
- g U — Cy(x,y) ———=
hz o h2 j s ™is y y i
j+1 +1 k
. u(x,y,t)
h. L @i,igj(ﬂ ls)Uilfs Cy(x.y) +1 -
2 s=0 y 1
Ny k
1 i1 i) ()« u(x,y,t)
il o WY Uk + — Dy(xy) ———22
T D0,
N
1 Y TU(x,y,t)
= @ g(++1_)uk D (X,y)i”
h2+1 - ij 19s+1 jHis y (y) +1 y
=0( +hy+hy).

Therefore, the implicit Euler method de ned by Eq. (3.2) is consistent with model Eq. (1.5)
of the order O( +h; +hy). O

One standard method in the multi-dimensional PDEs is the ADI methods [11, 24]. For
these methods, the di erence equations are speci ed and solved in one direction at a time.
For the ADI methods, the operator form Eq. (3.3) is written in a directional separation
product form

(1 (1 ,y)uli(,j Uli(,j Lt filjy 3.7)
which introduces an additional perturbation error equal to  2( ,y)u}fj. Using Propo-
sition 4.1 in [11], we can conclude that the ADI implicit Euler method is also consistent
with order O( + h; +hjy). Equation (3.8) can be written in the matrix form

gtuk=ukt+ FK (3.8)
where the matrices 8 and 1 represent the operators 1 xand1 y»and
k— [k k k k k k
UT= Upg, Uz Ung 120 Uiy 10Uy 100 Ung 18y 10 (39

and the vector F¥ absorbs the source term and the boundary conditions in Eg. (3.9). Com-
putationally, the ADI method for the above form is then set up and solved by the following
iterative scheme at time ty:

(1) First solve the problem in the x-direction (for each xed yq) to obtain an intermediate
solution u; , from

L Dug=ut+ f (3.10)

Page 7 of 17
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(2) Then solve in the y-direction (for each xed x;) to obtain a solution ulé,j from

@ yus=u (3.11)

aj
From Egs. (3.11) (3.12), we can compute the boundary values for u from uy ; = (1
,y)uK,X,j, and using the zero Dirichlet boundary conditions, we can get

Uy, = 0. (3.12)

Theorem 2 If Cy(x,y) and Cy(x,y) decrease monotonically along x and vy, respectively;
Dx(x,y) and Dy(x,y) increase monotonically along x and y, respectively. Each one-
dimensional implicit system de ned by the linear di erence Eqgs. (3.11) (3.12) is uncon-
ditionally stableforall0< , <1.

Proof At each grid point yq, for g=1,2,...,Ny, 1, consider the linear system of equa-
tions de ned by Eq. (3.11). This Eq. (3.11) can be written as Adh, = Bk * + F, in-
corporating the boundary conditions from Eg. (3.13), where lwq = (Upq Upgr- Uy, 1.9),
FE = (g By B, 14), @nd for each y,, the matrix A, =[Ag]fori=1,...,Ny 1land
s=1,...,Nx lofcoe cientsisde ned by

r(Cigdl s Ci 10 2. fors<i 1;
r(Ciqt’ Ci 1498’ +Di 1495 ), fors=i 1;
Ais= 1 rl(Ci,qgg ) ¢ 1vqgé N (D 1,qg§ ) Di,qgé )), fors=i; (3.13)
r(Ciggd ’ +Di 1405 Digg! ), fors=i+1;
(i 1008 by Diggl ) fors i+2,

here r; = R Cx(x,y) decreases monotonically along x; Dy(X,y) increases monotonically
alongx. By LemmalwehaveC; 14 Ciq 0,Dig Diig 0(i=12...,Ny), Ci,qgj+1
Ci,qgj Ci 109 Di 109+ Di 149 Ci,qgj (i 2).Let ft; be the sum of elements along
the ith row excluding the diagonal elements A;, then

Ny 1
fi=r [Ais|
s=1,s=i
i 2
=n Ci,qgi(J s Ci 1ngi(s)
s=1
+Cig8s) Ci 100 +Di 1005 +Ciqgl ) +Di 1408

Ny 1

Di,qgi )+ D; 1,qgs( i)+l Di,qgs( |)
s=i+2
i il
=n O o) Cig ()65 Ciag
s=0 s=0
Nx i Ny i 1
o) o) Dig+ o) o§) Diig

s=0 s=0



Yin et al. Advances in Di erence Equations (2018) 2018:389 Page 9 of 17

i Ny i 1
=r gs( )(Ci,q Ci l,q)+gi( )Ci,q + gs( )(Di 14 Di,q)"'gr(\jx) iDi 19
s=0 s=0
re Ci,q9§ ! 1,q9(() ) 1n D 1,qg£ ) Di,qg(() )

<ry( Ci,q +Ci 9% Diggt Di,q)- (3.14)

We obtain

Aii=1l n Ci,qgi) Ci 1,qg(()) ri Dj 1,qg£) Di,qg(())

=1+r( Cig+Ci1q+ Di1q+Dig) (3.15)

Asfi  Aii 1, matrix Aq is strictly diagonally dominant, which guarantees the invertibility
of the matrix A, so Aqlh, =% * + F¥ is uniquely solvable. According to the Gershgorin
theorem [23], every eigenvalue of the matrix Aq has a real part larger than one, so the
spectral radius of each matrix Aql is less than one. This proves that Eq. (3.11) is uncondi-
tionally stable. At each grid point xq, for q=1,2,...,Ny 1, consider the linear system of
equations de ned by Eq. (3.12). This Eq. (3.12) can be written as Equg = Uy, incorporating
the boundary conditions from Eq. (3.13), where U& = (uf;, uf§ :Ug,Ny 1), and for each

qlr-g2
Xq, the matrix Eq = [Ejs] forj=1,...,Ny lands=1,...,Ny 1ofcoe cientsisde ned
by
Bail) . G o) fors<j 1
r2(€qi951 s €qj 195 5), ors<j 1;
@0l &qj 100 +bg; 10{)), fors=j 1;
Eis= 1 ra(@0i’ Cojagf)) raB;agi’ Dajgs)) fors=j; (3.16)
ra(@qj08 + Bg; 195 Dajol ), fors=j+1;
rZ(qu,j 195( j)+1 qu,jgs( ,-)), fors j+2,

here r, = T Similarly, we can obtain that each eigenvalue of the matrix Eq has a real
2

part larger than one, so the spectral radius of each matrix qu is less than one. This proves
that Eq. (3.5) is also unconditionally stable. O

From Egs. (3.9), (3.11), and (3.12), the matrix § is a block diagonal matrix of (Ny 1)
(Ny 1) blocks whose blocks are the square (Ny 1) (Nx 1) matrices resulting from
Eq. (3.11). We can write § = diag(A1, A;,..., Ay, 1). Similarly, the matrix T is ablock matrix
of (Ny 1) (Nyx 1) blocks whose blocks are the square (Nx 1) (Nx 1) diagonal
matrices resulting from Eg. (3.12). In addition, we may write ¥ = [1;;], where each *;; is
(Ny 1) (Nx 1), -ﬂ-i'j = diag((Ea)iji (E2)ij. ..., (Eny 1)ij), Where the notation (Eq)i; refers
to the (i, j)th entry of the matrix Eq de ned previously (see [24]). To prove the stability and
convergence of the ADI method, we need the following lemma. Let X = [X1,X2,...,Xm]",

X =maxy i mlXil.

Lemma 2 ([25]) If the matrix D = (dj;)m m satis es the condition

m
[di)] dii 1,
I=1,I=i
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then
X DX . (3.17)

To discuss the stability of the numerical method, we denote by ufj 1 i Ny 1,1

i Ny 1) the approximate solution of the di erence scheme with the initial condition U?,j

(L i Ny L1 j N, 1),andde ne ¥= u%fj u'ifj, ek = Ui'fj u'ifj,
k— k k k k k k T

110 2100 Nx LLrss0 LNy 10 2Ny 1000 Ny LNy 1 ¢

k— ok ok k k k k T
€= €118 By 1 BNy 1E2Ny 1 BN ANy 1

Theorem 3 If C,(x,y) and Cy(x,y) decrease monotonically along x and y, respectively;
Dx(x,y) and Dy(x,y) increase monotonically along x and y, respectively. The ADI implicit
Euler method de ned by Eq. (3.9) is unconditionally stable and convergent, and there exists
a positive constant C > 0 such that eX C( +hg+hy).

Proof Firstwe consider stability of the ADI implicit Euler method. From Eq. (3.9) and the
de nition of X, we have

g k= k1 (3.18)
By Theorem 2, matrix A, and matrix Eg satisfy the condition of Lemma 2. According to

the relationship between the matrices 8 and Aq, and the relationship between the matrices
1 and E,, we can obtain that § and 1 also satisfy the conditions of Lemma 2.

k t o« gt « ki (3.19)
Repeating k times, we have
k o (3.20)

Therefore the ADI method de ned by Eqg. (3.9) for the two-dimensional two-sided space-
fractional di usion equations is unconditionally stable. Then we consider the conver-
gence of the ADI method. According to Eq. (3.2) and the de nition of ¥, we have §1fek =
e 1+ R€and e’ =0, where R“ = (R{;,R};,...,RY, 1,11---'R5Ny 11Ri§,Ny 1o RN, iy 1)

and Rk Ci( +hg +hy), Cy is a positive constant. Using Lemma 2, we obtain
ek Tek e ek 1+ RK e+ RK . (3.21)
Repeating k times, we have eX k Ci( +hyi+hy), so e C( +hy+hy), here

C =k Cj. Therefore the ADI implicit Euler method de ned by Eq. (3.9) is O( +h; +hy)
accurate. O
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4 ADI CN method and its theory analysis
A CN method for Eq. (1.5) may be obtained into the di erential equation centered at time
te 172 = 3(t + 1t 1) to obtain

k k 1 Xi
Ui Ui 1 u(x, v, tc 172) u(x,yj te 12)
—— = GKXYy)————— DXY)

hl * ! X ) ! ( X) Xj 1
1 u(xi,y, te 172) uxi,y, tc 172)
+ h_ Cy(xi,y) —————= Dy(XhY)# +fi5 v
2 y y ¥j 1
i+1 Ny i
K 172 K 172
h. 1 Ci,j gs( )ui+1 s, Di,j gs( )ui+s,j
1 5=0 s=0
i Ny i+l
Ciyy oufd? Diyy T
s=0 $=0
j+1 Ny j
K 172 K 172
+ F dti.j s( )ui,j+l s Ebiyi s( )uiJ+s
2 s=0 s=0
i Ny j+1
&;. o )Uhj o Bijy 9! )UE(,jJrls/zl +fi§ 2, (4.1)
s=0 s=0

After some rearrangements, combining Eqgs. (2.1) (2.2), Eqg. (4.1) can be written in the
operator form

1 k= I+o <ty ut (4.2)

2 X 2V 2 b

For the ADI methods, the operator form Eq. (4.2) is rewritten in the following form:

y uk= Ito x 145y ut 1 (4.3)

2 2 i

which introduces an additional perturbation error equal to
1 kK ook1
Z( C x ) Uij Ui~ -

Similar to Theorem 1, we can conclude that Eq. (4.3) is also consistent with order O( 2 +
h; +hy). Equation (4.3) can now be solved by the following set of matrix equations de ning
the ADI method:

K 1

5 % U= 5 Y U§<,11+§fi,j Z, (4.4)
Kk 1

x Uit Efi,j z. (4.5)

— + —
2 Y 2

The intermediate solution u;; should be de ned carefully on the boundary, prior to solv-
ing the system of equations de ned by Eq. (4.4) and Eq. (4.5). Otherwise, the rst-order
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spatial accuracy of the two-step ADI method outlined above will be impacted. This is ac-
complished by subtracting Eq. (4.4) from Eqg. (4.5) to get the following equation to de ne

ui,j:

0= 1 5y us + 1+ usi t. (4.6)

Thus, the boundary conditions for u;; (i.e., i=00r Ny forj=1,...,Ny 1) needed to solve
each set of equations in Eq. (4.6) are set from

UOVJ- = 1 E y ugd + 1 + § v ul(;,jl = O’ (47)

t
- k k 1
U= 1 5y Ungt 145y Uy

=15y Uyt THg oy Uy (4.8)

The corresponding algorithm is implemented as follows:

First, solve the problem in the x-direction (for each xed y;) to obtain an intermediate
solution u;.

Second, solve itin the y-direction (foreach xed x;) to obtain asolution u}fj .Accordingto
the fact that the rst step givesaset of Ny 1 linear equations, the system of the equations
may be written as

1
_ k1 k 3
(1 A|)U| =Qy ~+ EFI , (4.9)
where
Uy = Uy Uy Uy 1o
Ny Ny Ny
K 1_ K1,k 1 K1,k 1 K1 k1
Q "= Biyjui,, By up.., BNy 1vUNy 1y
v=1 v=1 v=1
k 1 k1 k3 k k 1
2 — 2 2 2 2
Fooo= ot ot 2 T 1 Ay 1xUng

the matrix Aj=[Ais] fori=1,...,Ny lands=1,...,Ny 1lofcoe cientsisde ned by

r(Cigd%l « Ci 140! ). fors<i 1;
r(Ciq0s ' Ci 1495’ +Di 1485 ). fors=i 1;

Ais= 11(Cig8i’ Ci 1405 ))+11(Di 149{’ Diggl’), fors=i; (4.10)
rl(ci,qg(() )+ D; 1,q9§ ) Di,qg](_ )), fors=i+1;

ri(D; l,qgs( i)+1 Di,qgs( ,)), fors i+2,
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and the coe cients By fori=1,...,Ny 1larede ned by

(@0l o G4 100 )). forv<l 1
(@105 ) gy 100 + g 195, forv=1 1;
Biv= 1 ro@q0f’ Cqi10l?) ra(gi19i’ Dgjof), forv=1;
rz(@q,lgé V4 g, 105 Dq,|g§ ), forv=1+1
ra(Bas 100y Bjol ), forv 1+2.

Similarly, according to the fact that the second step gives a set of Ny 1 linear equations,
the system of the equations may be written as

K 1
(I B)Uf=0, +§F| z, (4.12)
where

— ok k
U= Ui Ui Uiy 1

Nx Nx Ny
_ k1 K1 K1
O = Aty Uy AgyUyaie Ay by, 1o
v=1 v=1 v=1
1 K 1 K 1

kb ok
— 2 2 2 2
= fa S finy 2 finy 1 By iU 1

the matrix B, = [Bj,] fori=1,...,Ny landv=1,...,Ny 1ofcoe cientsisde ned by

r2(¢|:qd'9j(+1)s & 1gj(s))v forv<j 1,
ra(€qigs ) Eqj 100 + B 1057, forv=j 1,
Biv= 1 ro(@q0f’ Cqj10l’) ra(dg; 10f’ Dgjof’). forv=j; (4.12)
ra(@q08 )+ Boj 1080 Dyt ), forv=j+1;
ra(Ba; 10¢ j)+1 g, 0¢ ,-)), forv j+2,

and the coe cients Ajy forj=1,...,Ny 1larede ned by

r(Cia0ll s Ci 140 2, forv <l 1;
rl(Cl,qgé e 1,q9§ )+ D; 1,qgé )), fors=1 1;
Ajv= 1 11(Ciq0i’ Ci1q88))+11(Di 100{’ Diged’), fors=1; (4.13)
r(Cig0s ) +Di 1405 Digol’), fors=1+1;
D 149 by Digol ) fors |+2.

Equation (4.2) can be written in the matrix form
(1 S)I T)UK=(@+S)(1+T)Uk L+Fk 2 (4.14)

where the matrices S and T represent the operators 1 5 yand1 5 , which are
matricesofsize (N 1)(Ny 1) (Nx 1)(Ny 1),Fk Y2absorbsthesourcetermsf /2 and
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the boundary conditions in the discretized equation, and U* = (u¥ !, uk ... uf 14,
USN, 1 USK, 1o Uty 1)- From Egs. (4.9), (4.11), and (4.14), the matrix S is a block
diagonal matrix of (N, 1) (N, 1) blocks whose blocks are the square (Nx 1)  (Ny
1) matrices resulting from Eq. (4.9). We can write 8 = diag(A1,Az,...,An, 1). Similarly,
the matrix T is a block matrix of (Nx 1) (Nx 1) blocks whose blocks are the square
(Nx 1) (Nx 1)diagonal matrices resulting from Eq. (4.11). In addition, we may write
T= [Ti'j], where each Ti,j is (Nx 1) (NX 1), Ti'j = diag((Bl)i,j, (Bg)iyj, ceny (BN>< 1)”'), where
the notation (Bg);; refers to the (i, j)th entry of the matrix B, de ned previously.

Theorem 4 If Cy(x,y) and Cy(x,y) decrease monotonically along x and vy, respectively;
Dy(x,y) and Dy(x,y) increase monotonically along x and y, respectively, and the matrices S
and T commute, then the ADI CN method de ned by Eq. (4.14) is unconditionally stable,
and the ADI implicit Euler method de ned by Eq. (3.9) is O( 2 + hy + h,) accurate.

Proof From Theorem 2, if f#; is the sum of elements along the ith row of the matrix A,
excluding the diagonal elements A;;, we have

i A

According to the Gershgorin theorem, the eigenvalues of the matrix A; lie in the union
of the disks centered at A;; with the radius Clllyjlzi |Aiy|; therefore, the eigenvalues of the
matrix A; have negative real parts. Similarly, the eigenvalues of the matrix Bj have negative
real parts. Since S = diag(A1, Ay, ..., Am, 1), the eigenvalues of the matrix S are in the union
of the Gershgorin disks for the matrices As; therefore, every eigenvalue of the matrix S
has a negative real part. Similarly, every eigenvalue of the matrix T has a negative real
part.

Because the matrices S and T commute, if 1, , are eigenvalues of matrices Sand T,
respectively, we can obtain % is an eigenvalue of the matrix (I S) (1 + S)(I
T) (I + T), thus the spectral radius of matrix (I T) (1 S) (1 +S)(I + T) is less than
one, then the ADI CN method de ned by Eq. (4.14) is unconditionally stable. Therefore,
according to Laxs equivalence theorem [26], the ADI implicit Euler method de ned by

Eq. (3.9) is O( 2+ hy + h,) accurate. O

Remark 2 (Richardson extrapolation) The extrapolated solution is computed from

Uty xy = 2Ut xhi/2y.h2/2  Utexhyyhgs

where (x,y) is a common grid point, and Uy, xh;yhy: Ut xhi/2y.hr2 denote the ADI CN
method solutions at the grid point (x,y) on the coarse grid (h1/2,h,/2) and the ne grid
(h1/2,h,/2), then we can get O( 2 + hZ + h3) accurate.

5 Numerical examples
In this section, we carry out numerical experiments to demonstrate the e ectiveness of
the ADI methods.
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Example The following two-dimensional two-sided space-fractional di usion equation
was considered:

ux,y,t) _ u(x,y,t) u(x,y,t)
1 x Cx(XlY)# Dx(XlY)W
A V.t
o cy(x,y)% Dy(x,y)% FHxy.1)
0<x<1,0<y<1,0 t Teng, (5.1)

where Tenq is the end time. The nonnegative di usion coe cient Cy(X,y) = (4(3)) o (%),

Cy6y) = L5+ (), Dxxy) = G5+ (x 1), Dy(x,y) = L5y 1). The source term

f(x,y,t) is given by

fry)= 3% x x>y y¥+ @2 Yy @y 28 )y
1 y? e¥®x® X+ (3 ¥x 210 x?

G e Y
2

34 ) +(@1 x)? @ xt edy y? (52

which satis es the initial function

3

xy=x 3y vy, (5.3)

and the zero Dirichlet boundary condition is
u(,y,t)=u(Ly, t) =u(x,0,t) =u(x,1,t) = 0. (5.4)

The exact solution to this problem is

Sy oy (5.5)

ux,y,t)=e 3 x> x
Table 1 shows the maximum absolute numerical error and temporal convergence or-
ders for the ADI implicit Euler method with Teng = 1. From this table, we see that the
convergence order of the scheme is O( +h; +hy).
Table 2 shows the maximum error and temporal convergence orders for ADI CN ex-
trapolated solution with Teng = 1. From this table, we see that the convergence order of
the scheme is O( 2 +h? +hJ).

Table 1 Maximum errors and temporal convergence orders for the ADI implicit Euler method with

Tend =1
t=h1=hy =06, =08 =07, =09
Maximum error Order Maximum error Order
1/10 4.8003e 3 - 17678e 3 -
1/20 26001e 3 0.885 8.8503e 4 0.999
1/40 1.3000e 3 1.000 4.4357e 4 0.996

1/80 6.7261e 4 0.956 2.2553e 4 0.976
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Table 2 Maximum errors and temporal convergence orders for ADI CN extrapolated solution with

Tend =1
t=h1=hy =06, =08 =07, =09
Maximum error Order Maximum error Order
1/5 3.7326e 3 - 9.4226e 4 -
1/10 9.3601e 4 1.996 2.3674e 4 2078
1/20 23732 4 1.980 5.5934e 5 2,081
1/40 59725e 5 1990 14838e 5 1914

6 Conclusions

We use the shifted left Gr nwald formula and the standard right Gr nwald formula to
approximate the left and right Riemann Liouville fractional derivatives, respectively; we
present an implicit Euler method and a CN method for the two-dimensional two-sided
space-fractional di usion equation. Two methods both combine with the ADI method to
obtain unconditionally one-order accurate and two-order accurate nite di erence meth-
ods.
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