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Abstract
In the present study, by employing differential inequality theory, some novel
assertions are gained to validate the global exponential convergence on neutral type
shunting inhibitory cellular neural networks involving proportional delays and D
operators. Moreover, numerical simulations are provided to support the effectiveness
of the analytical results.
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1 Introduction
The well-known shunting inhibitory cellular neural networks (SICNNs), first proposed
by Bouzerdoum and Pinter [1], have been extensively studied both in theory and applica-
tions [2–7]. In particular, qualitative and stability analysis for SICNNs with neutral type
delays plays an important role in the design and applications of neural networks [8–11].
Usually, all neutral type SICNNs models can be converted into non-operator-based neu-
tral functional differential equations (NFDEs) [8–10] and D-operator-based NFDEs [11],
respectively.

In the past two decades, proportional delays occurring in nonlinear dynamics have at-
tracted considerable attention because of their potential applications in various aspects
such as web quality of service routing decision, collection of current of electric locomo-
tive, nonlinear dynamical behavior, electrodynamics and principle of probability (see [12–
15]). However, so far, there is existing few articles on the global exponential convergence
of neutral type SICNNs involving proportional delays and D operators [16].

Inspired by the above viewpoint, in this article, our goal is to study the global exponential
convergence for the following neutral type SICNNs involving proportional delays and D
operators:

[
xij(t) – pij(t)xij(rijt)

]′

= –aij(t)xij(t) –
∑

Ckl∈Nr(i,j)

Ckl
ij (t)f

(
xkl(qklt)

)
xij(t) + Lij(t), t ≥ 1, (1.1)
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where ij ∈ J = {11, 12, . . . , 1n, . . . , m1, m2, . . . , mn}, mn corresponds to the number of units
in a neural network, Cij is the cell at the position (i, j) of the lattice, Nr(i, j) = {Ckl : max(|k –
i|, |l – j|) ≤ r, 1 ≤ k ≤ m, 1 ≤ l ≤ n} is the r neighborhood of Cij, proportional delay factors
qkl and rij satisfy the conditions that 0 < qkl, rij < 1. Further information on the activation
functions and coefficient parameters is available from [9, 11].

Throughout the rest of this article, the following concepts and notations will be adopted.
For any x = {xij} = (xij)1×mn ∈ R

mn,

|x| =
{|xij|

}
,

∥
∥x(t)

∥
∥ = max

ij∈J

∣
∣xij(t)

∣
∣,

ρij = min{rij, qij}, r =
1

maxij∈J max{qij, rij} ,

W + = sup
t∈R

∣
∣W (t)

∣
∣, W – = inf

t∈R
∣
∣W (t)

∣
∣.

The initial condition involved in systems (1.1) can be described as follows:

xij(s) = ϕij(s), s ∈ [ρij, 1],ϕij ∈ C
(
[ρij, 1],R

)
, ij ∈ J . (1.2)

Furthermore, it is assumed that aij, pij, Lij, Ckl
ij ∈ BC([ρij, +∞),R), where BC([ρij, +∞),R)

designates the set of bounded and continuous functions, and ij ∈ J .
In addition, for ij ∈ J , the following hypotheses will be imposed:
(S0) There exist ãij ∈ BC(R, (0, +∞)) and Kij > 0 satisfying

e–
∫ t

s aij(u) du ≤ Kije–
∫ t

s ãij(u) du ∀t, s ∈R, t – s ≥ 0.

(S1) f ∈ C[R,R], supu∈R |f (u)| = Mf ≥ 0.
(S2) There are constants Hij,λ0 ∈ (0, +∞) obeying

Hij = sup
s≥ρij

∣∣pij(s)
∣∣eλ0(1–rij)s < 1, Lij(t) = O

(
e–λ0t) as t → +∞,

and

sup
t≥1

{
–ãij(t) + Kij

[
eλ0(1–rij)t

1 – Hij

∣∣aij(t)pij(t)
∣∣ +

∑

Ckl∈Nr(i,j)

∣∣Ckl
ij (t)

∣∣Mf 1
1 – Hij

]}
< 0.

2 Global existence and convergence of solutions
In this section, we will validate the global existence and convergence of every solution for
SICNNs (1.1) with initial condition (1.2).

Lemma 2.1 If (S0), (S1) and (S2) are obeyed, then every solution x(t) of (1.1)–(1.2) exists
and is unique on [1, +∞).

Proof For ij ∈ J and t ∈ [1, r], let

yij(t) = xij(t) – pij(t)xij(rijt), βij(t) = pij(t)ϕij(rijt)
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and

Aij(t) = aij(t) +
∑

Ckl∈Nr(i,j)

Ckl
ij (t)f

(
ϕkl(qklt)

)
, Bij(t) = –Aij(t)pij(t)ϕij(rijt) + Lij(t).

Then

y′
ij(t) =

[
xij(t) – pij(t)xij(rijt)

]′

= –aij(t)xij(t) –
∑

Ckl∈Nr(i,j)

Ckl
ij (t)f

(
xkl(qklt)

)
xij(t) + Lij(t)

= –
[

aij(t) +
∑

Ckl∈Nr(i,j)

Ckl
ij (t)f

(
ϕkl(qklt)

)]
xij(t) + Lij(t)

= –Aij(t)yij(t) + Bij(t), t ∈ [1, r]. (2.1)

From (2.1), by using a similar argument as in the proof Lemma 2.2 in [16], one can prove
that x(t) = y(t) + {βij(t)} exists and is unique on [1, r], [r, r2], [r2, r3], . . . . This finishes the
proofs of Lemma 2.1. This finishes the proof of Lemma 2.1. �

Theorem 2.1 Assume that all hypotheses mentioned in Sect. 1 hold. Then, there is a con-
stant λ ∈ (0,λ0) such that

xij(t) = O
(
e–λt) as t → +∞, ij ∈ J ,

where x(t) = {xij(t)} is an arbitrary solution vector of the initial value problem (1.1)–(1.2).

Proof We trivially extend x(t) to [rijρij, +∞) by setting xij(t) = ϕij(t) = ϕij(ρij) for t ∈
[rijρij,ρij], ij ∈ J . Let

Xij(t) = xij(t) – pij(t)xij(rijt), for all t ∈ [ρij, +∞), ij ∈ J .

Then, xij(t) and Xij(t) are continuous on [ρij, 1], and

X ′
ij(t) =

[
xij(t) – pij(t)xij(rijt)

]′

= –aij(t)Xij(t) – aij(t)pij(t)xij(rijt)

–
∑

Ckl∈Nr(i,j)

Ckl
ij (t)f

(
xkl(qklt)

)
xij(t) + Lij(t), t ≥ 1, ij ∈ J . (2.2)

In view of (S2), we can take λ ∈ (0, min{λ0, minij∈J ã–
ij}) obeying

sup
t≥1

{
λ – ãij(t) + Kij

[
eλ(1–rij)t

1 – Hij

∣∣aij(t)pij(t)
∣∣ +

∑

Ckl∈Nr(i,j)

∣∣Ckl
ij (t)

∣∣Mf 1
1 – Hij

+ λ

]}

≤ sup
t≥1

{
λ – ãij(t) + Kij

[
eλ0(1–rij)t

1 – Hij

∣∣aij(t)pij(t)
∣∣

+
∑

Ckl∈Nr(i,j)

∣
∣Ckl

ij (t)
∣
∣Mf 1

1 – Hij
+ λ

]}
< 0, ij ∈ J . (2.3)
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With no loss of generality, let

‖ϕ‖X = max
ij∈J

sup
t∈[ρij ,1]

∣
∣ϕij(t) – pij(t)ϕij(rijt)

∣
∣ > 0.

For any ε > 0, we can pick an ε-independent constant M such that

M = 1 + max
ij∈J

Kij,
∣
∣Lij(t)

∣
∣ < λM

(‖ϕ‖X + ε
)
e–λ(t–1) for all t ∈ [1, +∞), ij ∈ J , (2.4)

which leads to

∥
∥X(1)

∥
∥ <

(‖ϕ‖X + ε
)
, (2.5)

and

∣∣Xij(t)
∣∣ <

(‖ϕ‖X + ε
)
e–λ(t–1) < M

(‖ϕ‖X + ε
)
e–λ(t–1) for all t ∈ [ρij, 1], ij ∈ J . (2.6)

Hereafter, we will validate

∥
∥X(t)

∥
∥ < M

(‖ϕ‖X + ε
)
e–λ(t–1) for all t > 1. (2.7)

In the contrary case, there must exist ij ∈ J and θ > 1 obeying

∥∥X(θ )
∥∥ =

∣∣Xij(θ )
∣∣ = M

(‖ϕ‖X + ε
)
e–λ(θ–1) (2.8)

and

∣∣Xkl(t)
∣∣ < M

(‖ϕ‖X + ε
)
e–λ(t–1) for all t ∈ [ρkl, θ ), kl ∈ J . (2.9)

From the fact that

eλν
∣
∣xkl(ν)

∣
∣ ≤ eλν

∣
∣xkl(ν) – pkl(ν)xkl(rklν)

∣
∣ + eλν

∣
∣pkl(ν)xkl(rklν)

∣
∣

≤ eλν
∣
∣Xkl(ν)

∣
∣ +

∣
∣pkl(ν)

∣
∣eλ(1–rkl)νeλrklν

∣
∣xkl(rklν)

∣
∣

≤ eλν
∣∣Xkl(ν)

∣∣ + sup
s≥ρkl

∣∣pkl(s)
∣∣eλ(1–rkl)s sup

s∈[rklρkl ,rklt]
eλs∣∣xkl(s)

∣∣

≤ eλν
∣
∣Xkl(ν)

∣
∣ + sup

s≥ρkl

∣
∣pkl(s)

∣
∣eλ0(1–rkl)s sup

s∈[ρkl ,t]
eλs∣∣xkl(s)

∣
∣, (2.10)

we obtain

eλt∣∣xkl(t)
∣∣ ≤ sup

s∈[ρkl ,t]
eλs∣∣xkl(s)

∣∣ ≤ M(‖ϕ‖X + ε)eλ

1 – sups≥ρkl
|pkl(s)|eλ0(1–rkl)s

=
M(‖ϕ‖X + ε)eλ

1 – Hkl
, (2.11)



Jia and Gong Advances in Difference Equations  (2018) 2018:365 Page 5 of 8

where ν ∈ [ρkl, t], t ∈ [1, θ ), kl ∈ J . Together with (2.4), (2.5), (2.6), (2.9) and (2.11), we
conclude that

∣∣Xij(θ )
∣∣ =

∣
∣∣
∣Xij(1)e–

∫ θ
1 aij(u) du +

∫ θ

1
e–

∫ θ
t aij(u) du

[
–aij(t)pij(t)xij(rijt)

–
∑

Ckl∈Nr(i,j)

Ckl
ij (t)f

(
xkl(qklt)

)
xij(t) + Lij(t)

]
dt

∣∣∣
∣

≤ ∣∣Xij(1)
∣∣Kije–

∫ θ
1 ãij(u) du +

∫ θ

1
e–

∫ θ
t ãij(u) duKij

∣
∣∣
∣–aij(t)pij(t)xij(rijt)

–
∑

Ckl∈Nr(i,j)

Ckl
ij (t)f

(
xkl(qklt)

)
xij(t) + Lij(t)

∣∣
∣∣dt

≤ (‖ϕ‖X + ε
)
Kije–

∫ θ
1 ãij(u) du +

∫ θ

1
e–

∫ θ
t ãij(u) duKij

[∣∣aij(t)pij(t)
∣∣∣∣xij(rijt)

∣∣

+
∑

Ckl∈Nr(i,j)

∣
∣Ckl

ij (t)
∣
∣Mf ∣∣xij(t)

∣
∣ +

∣
∣Lij(t)

∣
∣
]

ds

≤ (‖ϕ‖X + ε
)
e–λ(θ–1)Kije–

∫ θ
1 [ãij(u)–λ] du

+
∫ θ

1
e–

∫ θ
t [ãij(u)–λ] duKij

[
eλ(1–rij)t

1 – Hij

∣∣aij(t)pij(t)
∣∣

+
∑

Ckl∈Nr(i,j)

∣
∣Ckl

ij (t)
∣
∣Mf 1

1 – Hij
+ λ

]
dtM

(‖ϕ‖X + ε
)
e–λ(θ–1)

≤ (‖ϕ‖X + ε
)
e–λ(θ–1)Kije–

∫ θ
1 [ãij(u)–λ] du

+
∫ θ

1
e–

∫ θ
t [ãij(u)–λ] du[ãij(t) – λ

]
dtM

(‖ϕ‖X + ε
)
e–λ(θ–1)

= M
(‖ϕ‖X + ε

)
e–λ(θ–1)

[(
Kij

M
– 1

)
e–

∫ θ
1 (ãij(u)–λ) du + 1

]

< M
(‖ϕ‖X + ε

)
e–λ(θ–1).

This is a clear contradiction of (2.8). Thus, (2.7) is true. Letting ε → 0+ suggests

∥∥X(t)
∥∥ ≤ M‖ϕ‖Xe–λ(t–1) for all t > 1. (2.12)

Then, using a similar theoretical derivation as in the proof of (2.10) and (2.11), gives us

eλt∣∣xij(t)
∣
∣ ≤ sup

s∈[ρij ,t]
eλs∣∣xij(s)

∣
∣ ≤ M‖ϕ‖Xeλ

1 – Hij
,

and

∣∣xij(t)
∣∣ ≤ M‖ϕ‖X

1 – Hij
e–λ(t–1), ∀t > 1, ij ∈ J .

This completes the proof. �
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3 Simulation examples
Example 3.1 Consider the following neutral type SICNNs:

[
xij(t) – pij(t)xij(rijt)

]′

= –aij(t)xij(t) –
∑

Ckl∈N1(i,j)

Ckl
ij (t)

1
10

arctan
(
xkl(qijt)

)
xij(t) + Lij(t), (3.1)

where pij(t) = 1
5 e–t sin(i + j)t, rij = qij = 1

2 , i, j = 1, 2,

[
a11 a12

a21 a22

]

=

[
0.8 + cos 100t 1 + 1.1 sin 100t

0.8 + 1.3 cos 100t 1 + 1.2 sin 100t

]

,

[
C11 C12

C21 C22

]

=

[
0.01 cos 2t 0.02 cos 3t
0.02 cos 3t 0.01 cos 4t

]

,

[
L11 L12

L21 L22

]

=
{

i + j
100

e–2|t| sin t
}

.

Pick

[
ã11 ã12

ã21 ã22

]

=

[
0.8 1
0.8 1

]

, Kij ≤ e
1

25 , Mf =
π

20
,

∑

Ckl∈N1(i,j)

∣∣Ckl
ij (t)

∣∣ ≤ 0.06, λ0 = 1.8, i, j = 1, 2,

Figure 1 Numerical solutions of system (3.1) with different initial values
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such that

sup
t≥1

{
–ãij(t) + Kij

[
eλ0(1–rij)t

1 – Hij

∣
∣aij(t)pij(t)

∣
∣ +

∑

Ckl∈Nr(i,j)

∣
∣Ckl

ij (t)
∣
∣Mf 1

1 – Hij

]}

< –0.2, i, j = 1, 2.

Then, it is easy to verify that (3.1) obeys (S0), (S1) and (S2). Hence, by Theorem 2.1, we
get that all solutions of system (3.1) converge exponentially to the zero vector with the
exponential convergence rate λ ≈ 0.02. Furthermore, we have the following simulation
results shown in Fig. 1.

Remark 3.1 To the best of our knowledge, this is the first time when attention is focused
on the global exponential convergence for neutral type SICNNs involving proportional
delays and D operators. Based on differential inequality theory, we show that all solutions
of the addressed model are exponentially convergent to the zero vector under suitable hy-
potheses. In particular, we provide an upper bound for the exponential convergence rate.
Most recently, the generalized exponential stability and pseudo almost periodicity of neu-
tral type SICNNs have been established in [16, 17], and some other dynamical behaviors
of neural networks have obtained in [18–20]. Unfortunately, the global exponential con-
vergence for every solution of neutral type SICNNs involving proportional delays and D
operators has not been investigated in [16–20]. This suggests that all results in the refer-
ences [16–20] cannot be straightly applied to show the exponential convergence on every
solution in system (3.1).
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