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Abstract
In this paper, we study the following max-type system of difference equations:

{
xn =max{An, yn–1xn–2

},
yn =max{Bn, xn–1yn–2

}, n ∈ {0, 1, 2, . . .},

where An,Bn ∈ (0, +∞) are periodic sequences with period 2 and the initial values
x–1, y–1, x–2, y–2 ∈ (0, +∞). We show that every solution of the above system is
eventually periodic.
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1 Introduction
Our purpose in this paper is to study eventual periodicity of the following max-type system
of difference equations:

⎧⎨
⎩xn = max{An, yn–1

xn–2
},

yn = max{Bn, xn–1
yn–2

},
n ∈ N0 ≡ {0, 1, . . .}, (1.1)

where An, Bn ∈ R+ ≡ (0, +∞) are periodic sequences with period 2 and the initial values
x–2, y–2, x–1, y–1 ∈ R+.

In [1], Fotiades and Papaschinopoulos studied the following max-type system of differ-
ence equations:

⎧⎨
⎩xn = max{A, yn–1

xn–2
},

yn = max{B, xn–1
yn–2

},
n ∈ N0 (1.2)

with A, B ∈ R+ and showed that every positive solution of (1.2) is eventually periodic.
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In [2], we studied the eventually periodic solutions of the following max-type system of
difference equations:

⎧⎨
⎩xn = max{A, yn–k

xn–1
},

yn = max{B, xn–k
yn–1

},
n ∈ N0, (1.3)

where A, B ∈ R+, k ∈ N ≡ {1, 2, . . .} and the initial values x–k , y–k , x–k+1, y–k+1, . . . , x–1, y–1 ∈
R+.

Recently, there has been a great interest in studying max-type systems of difference
equations. In 2012, Stević in [3] obtained in an elegant way the general solution to the
following max-type system of difference equations:

⎧⎨
⎩xn+1 = max{ A

xn
, yn

xn
},

yn+1 = max{ A
yn

, xn
yn

},
n ∈ N0 (1.4)

for the case x0, y0 ≥ A > 0 and y0/x0 ≥ max{A, 1/A}. The solvability of various systems of
difference equations has reattracted some recent interest, see, e.g., [4–6] and the refer-
ences therein.

In 2016, we in [7] studied the following max-type system of difference equations:

⎧⎨
⎩xn = max{ 1

xn–m
, min{1, A

yn–r
}},

yn = max{ 1
yn–m

, min{1, B
xn–t

}},
n ∈ N0, (1.5)

where A, B ∈ R+, m, r, t ∈ N and the initial values x–d, y–d, x–d+1, y–d+1, . . . , x–1, y–1 ∈ R+ with
d = max{m, r, t} and showed that every positive solution of (1.5) is eventually periodic with
period 2m.

When m = r = t = 1 and A = B, (1.5) reduces to the max-type system of difference equa-
tions

⎧⎨
⎩xn = max{ 1

xn–1
, min{1, A

yn–1
}},

yn = max{ 1
yn–1

, min{1, A
xn–1

}},
n ∈ N0. (1.6)

In 2015, the authors of [8] obtained the general solution of system (1.6).
Motivated by papers [9, 10], in 2014, Stević et al. in [11] investigated the following max-

type system of difference equations:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

y(1)
n = max1≤i1≤m1{f1i1 (y(1)

n–k(1)
i1,1

, y(2)
n–k(1)

i1,2
, . . . , y(l)

n–k(1)
i1,l

, n), y(σ (1))
n–t1s },

y(2)
n = max1≤i2≤m2{f2i2 (y(1)

n–k(2)
i2,1

, y(2)
n–k(2)

i2,2
, . . . , y(l)

n–k(2)
i2,l

, n), y(σ (2))
n–t2s },

· · ·
y(l)

n = max1≤il≤ml {flil (y
(1)
n–k(l)

il ,1
, y(2)

n–k(l)
il ,2

, . . . , y(l)
n–k(l)

il ,l
, n), y(σ (l))

n–tls },

n ∈ N0, (1.7)

where s, l, mj, tj, k(j)
ij ,h ∈ N (j, h ∈ {1, 2, . . . , l}), (σ (1), . . . ,σ (l)) is a permutation of (1, . . . , l) and

fjij : Rl
+ × N0 −→ R+ (j ∈ {1, . . . , l} and ij ∈ {1, . . . , mj}). They showed that every positive
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solution of (1.7) is eventually periodic with period sT for some T ∈ N if fjij satisfy some
conditions.

For some results of some properties of many max-type difference equations and systems,
such as eventual periodicity, the boundedness character, and attractivity, see, e.g., [12–30]
and the related references therein.

2 Main results and proofs
In this section, we study the eventual periodicity of positive solutions of system (1.1). Write
x2n = pn, x2n+1 = qn, y2n = sn, y2n+1 = tn for any n ∈ N0. Then system (1.1) reduces to the
system

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

pn = max{A0, tn–1
pn–1

},
tn = max{B1, pn

tn–1
},

qn = max{A1, sn
qn–1

},
sn = max{B0, qn–1

sn–1
},

n ∈ N0, (2.1)

where A0, A1, B0, B1 ∈ R+ and the initial values s–1, t–1, p–1, q–1 ∈ R+.
The following lemma will be used in the proofs of our main results.

Lemma 2.1 Let {xn}n≥–1 be a solution of the following equation:

xn = max

{
A,

B
xn–1

}
, n ∈ N0 (2.2)

with A, B ∈ R+ and the initial value x–1 ∈ R+. Then xn is eventually periodic with period 2.

Proof By (2.2) we see xnxn–1 ≥ B and xn ≥ A for n ∈ N0 and for any n ≥ 2,

A ≤ xn = max

{
A,

B
xn–1

}

= max

{
A,

Bxn–2

xn–1xn–2

}

≤ max{A, xn–2} = xn–2. (2.3)

Then, for every i ∈ {0, 1}, x2n+i is eventually nonincreasing.
We claim that, for every i ∈ {0, 1}, x2n+i is an eventually constant sequence. Assume on

the contrary that for some i ∈ {0, 1}, x2n+i is not an eventually constant sequence. Then
there exists a sequence of positive integers k1 < k2 < · · · such that, for any n ∈ N, we have

A < x2kn+1+i =
B

x2kn+1+i–1

< x2kn+i =
B

x2kn+i–1
,

which implies x2kn+1+i–1 > x2kn+i–1 for any n ∈ N. This is a contradiction. Thus xn is even-
tually periodic with period 2. The proof is complete. �
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From (2.1) we see that it suffices to consider the eventual periodicity of positive solutions
of the following system:

⎧⎨
⎩un = max{A, vn–1

un–1
},

vn = max{B, un
vn–1

},
n ∈ N0, (2.4)

where A, B ∈ R+ and the initial values u–1, v–1 ∈ R+. Let {(un, vn)}n≥–1 be a solution of (2.4).
From (2.4) it immediately follows that, for any n ∈ N0,

un ≥ A (2.5)

and

vn ≥ B (2.6)

and
⎧⎨
⎩un = max{A, B

un–1
, 1

vn–2
},

vn = max{B, A
vn–1

, 1
un–1

}.
n ∈ N, (2.7)

Lemma 2.2 If there exist k, p ∈ N such that up+k = uk and vp+k = vk , then un+p = un and
vn+p = vn for any n ≥ k.

Proof It is easy to see that

uk+p+1 = max

{
A,

vk+p

uk+p

}
= max

{
A,

vk

uk

}
= uk+1

and

vk+p+1 = max

{
B,

uk+p+1

vk+p

}
= max

{
B,

uk+1

vk

}
= vk+1.

Assume that, for some N ∈ N, we have uk+p+N = uk+N and vk+p+N = vk+N . Then

uk+p+N+1 = max

{
A,

vk+p+N

uk+p+N

}
= max

{
A,

vk+N

uk+N

}
= uk+N+1

and

vk+p+N+1 = max

{
B,

uk+p+N+1

vk+p+N

}
= max

{
B,

uk+N+1

vk+N

}
= vk+N+1.

By mathematical induction, we see that un+p = un and vn+p = vn for any n ≥ k. The proof is
complete. �

Proposition 2.1 If A > B ≥ 1, then un = A eventually and vn is eventually periodic with
period 2. If B ≥ A ≥ 1, then vn = B eventually and un is eventually periodic with period 2.
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Proof If A > B ≥ 1, then by (2.5)–(2.7) we see that, for n ≥ 2,

A ≤ un = max

{
A,

B
un–1

,
1

vn–2

}

≤ max

{
A,

B
A

,
1
B

}
= A.

Thus, for n ≥ 2, we have un = A and

vn = max

{
B,

A
vn–1

}
.

By Lemma 2.1 we see that vn is eventually periodic with period 2.
If B ≥ A ≥ 1, then by (2.5)–(2.7) we see that, for n ≥ 2,

B ≤ vn = max

{
B,

A
vn–1

,
1

un–1

}

≤ max

{
B,

A
B

,
1
A

}
= B.

Thus, for n ≥ 2, we have vn = B and

un = max

{
A,

B
un–1

}
.

By Lemma 2.1 we see that un is eventually periodic with period 2. The proof is complete. �

Proposition 2.2 If B ≥ 1 > A ≥ 1/B, then vn = B eventually and un is eventually periodic
with period 2. If 1/A > B ≥ 1 > A, then vn = B eventually and un is eventually periodic with
period 2 or un, vn are eventually periodic with period 3.

Proof Assume that B ≥ 1 > A ≥ 1/B. By (2.5)–(2.7) we see that, for n ≥ 1,

vn = max

{
B,

A
vn–1

,
1

un–1

}
= B

since A/vn–1 ≤ 1 and 1/un–1 ≤ B. By Lemma 2.1 we see that un is eventually periodic with
period 2.

Assume that 1/A > B ≥ 1 > A. Then by (2.5)–(2.7) we obtain

vn = max

{
B,

A
vn–1

,
1

un–1

}

= max

{
B,

1
un–1

}
(n ≥ 1) (2.8)

since A/vn–1 ≤ 1.
If vn = 1/un–1 eventually, then vnun–1 = 1 eventually and by (2.4) we have

un = max

{
A,

vn–1

un–1

}
= max{A, vnvn–1}
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= vnvn–1 eventually (2.9)

since vnvn–1 ≥ B2 > A. Thus from (2.9) it follows that

un+3 = vn+3vn+2 =
vn+3vn+2vn+1

vn+1

=
vn+3un+2vn+2vn+1

un+2vn+1un
un

=
1 × un+2

un+2 × 1
un = un eventually,

which implies that un, vn are eventually periodic with period 3.
If vn = B eventually, then by (2.4) we have

un = max

{
A,

B
un–1

}
eventually.

By Lemma 2.1 we see that un is eventually periodic with period 2.
If there exists some k ∈ N such that

vk = B ≥ 1
uk–1

and vk+1 =
1
uk

> B, (2.10)

then by (2.4), (2.6), (2.8), and (2.10) it follows

uk+1 = max

{
A,

vk

uk

}
= max{A, vk+1vk} = vk+1vk ,

vk+2 = max

{
B,

1
uk+1

}
= B,

uk+2 = max

{
A,

vk+1

uk+1

}
= max

{
A,

vk+1

vk+1vk

}

= max

{
A,

1
vk

}
=

1
B

,

vk+3 = max

{
B,

1
uk+2

}
= B,

uk+3 = max

{
A,

vk+2

uk+2

}
= B2,

vk+4 = max

{
B,

1
uk+3

}
= B,

uk+4 = max

{
A,

vk+3

uk+3

}
=

1
B

,

vk+5 = max

{
B,

1
uk+4

}
= B,

uk+5 = max

{
A,

vk+4

uk+4

}
=

1
B

.
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By Lemma 2.2 we see that vn = B (n ≥ k + 2) and uk+2n = 1/B (n ≥ 1) and uk+2n+1 = B2 (n ≥
1), which implies that vn = B eventually and un is eventually periodic with period 2. The
proof is complete. �

Proposition 2.3 If A ≥ 1 > B, then un = A eventually and vn is eventually periodic with
period 2.

Proof If A ≥ 1 > B ≥ 1/A, then by (2.5)–(2.7) we see that, for n ≥ 2,

un = max

{
A,

B
un–1

,
1

vn–2

}
= A

since 1/vn–2 ≤ A and B < un–1. Thus from (2.4) it follows

vn = max

{
B,

A
vn–1

}
eventually.

By Lemma 2.1 we see that vn is eventually periodic with period 2.
Now assume that 1/B > A ≥ 1 > B. We claim that there exists a sequence of positive

integers n1 < n2 < · · · such that unk = A. Indeed, if un = vn–1/un–1 > A eventually, then

A2 < unun–1 = vn–1 = max

{
B,

un–1

vn–2

}

=
un–1

vn–2
= max

{
A

vn–2
,

1
un–2

}

=
1

un–2
eventually,

which implies 1 ≤ A3 < unun–1un–2 = 1, a contradiction.
If un = A eventually, then by Lemma 2.1 we see that vn is eventually periodic with pe-

riod 2.
If there exists some k ∈ N such that

uk = A ≥ vk–1

uk–1
and uk+1 =

vk

uk
=

vk

A
> A, (2.11)

then vk = uk+1uk > A2 and by (2.4) and (2.11) it follows

vk+1 = max

{
B,

uk+1

vk

}
= max

{
B,

1
uk

}
=

1
A

,

uk+2 = max

{
A,

vk+1

uk+1

}
= max

{
A,

1
vk

}
= A,

vk+2 = max

{
B,

uk+2

vk+1

}
= A2,

uk+3 = max

{
A,

vk+2

uk+2

}
= A,

vk+3 = max

{
B,

uk+3

vk+2

}
=

1
A

,
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uk+4 = max

{
A,

vk+3

uk+3

}
= A,

vk+4 = max

{
B,

uk+4

vk+3

}
= A2.

By Lemma 2.2 we see that un = A (n ≥ k + 2) and vk+2n–1 = 1/A (n ≥ 1) and vk+2n = A2 (n ≥
1), which implies that un = A eventually and vn is eventually periodic with period 2. The
proof is complete. �

Proposition 2.4 If A < 1 and B < 1, then un = A eventually and vn is eventually periodic
with period 2 or vn = B eventually and un is eventually periodic with period 2 or un, vn are
eventually periodic with period 3.

Proof Note

un = max

{
A,

vn–1

un–1

}
.

There are three cases to consider.
Case 1. Assume that un = A. By Lemma 2.1 we see that vn is eventually periodic with

period 2.
Case 2. Assume that

un = vn–1/un–1 > A eventually. (2.12)

Then by (2.7) it follows

vn = max

{
B,

A
vn–1

,
1

un–1

}
= max

{
B,

1
un–1

}
eventually. (2.13)

If vn = B eventually, then by Lemma 2.1 we see that un is eventually periodic with pe-
riod 2.

If vn = 1/un–1 > B eventually, then by (2.12) we have

un+3 =
vn+2

un+2
=

1
un+2un+1

=
un

un+2un+1un

=
un

vn+1un

= un eventually,

which implies that un, vn are eventually periodic with period 3.
In the following, we assume that there exists some k ∈ N such that, for every n ≥ k,

un =
vn–1

un–1
, vk = B, vk+1 =

1
uk

> B. (2.14)
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Thus by (2.13) and (2.14) it follows

uk+1 =
B
uk

,

uk+2 =
vk+1

uk+1
=

1
B

, (2.15)

vk+2 = max

{
B,

1
uk+1

}
= max

{
B,

uk

B

}
. (2.16)

If vk+2 = B ≥ uk/B, then by (2.13)–(2.16) we have

uk+3 =
vk+2

uk+2
= B2,

vk+3 = max

{
B,

1
uk+2

}
= B,

uk+4 =
vk+3

uk+3
=

1
B

,

vk+4 = max

{
B,

1
uk+3

}
=

1
B2 ,

uk+5 =
vk+4

uk+4
=

1
B

,

vk+5 = max

{
B,

1
uk+4

}
= B.

By Lemma 2.2 we see that un+3 = un and vn+3 = vn (n ≥ k + 2), which implies that un, vn are
eventually periodic with period 3.

If vk+2 = uk/B > B, then by (2.13)–(2.16) we have

uk+3 =
vk+2

uk+2
= uk ,

vk+3 = max

{
B,

1
uk+2

}
= B,

uk+4 =
vk+3

uk+3
=

B
uk

,

vk+4 = max

{
B,

1
uk+3

}
=

1
uk

,

uk+5 =
vk+4

uk+4
=

1
B

,

vk+5 = max

{
B,

1
uk+4

}
=

uk

B
.

By Lemma 2.2 we see that un+3 = un and vn+3 = vn (n ≥ k + 2), which also implies that un, vn

are eventually periodic with period 3.
Case 3. Assume that there exists some k ∈ N such that

uk = A ≥ vk–1

uk–1
, uk+1 =

vk

uk
=

vk

A
> A. (2.17)
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Then vk = uk+1uk > A2 and by (2.7) and (2.17) we have

vk+1 = max

{
B,

A
vk

,
1
uk

}
= max

{
B,

1
A

}
=

1
A

(2.18)

and

uk+2 = max

{
A,

vk+1

uk+1

}
= max

{
A,

1
vk

}
. (2.19)

If uk+2 = A ≥ 1/vk and
√

B ≥ A ≥ B2, then by (2.4), (2.18), and (2.19) it follows

vk+2 = max

{
B,

uk+2

vk+1

}
= B,

uk+3 = max

{
A,

vk+2

uk+2

}
=

B
A

,

vk+3 = max

{
B,

uk+3

vk+2

}
=

1
A

,

uk+4 = max

{
A,

vk+3

uk+3

}
=

1
B

,

vk+4 = max

{
B,

uk+4

vk+3

}
=

A
B

,

uk+5 = max

{
A,

vk+4

uk+4

}
= A,

vk+5 = max

{
B,

uk+5

vk+4

}
= B.

By Lemma 2.2 we see that un+3 = un and vn+3 = vn (n ≥ k + 2), which implies that un, vn are
eventually periodic with period 3.

If uk+2 = A ≥ 1/vk and
√

B > B2 > A, then by (2.4), (2.18), and (2.19) it follows

vk+2 = B, uk+3 =
B
A

,

vk+3 =
1
A

, uk+4 =
1
B

,

vk+4 = max

{
B,

uk+4

vk+3

}
= B,

uk+5 = max

{
A,

vk+4

uk+4

}
= B2,

vk+5 = max

{
B,

uk+5

vk+4

}
= B,

uk+6 = max

{
A,

vk+5

uk+5

}
=

1
B

,

vk+6 = max

{
B,

uk+6

vk+5

}
=

1
B2 ,

uk+7 = max

{
A,

vk+6

uk+6

}
=

1
B

,
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vk+7 = max

{
B,

uk+7

vk+6

}
= B.

By Lemma 2.2 we see that un+3 = un and vn+3 = vn (n ≥ k + 4), which implies that un, vn are
eventually periodic with period 3.

If uk+2 = A ≥ 1/vk and
√

B < A, then by (2.4), (2.18), and (2.19) it follows

vk+2 = max

{
B,

uk+2

vk+1

}
= A2,

uk+3 = max

{
A,

vk+2

uk+2

}
= A,

vk+3 = max

{
B,

uk+3

vk+2

}
=

1
A

,

uk+4 = max

{
A,

vk+3

uk+3

}
=

1
A2 ,

vk+4 = max

{
B,

uk+4

vk+3

}
=

1
A

,

uk+5 = max

{
A,

vk+4

uk+4

}
= A,

vk+5 = max

{
B,

uk+5

vk+4

}
= A2.

By Lemma 2.2 we see that un+3 = un and vn+3 = vn (n ≥ k + 2), which implies that un, vn are
eventually periodic with period 3.

If uk+2 = 1/vk > A ≥ Bvk , then by (2.4), (2.18), and (2.19) it follows

vk+2 = max

{
B,

uk+2

vk+1

}
=

A
vk

,

uk+3 = max

{
A,

vk+2

uk+2

}
= A,

vk+3 = max

{
B,

uk+3

vk+2

}
= vk ,

uk+4 = max

{
A,

vk+3

uk+3

}
=

vk

A
,

vk+4 = max

{
B,

uk+4

vk+3

}
=

1
A

,

uk+5 = max

{
A,

vk+4

uk+4

}
=

1
vk

,

vk+5 = max

{
B,

uk+5

vk+4

}
=

A
vk

.

By Lemma 2.2 we see that un+3 = un and vn+3 = vn (n ≥ k + 2), which implies that un, vn are
eventually periodic with period 3.

If uk+2 = 1/vk > A and A/B < vk ≤ 1/B2, then by (2.4), (2.18), and (2.19) it follows

vk+2 = max

{
B,

uk+2

vk+1

}
= B,
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uk+3 = max

{
A,

vk+2

uk+2

}
= Bvk ,

vk+3 = max

{
B,

uk+3

vk+2

}
= vk ,

uk+4 = max

{
A,

vk+3

uk+3

}
=

1
B

,

vk+4 = max

{
B,

uk+4

vk+3

}
= max

{
B,

1
Bvk

}
=

1
Bvk

,

uk+5 = max

{
A,

vk+4

uk+4

}
=

1
vk

,

vk+5 = max

{
B,

uk+5

vk+4

}
= B.

By Lemma 2.2 we see that un+3 = un and vn+3 = vn (n ≥ k + 2), which implies that un, vn are
eventually periodic with period 3.

If uk+2 = 1/vk > A and vk > 1/B2, then A < B2 and by (2.4), (2.18), and (2.19) it follows

vk+2 = B, uk+3 = Bvk ,

vk+3 = vk , uk+4 =
1
B

,

vk+4 = max

{
B,

uk+4

vk+3

}
= max

{
B,

1
Bvk

}
= B,

uk+5 = max

{
A,

vk+4

uk+4

}
= B2,

vk+5 = max

{
B,

uk+5

vk+4

}
= B,

uk+6 = max

{
A,

vk+5

uk+5

}
=

1
B

,

vk+6 = max

{
B,

uk+6

vk+5

}
=

1
B2 ,

uk+7 = max

{
A,

vk+6

uk+6

}
=

1
B

,

vk+7 = max

{
B,

uk+7

vk+6

}
= B.

By Lemma 2.2 we see that un+3 = un and vn+3 = vn (n ≥ k + 4), which implies that un, vn are
eventually periodic with period 3. The proof is complete. �

Combining (2.1) with (2.3), from Propositions 2.1–2.4 we obtain the following theorem.

Theorem 2.1 Let {(xn, yn)}n≥–2 be a positive solution of (1.1). Then xn and yn are eventually
periodic with periods Tx and Ty, respectively, and Tx, Ty ∈ {2, 4, 6, 12}.
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