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Abstract
This paper deals with a predator–prey model with both species in the
delayed-dispersal case in a two-patch environment. The purpose of this paper is to
study the effect of two dispersal delays on the stability of three equilibria. It turns out
that the stability of the trivial equilibrium and the boundary equilibrium is
delay-independent. However, the stability of the coexistence equilibrium is
delay-dependent. Numerical simulations are performed to demonstrate the obtained
results.
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1 Introduction
The relationship of predator and prey is prevalent in nature and hence is one of the
most important themes in ecological and mathematical models. Since the Lotka–Volterra
predator–prey model was formulated, various predator–prey models have been studied
by incorporating additional ecological concepts into the classical Lotka–Volterra model,
such as functional responses, dispersal and time delay. In predator–prey models, dispersal
will represent migration of either the prey population, the predator population, or both
[1, 2].

Population dispersal is very common in ecology. Species migrate from one patch to an-
other patch, due to some kinds of factor in the initial patch. For instance, a prey species will
choose to move on the basis of resource availability and predation risk, while predators
tend to migrate to the better patch to gain more prey. In nature, lack of food, competition,
sex, age, lack of security (mainly for the prey), climatic conditions, season, overpopula-
tion in a patch—these factors make species move from a patch to another [3]. For exam-
ple, in aquatic environments, many zooplankton species exhibit vertical movements each
day due to light and food. During the day time, some species migrate downwards into
the darkness to reduce the predation risk by fish, while at night time, these species move
upward to consume the phytoplankton [4]. There has been great interest in the study of
mathematical models of populations with species dispersal among patches, such as a sin-
gle population dispersal [5–8], and the dispersal of both prey and predator among patches
[9–11].
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It is worth pointing out that most of the research work in population models with patchy
structures assumed the dispersal to be instantaneous. In fact, species movement between
patches takes some time. Recently, Zhang et al. considered a predator–prey metapopula-
tion model with travel time delay and showed that such delay can stabilize and destabilize
the system [8].

To the best of our knowledge, there is little research on joining considerations of mi-
gration and dispersal delay in biological models. It is challenging to add time delays to
predator–prey models for the mathematical analysis. Delay may change the stability of dy-
namics and Hopf bifurcation may occur. Motivated by the above predator–prey model, we
will integrate dispersal of both species and dispersal delays into a two-patch Rosenzweig–
MacArthur predator–prey model. We shall investigate how the dispersal and dispersal
delays interact to affect the stability of the predator–prey metapopulation model.

The rest of the paper is organized as follows. The formulation of mathematical model
is presented in Sect. 2. The stability analysis of our model at three equilibria are given in
Sect. 3. Then numerical simulations based on the analysis are reported in Sect. 4. Finally,
we conclude the paper by a short discussion.

2 Model formulation
In this paper, our model assumes that the prey has a logistic growth rate and a predator
has a Holling-type II functional response on each patch. The predator decays exponen-
tially in the absence of prey. And we suppose that these patches are identical and the prey
and predators can randomly move between two patches. During dispersal, migrating pop-
ulations are assumed not to participate in the predator–prey interaction due to the two
species being in different habitats. Thus, we propose a two-patch predator–prey model
with dispersal of both species:

⎧
⎨

⎩

dHi
dt = rHi(1 – Hi

K ) – acHiPi
b+Hi

+ D(Hj(t – η1) – Hi),
dPi
dt = aHiPi

b+Hi
– δPi + M(Pj(t – η2) – Pi),

(2.1)

where i, j ∈ {1, 2} and i �= j. Hi and Pi denote the densities of prey and predators in patch i,
respectively. r is the prey growth rate. K is the carrying capacity of prey. a is the maximum
and constant rate of prey consumption per predator. b is the prey density where the attack
rate is half-saturated. c is the inverse of yield. δ is the predator mortality. D and M are
the dispersal rate of prey and predators among patches, respectively. η1 and η2 are the
dispersal time of prey and predators, respectively.

A series of change of variables is carried out to reduce the number of parameters: Hi =
bhi, Pi = br

ac pi, t = s
a , ηi = τi

a , κ = K
b , ε = r

a , d = D
a , m = M

a , μ = δ
a , and this yields the model

⎧
⎨

⎩

dhi
ds = εhi(1 – hi

κ
– pi

1+hi
) + d(hj(s – τ1) – hi),

dpi
ds = hipi

1+hi
– μpi + m(pj(s – τ2) – pi).

(2.2)

If d = 0 and m = 0, the single patch model has three equilibria: (0, 0), (κ , 0) and (h∗, p∗)
with h∗ = μ

1–μ
and p∗ = (1 – h∗

κ
)(1 + h∗). Its dynamics is described by the following results

[12].

Theorem 2.1 Consider (2.2) with d = 0 and m = 0, the following conclusions hold:
(1) The trivial equilibrium (0, 0) is unstable.



Sun and Mai Advances in Difference Equations  (2018) 2018:373 Page 3 of 9

(2) The predator-extinction equilibrium (κ , 0) is stable when μ > κ
1+κ

.
(3) The coexistence equilibrium (h∗, p∗) exists if and only if 0 < μ < κ

1+κ
.

(4) The coexistence equilibrium is globally stable when κ–1
κ+1 < μ < κ

1+κ
.

(5) There is a unique globally stable limit cycle if 0 < μ < κ–1
κ+1 .

3 Stability analysis of the equilibria
Model (2.2) has three equilibria representing different outcomes of the ecological system:

E0 = (0, 0, 0, 0) : extinction of both the prey and the predator in each patch;

E1 = (κ , 0,κ , 0) : extinction of the predator and persistence of prey in each patch;

E2 =
(
h∗, p∗, h∗, p∗) : coexistence of both species in each patch provided that

0 < μ <
κ

1 + κ
.

Now we linearize system (2.2) at an equilibrium (h, p, h, p) and substitute an exponential
solution, and we obtain the characteristic equation det J = 0 with

J =

[
J1 J2

J2 J1

]

,

where

J1 =

[
ε · (1 – 2h

κ
– p

(1+h)2 ) – d – λ –ε · h
1+h

p
(1+h)2

h
1+h – μ – m – λ

]

and

J2 =

[
de–λτ1 0

0 me–λτ2

]

.

It is easy to calculate that det(J) = det(J1 + J2) · det(J1 – J2). The characteristic equation
determines the local stability of equilibria. The equilibrium is stable if and only if all the
characteristic roots have negative real part. In the following, we will analyze the stability
of our model (2.2) at three equilibria, respectively.

3.1 The stability analysis of E0

Inserting the trivial equilibrium E0 into the characteristic equation det J = 0, we get the
characteristic equations

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

λ – ε + d + de–λτ1 = 0,

λ – ε + d – de–λτ1 = 0,

λ + μ + m + me–λτ2 = 0,

λ + μ + m – me–λτ2 = 0.

(3.1)

When the dispersal is instantaneous, i.e., τ1 = τ2 = 0, the roots of characteristic equations
are ε, ε – 2d, –μ, –μ – 2m. Thus, there exists at least one positive root which leads to the
instability of E0.
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Based on the technique of [13–15], the stability change at the equilibrium can only hap-
pen when characteristic roots appear on or cross the imaginary axis as τ increases. Here
we assume that ε �= 2d, then we look for a pair of purely imaginary roots of the character-
istic equations (3.1).

Set λ = iω with ω > 0. By substituting λ into the first equation of (3.1), then separating
the real and imaginary parts, we get

⎧
⎨

⎩

d cosωτ1 = ε – d,

d sinωτ1 = ω.
(3.2)

Then the first equation of (3.1) admits a pair of purely imaginary roots ±iω0 with ω0 =
√

d2 – (ε – d)2.
Similarly, for the second equation of (3.1), there is a pair of purely imaginary roots ±iω0

with ω0 =
√

d2 – (ε – d)2.
For the third equation and the last equation of (3.1), by using the same method, we have

ω2 = m2 –(μ+m)2 < 0. Thus, there are no purely imaginary roots for the last two equations
of (3.1).

Lemma 3.1 Suppose at certain τ1, the first and second equation of characteristic equation
(3.1) have purely imaginary roots ±iω. Then

d Re(λ)
dτ1

∣
∣
∣
∣
λ=iω

> 0.

Proof It follows from the first equation of (3.1) that

dλ

dτ1
=

dλ

eλτ1 – dτ1
.

Thus

sign

(
d(Reλ)

dτ1

)∣
∣
∣
∣
λ=iω

= sign

(
ω2

(cosωτ1 – dτ1)2 + sin2 ωτ1

)

= sign
(
ω2).

Consequently, d Re(λ)
dτ1

|λ=iω > 0.
For the second equation of (3.1), the conclusion of the lemma also holds. The proof is

complete. �

By Lemma 3.1, we know that d Re(λ)
dτ1

|λ=iω0 > 0. This indicates that, as τ1 increases, for the
first and second equation of (3.1), the characteristic roots cross the imaginary axis through
±iω0 at τ = τ1 from left to right and the number of characteristic roots with positive real
parts is increased by 2.

On the other hand, for the third and fourth equations of (3.1), there are no purely imag-
inary roots. Note the instability of E0 for τ1 = τ2 = 0, thus E0 remains unstable for τ1 > 0
and τ2 > 0.
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3.2 The stability analysis of E1

Using the same procedure as the stability analysis of E0, inserting the equilibrium E1 into
the characteristic equation det J = 0, we get the characteristic equations

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

λ + ε + d + de–λτ1 = 0,

λ + ε + d – de–λτ1 = 0,

λ + m – ( κ
1+κ

– μ) + me–λτ2 = 0,

λ + m – ( κ
1+κ

– μ) – me–λτ2 = 0.

(3.3)

When τi = 0, the roots of the characteristic equations (3.3) are –ε, –ε – 2d, κ
1+κ

– μ,
κ

1+κ
– μ – 2m. Here we have two cases to consider: (1) μ > κ

1+κ
, all roots are negative,

so equilibrium E1 is stable; (2) 0 < μ < κ
1+κ

, the roots at least have a positive root, E1 is
unstable.

Substituting λ = iω with ω > 0 into these characteristic equations (3.3), and separat-
ing the real and imaginary parts, we can calculate that if μ > κ

1+κ
, | cosωτ1| = 1 + ε

d > 1,
| cosωτ2| = 1 –

κ
1+κ –μ

m > 1, which means there is no solutions of (3.3) can appear on the
imaginary axis for any τi. Therefore, E1 is locally asymptotically stable when μ > κ

1+κ
.

For case (2), if 0 < μ < κ
1+κ

, by the expression of cosωτ1, the first and second equa-
tions of (3.3) have no imaginary roots. However, the third and fourth equations admit
purely imaginary roots ±iω with ω =

√
m2 – (m – ( κ

1+κ
– μ))2 if κ

1+κ
– 2m < μ < κ

1+κ
; the

two equations have no imaginary roots while if 0 < μ < κ
1+κ

– 2m. It is easy to show that
sign( d(Reλ)

dτ2
)|λ=iω = sign(ω2) > 0, Note that equilibrium E1 is unstable with τ1 = τ2 = 0 in case

(2). So when 0 < μ < κ
1+κ

, E1 remains unstable as τ1 and τ2 increase.

3.3 The stability analysis of E2

In this subsection, we assume that 0 < μ < κ
1+κ

to ensure the coexistence equilibrium E2

exists. Inserting E2 into the characteristic equation det J = 0, we get

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

λ2 – λ(A – d – m) – λ(de–λτ1 + me–λτ2 ) – mde–λτ1 + m(A – d)e–λτ2

+ mde–λ(τ1+τ2) – m(A – d) + B = 0,

λ2 – λ(A – d – m) + λ(de–λτ1 + me–λτ2 ) + mde–λτ1 – m(A – d)e–λτ2

+ mde–λ(τ1+τ2) – m(A – d) + B = 0,

(3.4)

where A = ε · κ+1
κ

· μ

1–μ
· ( κ–1

κ+1 – μ) and B = εμ(1 – μ
κ

1+κ
) > 0 (since 0 < μ < κ

1+κ
).

When τ1 = τ2 = 0, the characteristic equation becomes
⎧
⎨

⎩

λ2 – Aλ + B = 0,

λ2 – (A – 2d – 2m)λ – 2m(A – 2d) + B = 0.

Therefore, the coexistence equilibrium is stable if A < 0, otherwise unstable.
When m = 0, this implies that prey disperses only. Based on the results of [8], we sum-

marize the related conclusions in the following theorem.

Theorem 3.2 Consider system (2.2) with m = 0. If A < 0, the coexistence equilibrium E2 is
locally asymptotically stable for all τ1 ≥ 0. If A > 0, then the coexistence equilibrium E2 is
unstable when τ1 = 0, and as τ1 increases, we have the following results.
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Case (i) d ∈ (0, A/2): the coexistence equilibrium E2 remains unstable for τ1 > 0.
Case (ii) d ∈ (A/2, A): the coexistence equilibrium E2 remains unstable for τ1 > 0.

Case (iii) d ∈ (A,∞): there may exist stability switches.

When both species are mobile, due to the presence of two different time delays in char-
acteristic equations, it is usually difficult to analyze the transcendental equation with two
delays. Actually, finding all the characteristic roots of Eq. (3.4) have negative real parts is
hopeless [16]. This indicates the difficulty in investigating the distribution of the zeros of
Eq. (3.4). Thus, we mainly numerically examine how the two dispersal delays affect the
stability of the coexistence equilibrium in our model in the next section.

4 Numerical simulations
From the above section, we know that the stability of the trivial equilibrium E0 and the
boundary equilibrium E1 is relatively simple. However, the stability analysis of the coex-
istence equilibrium E2 is complicated. Therefore, in this section, we mainly present some
numerical examples of our model (2.2) and investigate that the effect of delay on the sta-
bility and instability of the coexistence equilibrium E2. Based on Theorem 3.2, we display
the numerical simulations in each case.

Example 1 We take parameter values ε = 1, κ = 2, μ = 0.4, d = 0.1, m = 0.05, τ1 = 2, τ2 = 2.
This set of parameter values lead to A = –0.09 < 0. In this case, E2 = (0.71, 1.10, 0.71, 1.10)
is locally asymptotically stable. Due to the identical patch, we only plot the numerical
simulations in each patch. As can be seen in Fig. 1, the prey and predators populations in
each patch approach to 0.71 and 0.10, respectively.

Example 2 Chose parameter values ε = 1, κ = 2, μ = 0.17, d = 0.0125, m = 0.02, τ1 = 2,
τ2 = 2. This set of parameter values corresponds to the case A = 0.05 > 0 and 0 < d < A/2.
As shown in Fig. 2, the prey population in two patches will be fluctuating at same level,
and so does the predators. This indicates that the coexistence equilibrium E2 is unstable.
But the prey and predator species will have long-term persistence in both patches.

Example 3 We choose ε = 1, κ = 2, μ = 0.17, d = 0.038, m = 0.05, τ1 = 2. This leads to the
case: 0 < A/2 < d < A. If τ1 = 2 and m = 0, the coexistence equilibrium E2 is unstable. As
we take m = 0.05, we find there exists a stable interval as τ2 increases, which is illustrated
in Fig. 3.

In order to investigate our model (2.2) in the case d > A > 0, two dispersal delays may
induce Hopf bifurcation. Thus, we first plot the numerical solutions and the τ1-bifurcation

Figure 1 E2 is locally asymptotically stale under case A < 0. Parameter values are ε = 1, κ = 2, μ = 0.4, d = 0.1,
m = 0.05, τ1 = 2, τ2 = 2. Left panel: the phase graph of model (2.2) in each patch; right panel: the numerical
solutions of model (2.2) in each patch
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Figure 2 The two figures show that the coexistence equilibrium E2 is unstable with parameter values ε = 1,
κ = 2, μ = 0.17, d = 0.0125,m = 0.02, τ1 = 2, τ2 = 2. System (2.2) has a periodic solution. Left panel: the phase
graph of model (2.2) in each patch; right panel: the trajectory graph of model (2.2) in each patch

Figure 3 The τ2-bifurcation diagram of system (2.2) in the case A/2 < d < A. Parameter values are ε = 1, κ = 2,
μ = 0.17, d = 0.038,m = 0.05, τ1 = 2

Figure 4 τ1-bifurcation diagram of system (2.2) under case d > A with parameter ε = 1, κ = 2, μ = 0.17,
d = 0.1,m = 0

diagram of (2.2) with m = 0 in each cases. Then we choose values of τ1 in its stable intervals
and unstable intervals, respectively. We regard τ2 as bifurcation parameter and display the
bifurcation diagram of (2.2).

Example 4 We consider the case d > A > 0. Thus we first take parameter values ε = 1,
κ = 2, μ = 0.17, d = 0.1, m = 0. This means that prey individuals disperse, but predators
are sedentary. In this case, there is a stable interval as shown in Fig. 4.
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Figure 5 Bifurcation diagram of system (2.2) by regarding τ2 as bifurcation parameter with parameter values
ε = 1, κ = 2, μ = 0.17, d = 0.1,m = 0.05. Left panel: τ1 = 2; right panel: τ1 = 6

Figure 6 τ2-bifurcation diagram of system (2.2) with ε = 1, κ = 2, μ = 0.17, d = 0.1,m = 1, τ1 = 4

Next, we take two sets of parameter values m = 0.05, τ1 = 2 and m = 0.05, τ1 = 6, respec-
tively, and keep all other parameter values the same as above. As we see in Fig. 4, τ1 = 2 and
τ1 = 6, the system (2.2) is unstable at the coexistence equilibrium E2. We also investigate
that the coexistence equilibrium is unstable if m = 0.05, τ1 = 2 and τ2 = 0, while it is stable
if m = 0.05, τ1 = 6 and τ2 = 0. As τ2 increases, there is a stable interval which is illustrated
in Fig. 5.

Note that the coexistence equilibrium E2 is stable when τ1 = 4 in Fig. 4. Thus we finally
take parameter values ε = 1, κ = 2, μ = 0.17, d = 0.1, m = 1, τ1 = 4, and present the bifur-
cation diagram of system (2.2) by regarding τ2 as bifurcation parameter (see Fig. 6). We
show that system (2.2) has a stable switch with τ1 = 4 as τ2 increases.

In all, as shown in Fig. 5 and Fig. 6, dispersal delays may exhibit both stabilizing and
destabilizing effects on the coexistence equilibrium.

5 Summary and discussion
This paper is concerned with a predator–prey model with two dispersal delays and the
stability analysis of three equilibria. We focus attention on the effect of two dispersal de-
lays on the dynamics of our model (2.2). Moreover, we show that, for the trivial equilib-
rium and the boundary equilibrium, dispersal delays have no impact on the stability and
instability of two equilibria. However, the stability of the coexistence equilibrium is delay-
dependent. Delays can destabilize and stabilize the coexistence equilibrium. Indeed, the
dispersal delays cannot only switch the stability but also induce a Hopf bifurcation. If the
species’ mortality during dispersal is considered, the stability analysis becomes very dif-
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ficult. Numerical simulations are carried out showing that stability switches are possible.
We leave the related analysis for our future work.
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