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Abstract
Fractional differential equations (FDEs) of distributed-order are important in depicting
the models where the order of differentiation distributes over a certain range.
Numerically solving this kind of FDEs requires not only discretizations of the temporal
and spatial derivatives, but also approximation of the distributed-order integral, which
brings much more difficulty. In this paper, based on the mid-point quadrature rule
and composite two-point Gauss–Legendre quadrature rule, two finite difference
schemes are established. Different from the previous works, which concerned only
one- or two-dimensional problems with linear source terms, time-fractional wave
equations of distributed-order whose source term is nonlinear in two and even three
dimensions are considered. In addition, to improve the computational efficiency, the
technique of alternating direction implicit (ADI) decomposition is also adopted. The
unique solvability of the difference scheme is discussed, and the unconditional
stability and convergence are analyzed. Finally, numerical experiments are carried out
to verify the effectiveness and accuracy of the algorithms for both the two- and
three-dimensional cases.
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1 Introduction
The idea of distributed-order differential equation was first presented by Caputo for mod-
eling the stress–strain behavior of an anelastic medium in [5] in the 1960s. Unlike the
differential equations with the single-order fractional derivative and those with sums of
fractional derivatives, i.e., multi-term FDEs, the distributed-order differential equations
are derived by integrating the order of differentiation over a given range [1]. This can be
regarded as a generalization of the aforementioned two classes of FDEs. Such FDEs are
typically applied in a retarding sub-diffusion process, during which a plume of particles
spreads at a logarithmic rate, and eventually the ultraslow diffusion is generated (see [8,
22, 29]). For example, the fractional Langevin equation of distributed-order was originally
proposed for modeling the kinetics of retarding sub-diffusion, and then was found effi-
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cient in simulating the strongly anomalous ultraslow diffusion, where the mean square
displacement grew as a power of logarithm of time [11]. Also, for optimal control prob-
lems, the integer order derivative is replaced by that of a distributed-order so as to capture
delays of distinct sources. In [35], considering the optimal control problems with dynam-
ics described by ordinary distributed-order fractional differential equations, the general-
ized necessary conditions were derived. Then an efficient numerical scheme was proposed
and applied to solve an unconstrained convex distributed optimal control problem which
is governed by the distributed-order fractional differential equations. In [34], a general
formulation for the fractional optimal control problems with distributed-order fractional
derivatives was presented, and a Legendre spectral collocation scheme for solving the de-
rived boundary value problem was presented along with error analysis. Besides, there are
also other various research fields involving the distributed-order FDEs, such as control
and signal processing [20], modeling dielectric induction and diffusion [6], identification
of systems [19], and so forth.

Recently, there have been many important progresses in the research of analytical solu-
tions of distributed-order FDEs. For researching the kinetic description of anomalous dif-
fusion and relaxation phenomena, Chechkin et al. [7] presented a diffusion-like equation
with time fractional derivative of distributed-order, the authors also proved the positivity
of the solutions and established the relation to the continuous-time random walk theory.
Atanackovic et al. analyzed a Cauchy problem for a time distributed-order diffusion-wave
equation by means of the theory of an abstract Volterra equation in [2]. In view of the
fundamental solution of the Cauchy problem of the one-dimensional distributed-order
diffusion-wave equation, Gorenflo et al. gave the interpretation that it is a probability
density function of the space variable x evolving in time t in the transform domain by
employing the technique of the Fourier and Laplace transforms [18]. Using the Laplace
transform method, Li et al. [23] investigated the asymptotic behavior of solutions to the
initial-boundary-value problem for the distributed-order time-fractional diffusion equa-
tions.

However, in most instances, analytical solutions of distributed-order differential equa-
tions are not readily available, thus researchers are stimulated to develop numerical algo-
rithms for approximate solutions. To numerically solve the distributed-order differential
equations, the distributed-order fractional derivatives are reduced to a sum of multi-term
fractional derivatives by using a quadrature rule, then the multi-term fractional differen-
tial equations are left to be solved. In fact, the multi-term fractional differential equations
can be regarded as a particular case of the distributed-order differential equations. To
the best of our knowledge, the research on numerical solution of such fractional equa-
tions is still in its infancy. The references [10, 21, 25] developed numerical methods for
solving distributed-order ordinary differential equations. The authors of [3] constructed
an efficient spectral method for solving multi-term time–space fractional partial differ-
ential equations by presenting a shifted Jacobi tau method for both temporal and spatial
discretizations. A Legendre spectral tau method was employed for solving the multi-term
time-fractional diffusion equations in [33], and the error estimation and convergence anal-
ysis was performed rigorously. Ford et al. developed an implicit finite difference method
for the solution of the diffusion equation with distributed order in time [12]. By using
the Grünwald–Letnikov formula, Gao et al. proposed two difference schemes to solve the
one-dimensional distributed-order differential equations, and the extrapolation method
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was applied to improve the approximate accuracy [17]. In [13], the authors handled the
one- and two-dimensional distributed-order diffusion equations by employing a weighted
and shifted Grünwald–Letnikov formula to derive several high-order difference schemes.
A distributed-order time and Riesz space-fractional Schrödinger equation was simulated
by developing a new numerical approach in [4]. The considered problem was first trans-
formed into a system of distributed-order fractional differential equations by employing
the Jacobi–Gauss–Lobatto collocation method, and then the derived system was solved
by a spectral method based on Jacobi–Gauss–Radau collocation method. In terms of the
time distributed-order diffusion-wave equations, most of the work considers the one-
dimensional case, and the integrating range of the order of time derivative is the interval
[0, 1], which is named the time distributed-order diffusion equation. When the order of
the time derivative is distributed over the interval [1, 2], it is called the time distributed-
order wave equation. Ye et al. derived and analyzed a compact difference scheme for a
distributed-order time-fractional wave equation in [32].

In this work, we propose efficient finite difference schemes for solving the two-
and three-dimensional time-fractional wave equations of distributed-order, respectively,
where a nonlinear source term is considered. As far as we know, the relevant literature is
rather limited. Gao et al. investigated ADI difference schemes for two-dimensional time
distributed-order diffusion equations [14, 16]. In [14], Grünwald formula was employed
and ADI difference scheme as well as compact ADI difference scheme were derived. The
extrapolation method was also applied to obtain the improved approximate accuracy. In
[16], the authors proposed two ADI difference schemes and proved that they were uncon-
ditionally stable and convergent in a discrete L1(L∞) norm. Based on the weighted and
shifted Grünwald–Letnikov formula, they also developed two ADI difference schemes for
solving the two-dimensional time distributed-order wave equations [15]. Abbaszadeh et
al. solved the two-dimensional distributed order time-fractional diffusion-wave equation
by combining the ADI approach with the interpolating element-free Galerkin method,
where the time derivatives was discretized by a finite difference scheme [1]. Using the
same time approximation method, and based on the shape functions of reproducing ker-
nel particle method, a novel element-free Galerkin approach was proposed for solving 2D
fractional Tricomi-type equation with Robin boundary condition [9]. Additionally, real-
izing the widespread use of the differential equations with nonlinear source terms [27,
31], Morgado et al. presented an implicit difference scheme for time distributed-order
diffusion equation with a nonlinear source term in one dimension [24].

However, numerical approximations for multidimensional time distributed-order dif-
fusion-wave equations with nonlinear source terms have not been considered yet, includ-
ing two- and three-dimensional cases. In the current work, the multidimensional time-
fractional wave equation of distributed-order with a nonlinear source term is considered.
To develop robust numerical algorithms, the mid-point quadrature rule and composite
two-point Gauss–Legendre quadrature rule are used for the approximation of the dis-
tributed integral, respectively. As the multi-term time-fractional wave equation is left, the
L1 formula is adopted for the discretization of the time-fractional derivatives. In the spa-
tial direction, the central difference quotients are employed for approximating the second-
order derivatives. To linearize the nonlinear source term, the first order Taylor formula is
used, whose advantage is making the computing procedure relatively simple. Necessarily,
the technique of ADI decomposition is applied to improve the computational efficiency.
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The structure of the rest of this work is as follows. In Sect. 2, based on the mid-point
quadrature rule and composite two-point Gauss–Legendre quadrature rule, two differ-
ence schemes for the two-dimensional problem are constructed and described in details.
In Sect. 3, the solvability, stability and convergence of the derived difference schemes are
discussed. Section 4 gives the description of ADI forms of the proposed schemes. We es-
tablish the ADI finite difference schemes for the three-dimensional problem in Sect. 5.
Numerical results are illustrated in Sect. 6 to confirm the effectiveness and accuracy of
our methods for both the two- and three-dimensional cases, and some conclusions are
drawn in the last section.

2 The derivation of the schemes for the two-dimensional problem
We consider the two-dimensional problem first. The two-dimensional time-fractional
wave equation of distributed-order with a nonlinear source term along with its initial and
boundary conditions can be written as

∫ 2

1
p(β)C

0 Dβ
t u(x, y, t) dβ =

∂2u(x, y, t)
∂x2 +

∂2u(x, y, t)
∂y2 + f

(
x, y, t, u(x, y, t)

)
,

(x, y) ∈ Ω , t ∈ (0, T], (1)

u(x, y, t) = φ(x, y, t), (x, y) ∈ ∂Ω , t ∈ [0, T], (2)

u(x, y, 0) = ψ1(x, y), ut(x, y, 0) = ψ2(x, y), (x, y) ∈ Ω , (3)

where Ω = (0, L1)× (0, L2), and ∂Ω is the boundary of Ω . The fractional derivative C
0 Dβ

t v(t)
in (1) is given in the Caputo sense

C
0 Dβ

t v(t) =

⎧⎪⎪⎨
⎪⎪⎩

∂v(t)
∂t – ∂v(0)

∂t , β = 1,
1

Γ (2–β)
∫ t

0 (t – ξ )1–β ∂2v(ξ )
∂ξ2 dξ , 1 < β < 2,

∂2v(t)
∂t2 , β = 2,

the function p(β) serves as a weight for the order of differentiation and is such that p(β) > 0
and

∫ 2
1 p(β) dβ = c0 > 0. We assume that p(β), φ(x, y, t), ψ1(x, y), ψ2(x, y) and f (x, y, t, u) are

continuous, and the nonlinear source term f satisfies the Lipschitz condition with respect
to u:

∣∣f (x, y, t, u1) – f (x, y, t, u2)
∣∣≤ Lf |u1 – u2|, (4)

where Lf is a positive constant.
The main procedure of developing numerical schemes for solving problem (1)–(3) is as

follows. Firstly, a numerical quadrature rule is adopted to discretize the integral in (1), and
a multi-term time-fractional wave equation is obtained in the process. Then the mid-point
quadrature rule and the composite two-point Gauss–Legendre quadrature rule are em-
ployed for the discretization of the distributed integral, respectively. Secondly, we develop
finite difference schemes which are uniquely solvable for the multi-term time-fractional
wave equations, where the central difference quotient and the L1 formula are employed,
and the Taylor formula is adopted for dealing with the nonlinear source term. Finally, by
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using the discrete energy method, we prove that the derived numerical schemes are un-
conditionally stable and convergent in the discrete L2 norm, and then the ADI forms of
the proposed schemes are given for computing.

The rest of this section focuses on deriving the finite difference scheme for the problem
(1)–(3).

Let M1, M2 and N be positive integers, and h1 = L1/M1, h2 = L2/M2 and τ = T/N denote
the uniform sizes of spatial grid and time step, respectively. Then a spatial and temporal
partition can be defined as xi = ih1 for i = 0, 1, . . . , M1, yj = jh2 for j = 0, 1, . . . , M2 and tn = nτ

for n = 0, 1, . . . , N . Denote

Ωh =
{

(xi, yj) | 1 ≤ i ≤ M1 – 1, 1 ≤ j ≤ M2 – 1
}

,

∂Ωh =
{

(xi, yj) | i = 0 or i = M1 or j = 0 or j = M2
}

, Ω̄h = Ωh ∪ ∂Ωh,

Ωτ = {tn | tn = nτ , 0 ≤ n ≤ N}.

Then the domain Ω̄ × [0, T] is covered by Ω̄h × Ωτ . Let u = {un
ij | 0 ≤ i ≤ M1, 0 ≤ j ≤

M2, 0 ≤ n ≤ N} represent a grid function on Ω̄h × Ωτ . We introduce the following nota-
tions:

un– 1
2

ij =
1
2
(
un

ij + un–1
ij
)
, δtu

n– 1
2

ij =
1
τ

(
un

ij – un–1
ij
)
,

δxun
i– 1

2 ,j =
1
h1

(
un

ij – un
i–1,j
)
, δ2

x un
ij =

1
h1

(
δxun

i+ 1
2 ,j – δxun

i– 1
2 ,j

)
,

δyun
i,j– 1

2
=

1
h2

(
un

ij – un
i,j–1
)
, δ2

y un
ij =

1
h2

(
δxun

i,j+ 1
2

– δxun
i,j– 1

2

)
,

and

Δhuij = δ2
x uij + δ2

y uij.

Consider Eq. (1) at the point (xi, yj, tn), which can be written as

∫ 2

1
p(β)C

0 Dβ
t u(xi, yj, tn) dβ

=
∂2u(xi, yj, tn)

∂x2 +
∂2u(xi, yj, tn)

∂y2 + f
(
xi, yj, tn, u(xi, yj, tn)

)
. (5)

Taking an average of Eq. (5) at time instants t = tn and t = tn–1, we obtain the following
equations:

1
2

(∫ 2

1
p(β)C

0 Dβ
t u(xi, yj, tn) dβ +

∫ 2

1
p(β)C

0 Dβ
t u(xi, yj, tn–1) dβ

)

=
1
2

[
∂2u(xi, yj, tn)

∂x2 +
∂2u(xi, yj, tn–1)

∂x2

]
+

1
2

[
∂2u(xi, yj, tn)

∂y2 +
∂2u(xi, yj, tn–1)

∂y2

]

+
1
2
[
f
(
xi, yj, tn, u(xi, yj, tn)

)
+ f
(
xi, yj, tn–1, u(xi, yj, tn–1)

)]
. (6)



Hu et al. Advances in Difference Equations  (2018) 2018:352 Page 6 of 30

Denote by Un
ij = u(xi, yj, tn) the grid functions on Ω̄h × Ωτ with 0 ≤ i ≤ M1, 0 ≤ j ≤ M2,

0 ≤ n ≤ N . Equation (6) can be expressed as

∫ 2

1
p(β)C

0 Dβ
t Un– 1

2
ij dβ =

∂2

∂x2 Un– 1
2

ij +
∂2

∂y2 Un– 1
2

ij

+
1
2
[
f
(
xi, yj, tn, Un

ij
)

+ f
(
xi, yj, tn–1, Un–1

ij
)]

. (7)

Firstly, we discretize the integral term in (7). Here the mid-point quadrature rule and
the composite two-point Gauss–Legendre quadrature rule are employed, respectively.
Suppose p(β) ∈ C4[1, 2], C

0 Dβ
t u(xi, yj, t)|t=tn–1 and C

0 Dβ
t u(xi, yj, t)|t=tn ∈ C4[1, 2]. Let K be

a positive integer, and Δβ = 1/K denote the uniform step size. Take βl = 1 + 2l–1
2 Δβ ,

β̃l–1 = 1 + (l – 1)Δβ , 1 ≤ l ≤ K , and β̃K = 2. When the mid-point quadrature rule is used for
approximating the integral in (7), we are left with the following multi-term time-fractional
wave equation:

Δβ

K∑
l=1

p(βl)C
0 Dβl

t Un– 1
2

ij + R1 =
∂2

∂x2 Un– 1
2

ij +
∂2

∂y2 Un– 1
2

ij +
1
2
[
f
(
xi, yj, tn, Un

ij
)

+ f
(
xi, yj, tn–1, Un–1

ij
)]

, (8)

where R1 = O(Δβ2). While using the composite two-point Gauss–Legendre quadrature
rule, we arrive at an analogous equation as follows:

Δβ

2

K∑
l=1

(
p
(
β̃

(1)
l
)C

0 D
β̃

(1)
l

t Un– 1
2

ij + p
(
β̃

(2)
l
)C

0 D
β̃

(2)
l

t Un– 1
2

ij
)

+ GLR1

=
∂2

∂x2 Un– 1
2

ij +
∂2

∂y2 Un– 1
2

ij +
1
2
[
f
(
xi, yj, tn, Un

ij
)

+ f
(
xi, yj, tn–1, Un–1

ij
)]

, (9)

where β̃
(1)
l = β̃l+β̃l–1

2 – β̃l–β̃l–1
2
√

3 , β̃ (2)
l = β̃l+β̃l–1

2 + β̃l–β̃l–1
2
√

3 , 1 ≤ l ≤ K , and GLR1 = O(Δβ4).
Next, we solve Eq. (8) or (9) with the boundary condition (2) and initial conditions (3).

Here, we present the procedure for (8), and the technique used for (9) is similar.
Suppose u(x, y, t) ∈ C4,4,3

x,y,t (Ω̄ × [0, T]). According to Theorem 8.2.5 in [30], the Caputo

derivative C
0 Dβl

t Un– 1
2

ij , 1 < βl < 2 has the fully discrete difference scheme

C
0 Dβl

t Un– 1
2

ij =
τ 1–βl

Γ (3 – βl)

[
a(βl)

0 δtU
n– 1

2
ij –

n–1∑
k=1

(
a(βl)

n–k–1 – a(βl)
n–k
)
δtU

k– 1
2

ij

– a(βl)
n–1ψ2(xi, yj)

]
+ Rl

2, (10)

where

a(βl)
k = (k + 1)2–βl – k2–βl , k = 0, 1, 2, . . . ,
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and

∣∣Rl
2
∣∣≤ 1

Γ (3 – βl)

[
2 – βl

12
+

23–βl

3 – βl
–
(
1 + 21–βl

)
+

1
12

]

· max
0≤t≤tn

∣∣∣∣∂
3u(xi, yj, t)

∂t3

∣∣∣∣τ 3–βl , l = 1, 2, . . . , K . (11)

In the meantime, the central difference quotient is used to approximate the second order
derivatives in (8). Then we obtain

Δβ

K∑
l=1

p(βl)
τ 1–βl

Γ (3 – βl)

[
a(βl)

0 δtU
n– 1

2
ij –

n–1∑
k=1

(
a(βl)

n–k–1 – a(βl)
n–k
)
δtU

k– 1
2

ij

– a(βl)
n–1ψ2(xi, yj)

]
+

K∑
l=1

Δβp(βl)Rl
2 + R1

= δ2
x Un– 1

2
ij + δ2

y Un– 1
2

ij +
1
2
[
f
(
xi, yj, tn–1, Un–1

ij
)

+ f
(
xi, yj, tn, Un

ij
)]

+ R3, (12)

where R3 = O(h2
1 + h2

2). Subsequently, the nonlinear source term is dealt with in the fol-
lowing manner to avoid a system of nonlinear equations when computing:

f
(
xi, yj, tn, Un

ij
)

= f
(
xi, yj, tn–1, Un–1

ij
)

+ O(τ ). (13)

Substituting Eq. (13) into Eq. (12), we have

Δβ

K∑
l=1

p(βl)
τ 1–βl

Γ (3 – βl)

[
a(βl)

0 δtU
n– 1

2
ij –

n–1∑
k=1

(
a(βl)

n–k–1 – a(βl)
n–k
)
δtU

k– 1
2

ij

– a(βl)
n–1ψ2(xi, yj)

]

= δ2
x Un– 1

2
ij + δ2

y Un– 1
2

ij + f
(
xi, yj, tn–1, Un–1

ij
)

+ Rn– 1
2

ij + R̃n– 1
2

ij , (14)

where

Rn– 1
2

ij = –
K∑

l=1

Δβp(βl)Rl
2 – R1 + R3

= –
K∑

l=1

Δβp(βl)Rl
2 + O

(
h2

1 + h2
2
)

+ O
(
Δβ2)

and

R̃n– 1
2

ij = O(τ ). (15)
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In the following, we discuss the necessary estimate of Rn– 1
2

ij . From (11), we can deduce that
there exists a positive constant C1 such that

∣∣∣∣∣–
K∑

l=1

Δβp(βl)Rl
2

∣∣∣∣∣≤ C1τ
1+ 1

2 Δβ

K∑
l=1

Δβp(βl).

Since

K∑
l=1

Δβp(βl) ∼
∫ 2

1
p(β) dβ = c0,

we get

K∑
l=1

Δβp(βl) ≤ C2,

where C2 is a positive constant. Thus there is a positive constant C3 such that

∣∣Rn– 1
2

ij
∣∣≤ C3

(
τ 1+ 1

2 Δβ + h2
1 + h2

2 + Δβ2).

Besides, Eq. (15) implies that

∣∣̃Rn– 1
2

ij
∣∣≤ C4τ ,

where C4 is a positive constant.
To establish an efficient numerical scheme, the procedure below is needed. Denote

μ = Δβ

K∑
l=1

p(βl)
1

τβlΓ (3 – βl)
.

Since

Δβ

K∑
l=1

p(βl)
1

τβlΓ (3 – βl)

∼
∫ 2

1
p(β)

1
τβΓ (3 – β)

dβ

=
p(β∗)

Γ (3 – β∗)

∫ 2

1

1
τβ

dβ

=
p(β∗)

Γ (3 – β∗)
1 – τ

τ 2| ln τ | ,

it can be concluded that

μ =
1

O(τ 2| ln τ |) .
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When τ is sufficiently small, | ln τ | ≤ Cτ–ε holds for any positive and small ε. Therefore,
the term O(τ 2| ln τ |) is almost the same as O(τ 2) when τ is sufficiently small. Adding the
high order term

R̂n– 1
2

ij =
τ

4μ
δ2

xδ
2
y

Un
ij – Un–1

ij

τ

on both sides of (14), we have

Δβ

K∑
l=1

p(βl)
τ 1–βl

Γ (3 – βl)

[
a(βl)

0 δtU
n– 1

2
ij –

n–1∑
k=1

(
a(βl)

n–k–1 – a(βl)
n–k
)
δtU

k– 1
2

ij

– a(βl)
n–1ψ2(xi, yj)

]
+

τ

4μ
δ2

xδ
2
y

Un
ij – Un–1

ij

τ

= δ2
x Un– 1

2
ij + δ2

y Un– 1
2

ij + f
(
xi, yj, tn–1, Un–1

ij
)

+ Rn– 1
2

ij + R̃n– 1
2

ij + R̂n– 1
2

ij . (16)

From the analysis of μ, we get

∣∣̂Rn– 1
2

ij
∣∣≤ C5τ

3| ln τ |,

where C5 is a positive constant. Also, for the initial and boundary conditions, we have

U0
ij = ψ1(xi, yj), (xi, yj) ∈ Ωh, (17)

Un
ij = φ(xi, yj, tn), (xi, yj) ∈ ∂Ωh, 0 ≤ n ≤ N . (18)

Let un
ij be a numerical approximation to u(xi, yj, tn). Neglecting the small terms Rn– 1

2
ij ,

R̃n– 1
2

ij and R̂n– 1
2

ij in (16), and using un
ij instead of Un

ij in Eqs. (16)–(18), the finite difference
scheme for (1)–(3) is developed as follows:

Δβ

K∑
l=1

p(βl)
τ 1–βl

Γ (3 – βl)

[
a(βl)

0 δtu
n– 1

2
ij –

n–1∑
k=1

(
a(βl)

n–k–1 – a(βl)
n–k
)
δtu

k– 1
2

ij

– a(βl)
n–1(ψ2)ij

]
+

τ

4μ
δ2

xδ
2
y

un
ij – un–1

ij

τ

= δ2
x un– 1

2
ij + δ2

y un– 1
2

ij + f
(
xi, yj, tn–1, un–1

ij
)
,

1 ≤ i ≤ M1 – 1, 1 ≤ j ≤ M2 – 1, 1 ≤ n ≤ N , (19)

u0
ij = (ψ1)ij, 1 ≤ i ≤ M1 – 1, 1 ≤ j ≤ M2 – 1, (20)

un
ij = φn

ij , (i, j) ∈ γ =
{

(i, j) | (xi, yj) ∈ ∂Ωh
}

, 0 ≤ n ≤ N , (21)

where

(ψ1)ij = ψ1(xi, yj), (ψ2)ij = ψ2(xi, yj), 1 ≤ i ≤ M1 – 1, 1 ≤ j ≤ M2 – 1,
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and

φn
ij = φ(xi, yj, tn), (i, j) ∈ γ , 0 ≤ n ≤ N .

Starting the procedure by Eq. (9), we have the scheme for solving (1)–(3) as

Δβ

2

K∑
l=1

p
(
β̃

(1)
l
) τ 1–β̃

(1)
l

Γ (3 – β̃
(1)
l )

[
a(β̃(1)

l )
0 δtu

n– 1
2

ij –
n–1∑
k=1

(
a(β̃(1)

l )
n–k–1 – a(β̃(1)

l )
n–k

)
δtu

k– 1
2

ij

– a(β̃(1)
l )

n–1 (ψ2)ij

]
+

Δβ

2

K∑
l=1

p
(
β̃

(2)
l
) τ 1–β̃

(2)
l

Γ (3 – β̃
(2)
l )

[
a(β̃(2)

l )
0 δtu

n– 1
2

ij

–
n–1∑
k=1

(
a

(β̃(2)
l )

n–k–1 – a
(β̃(2)

l )
n–k

)
δtu

k– 1
2

ij – a
(β̃(2)

l )
n–1 (ψ2)ij

]
+

τ

4μ̃
δ2

xδ
2
y

un
ij – un–1

ij

τ

= δ2
x un– 1

2
ij + δ2

y un– 1
2

ij + f
(
xi, yj, tn–1, un–1

ij
)
,

1 ≤ i ≤ M1 – 1, 1 ≤ j ≤ M2 – 1, 1 ≤ n ≤ N , (22)

u0
ij = (ψ1)ij, 1 ≤ i ≤ M1 – 1, 1 ≤ j ≤ M2 – 1, (23)

un
ij = φn

ij , (i, j) ∈ γ , 0 ≤ n ≤ N , (24)

where the omitted remainder is O(τ + h2
1 + h2

2 + Δβ4), and

μ̃ =
Δβ

2

K∑
l=1

p
(
β̃

(1)
l
) 1

τ β̃
(1)
l Γ (3 – β̃

(1)
l )

+
Δβ

2

K∑
l=1

p
(
β̃

(2)
l
) 1

τ β̃
(2)
l Γ (3 – β̃

(2)
l )

.

3 Analysis of the difference scheme
In this section, the analysis of scheme (19)–(21) is carried out, and that for scheme (22)–
(24) is similar.

3.1 Unique solvability
In this subsection, the unique solvability of scheme (19)–(21) is proved.

Theorem 1 The finite difference scheme (19)–(21) is uniquely solvable.

Proof Let un = {un
ij | 0 ≤ i ≤ M1, 0 ≤ j ≤ M2}. It can be seen that the value of u0 is uniquely

determined by (20) and (21). Suppose the values of u0, u1, . . . , un–1 have been uniquely de-
termined. To show that the linear system of equations (19) and (21) has a unique solution,
it is sufficient to prove that the corresponding homogeneous one, namely

μun
ij –

1
2
Δhun

ij +
1

4μ
δ2

xδ
2
y un

ij = 0, 1 ≤ i ≤ M1 – 1, 1 ≤ j ≤ M2 – 1, (25)

un
ij = 0, i = 0 or i = M1 or j = 0 or j = M2, (26)

only has the zero solution.
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Multiplying (25) by h1h2un
ij, summing over i from 1 to M1 – 1 and over j from 1 to M2 – 1,

we have

μ
∥∥un∥∥2 +

1
2
∣∣un∣∣2 +

1
4μ

∥∥δxδyun∥∥2 = 0. (27)

Equation (27) implies ‖un‖ = 0. Combining with (26) this yields un = 0.
According to the principle of mathematical induction, the proof is completed. �

3.2 Stability
In this subsection we focus on showing the unconditional stability of the difference scheme
(19)–(21). We introduce some auxiliary definitions and useful results which will also be
used when the convergence is considered.

Denote the space of grid functions on Ω̄h by

Vh =
{

v | v =
{

vij | (xi, yj) ∈ Ω̄h
}

and vij = 0 if (xi, yj) ∈ ∂Ωh
}

.

For any grid function v ∈ Vh, the following discrete norms and Sobolev seminorm are
introduced:

‖v‖ =

√√√√h1h2

M1–1∑
i=1

M2–1∑
j=1

|vij|2, ‖δxδyv‖ =

√√√√h1h2

M1∑
i=1

M2∑
j=1

|δxδyvi– 1
2 ,j– 1

2
|2,

‖δxv‖ =

√√√√h1h2

M1∑
i=1

M2–1∑
j=1

|δxvi– 1
2 ,j|2, ‖δyv‖ =

√√√√h1h2

M1–1∑
i=1

M2∑
j=1

|δyvi,j– 1
2
|2,

‖Δhv‖ =

√√√√h1h2

M1–1∑
i=1

M2–1∑
j=1

|Δhvij|2, |v|1 =
√

‖δxv‖2 + ‖δyv‖2.

Lemma 1 ([28]) For any grid function v ∈ Vh, ‖v‖ ≤ L1L2√
6(L2

1+L2
2)

|v|1.

Lemma 2 ([30]) For any grid function v ∈ Vh, |v|1 ≤ L1L2√
6(L2

1+L2
2)

‖Δhv‖.

Lemma 3 ([30]) For any G = {G1, G2, G3, . . .} and q, we have

s∑
n=1

[
b0Gn –

n–1∑
k=1

(bn–k–1 – bn–k)Gk – bn–1q

]
Gn

≥ t1–α
s
2

τ

s∑
n=1

G2
n –

t2–α
s

2(2 – α)
q2, s = 1, 2, 3, . . . ,

where

bl =
τ 2–α

2 – α

[
(l + 1)2–α – l2–α

]
, l = 0, 1, 2, . . . .

The discrete Gronwall’s inequality is also necessary and is stated below.
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Lemma 4 ([26]) Assume that kn and pn are nonnegative sequences, and the sequence Φn

satisfies

Φ0 ≤ g0, Φn ≤ g0 +
n–1∑
l=0

pl +
n–1∑
l=0

klΦl, n ≥ 1,

where g0 ≥ 0. Then the sequence Φn satisfies

Φn ≤
(

g0 +
n–1∑
l=0

pl

)
exp

( n–1∑
l=0

kl

)
, n ≥ 1.

Assume that ũn
ij is an approximation solution of un

ij, which is the exact solution of the
scheme (19)–(21). Also, suppose that (ψ̃1)ij and (ψ̃2)ij are approximations to (ψ1)ij and
(ψ2)ij, respectively. Denote εn

ij = un
ij – ũn

ij, 0 ≤ i ≤ M1, 0 ≤ j ≤ M2, 0 ≤ n ≤ N . Then we have
the perturbation error equations

Δβ

K∑
l=1

p(βl)
τ 1–βl

Γ (3 – βl)

[
a(βl)

0 δtε
n– 1

2
ij –

n–1∑
k=1

(
a(βl)

n–k–1 – a(βl)
n–k
)
δtε

k– 1
2

ij

– a(βl)
n–1
(
ψ∗

2
)

ij

]
+

τ

4μ
δ2

xδ
2
y
εn

ij – εn–1
ij

τ

= δ2
xε

n– 1
2

ij + δ2
y ε

n– 1
2

ij + f
(
xi, yj, tn–1, un–1

ij
)

– f
(
xi, yj, tn–1, ũn–1

ij
)
,

1 ≤ i ≤ M1 – 1, 1 ≤ j ≤ M2 – 1, 1 ≤ n ≤ N , (28)

ε0
ij = (ψ1)ij – (ψ̃1)ij, 1 ≤ i ≤ M1 – 1, 1 ≤ j ≤ M2 – 1,

εn
ij = 0, (i, j) ∈ γ , 0 ≤ n ≤ N ,

where (ψ∗
2 )ij = (ψ2)ij – (ψ̃2)ij.

Theorem 2 Assume that condition (4) is satisfied. Then the difference scheme (19)–(21) is
unconditionally stable.

Proof Let

b(βl)
k =

τ 2–βl

2 – βl
a(βl)

k , 1 ≤ l ≤ K .

Then Eq. (28) is equivalent to

Δβ

K∑
l=1

p(βl)
1

Γ (2 – βl)τ

[
b(βl)

0 δtε
n– 1

2
ij –

n–1∑
k=1

(
b(βl)

n–k–1 – b(βl)
n–k
)
δtε

k– 1
2

ij

– b(βl)
n–1
(
ψ∗

2
)

ij

]
+

τ

4μ
δ2

xδ
2
y
εn

ij – εn–1
ij

τ

= δ2
xε

n– 1
2

ij + δ2
y ε

n– 1
2

ij + f
(
xi, yj, tn–1, un–1

ij
)

– f
(
xi, yj, tn–1, ũn–1

ij
)
,

1 ≤ i ≤ M1 – 1, 1 ≤ j ≤ M2 – 1, 1 ≤ n ≤ N . (29)
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Multiplying (29) by h1h2τδtε
n– 1

2
ij , summing over i from 1 to M1 – 1, over j from 1 to

M2 – 1, and over n from 1 to s, we analyze each term in the resulted equation. Firstly, by
Lemma 3, we have

Δβ

K∑
l=1

p(βl)
1

Γ (2 – βl)
h1h2

M1–1∑
i=1

M2–1∑
j=1

{ s∑
n=1

[
b(βl)

0 δtε
n– 1

2
ij

–
n–1∑
k=1

(
b(βl)

n–k–1 – b(βl)
n–k
)
δtε

k– 1
2

ij – b(βl)
n–1
(
ψ∗

2
)

ij

]
δtε

n– 1
2

ij

}

≥ Δβ

K∑
l=1

p(βl)
1

Γ (2 – βl)

[
1
2

t1–βl
s τ

s∑
n=1

∥∥δtε
n– 1

2
∥∥2

–
t2–βl
s

2(2 – βl)
h1h2

M1–1∑
i=1

M2–1∑
j=1

(
ψ∗

2
)2

ij

]

=
1
2
τKs

s∑
n=1

∥∥δtε
n– 1

2
∥∥2 – Δβ

K∑
l=1

p(βl)
t2–βl
s

2Γ (3 – βl)
∥∥ψ∗

2
∥∥2, (30)

where

Ks = Δβ

K∑
l=1

p(βl)
t1–βl
s

Γ (2 – βl)
> 0.

Subsequently, using the discrete Green formula, we get the following two equations:

h1h2τ

M1–1∑
i=1

M2–1∑
j=1

s∑
n=1

τ

4μ
δ2

xδ
2
y
εn

ij – εn–1
ij

τ
δtε

n– 1
2

ij

=
1

4μ

s∑
n=1

h1h2

M1∑
i=1

M2∑
j=1

(
δxδy

(
εn

i– 1
2 ,j– 1

2
– εn–1

i– 1
2 ,j– 1

2

))(
δxδy

(
εn

i– 1
2 ,j– 1

2
– εn–1

i– 1
2 ,j– 1

2

))

=
1

4μ

s∑
n=1

∥∥δxδy
(
εn – εn–1)∥∥2 ≥ 0, (31)

and

τ

s∑
n=1

[
h1h2

M1–1∑
i=1

M2–1∑
j=1

(
δtε

n– 1
2

ij
)(

δ2
xε

n– 1
2

ij
)]

= –τ

s∑
n=1

[
h1h2

M2–1∑
j=1

M1∑
i=1

(
δxε

n– 1
2

i– 1
2 ,j

)(
δtδxε

n– 1
2

i– 1
2 ,j

)]

= –τ

s∑
n=1

[
h1h2

M2–1∑
j=1

M1∑
i=1

(δxε
n
i– 1

2 ,j
+ δxε

n–1
i– 1

2 ,j

2

)(δxε
n
i– 1

2 ,j
– δxε

n–1
i– 1

2 ,j

τ

)]

= –
1
2
[∥∥δxε

s∥∥2 –
∥∥δxε

0∥∥2]. (32)
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Analogous to (32), we also obtain

τ

s∑
n=1

[
h1h2

M1–1∑
i=1

M2–1∑
j=1

(
δtε

n– 1
2

ij
)(

δ2
y ε

n– 1
2

ij
)]

= –
1
2
[∥∥δyε

s∥∥2 –
∥∥δyε

0∥∥2]. (33)

On the basis of (4), we have

h1h2

M1–1∑
i=1

M2–1∑
j=1

[
τ

s∑
n=1

(
δtε

n– 1
2

ij
)(

f
(
xi, yj, tn–1, un–1

ij
)

– f
(
xi, yj, tn–1, ũn–1

ij
))]

≤ h1h2

M1–1∑
i=1

M2–1∑
j=1

[
τ

s∑
n=1

∣∣δtε
n– 1

2
ij

∣∣∣∣f (xi, yj, tn–1, un–1
ij
)

– f
(
xi, yj, tn–1, ũn–1

ij
)∣∣
]

≤ h1h2

M1–1∑
i=1

M2–1∑
j=1

[
τLf

s∑
n=1

∣∣δtε
n– 1

2
ij

∣∣∣∣un–1
ij – ũn–1

ij
∣∣
]

= Lf h1h2

M1–1∑
i=1

M2–1∑
j=1

[
τ

s∑
n=1

∣∣δtε
n– 1

2
ij

∣∣∣∣εn–1
ij
∣∣
]

≤ Lf h1h2

M1–1∑
i=1

M2–1∑
j=1

τ

s∑
n=1

[
Ks

2Lf

(
δtε

n– 1
2

ij
)2 +

Lf

2Ks

(
εn–1

ij
)2
]

=
τKs

2

s∑
n=1

∥∥δtε
n– 1

2
∥∥2 +

τL2
f

2Ks

s∑
n=1

∥∥εn–1∥∥2. (34)

From Eqs. (30)–(34), the following inequality holds:

∥∥δxε
s∥∥2 +

∥∥δyε
s∥∥2 ≤ ∥∥δxε

0∥∥2 +
∥∥δyε

0∥∥2

+ Δβ

K∑
l=1

p(βl)
t2–βl
s

Γ (3 – βl)
∥∥ψ∗

2
∥∥2 +

τL2
f

Ks

s∑
n=1

∥∥εn–1∥∥2. (35)

From Lemmas 1 and 2, we deduce using (35) that

∥∥εn∥∥2 ≤ L4
1L4

2
36(L2

1 + L2
2)2

∥∥Δhε
0∥∥2 +

L2
1L2

2
6(L2

1 + L2
2)

Δβ

K∑
l=1

p(βl)
T2–βl

Γ (3 – βl)
∥∥ψ∗

2
∥∥2

+
τL2

f L2
1L2

2

6(L2
1 + L2

2)Δβ
∑K

l=1 p(βl) T1–βl
Γ (2–βl)

n∑
k=1

∥∥εk–1∥∥2, 1 ≤ n ≤ N .

Finally, applying Lemma 4, we derive

∥∥εn∥∥2 ≤
(

L4
1L4

2
36(L2

1 + L2
2)2

∥∥Δhε
0∥∥2 +

L2
1L2

2
6(L2

1 + L2
2)

Δβ

K∑
l=1

p(βl)
T2–βl

Γ (3 – βl)
∥∥ψ∗

2
∥∥2
)

· exp

( L2
f L2

1L2
2

6(L2
1 + L2

2)Δβ
∑K

l=1 p(βl) T–βl
Γ (2–βl)

)
, 1 ≤ n ≤ N ,

which completes the proof. �
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3.3 Convergence
In this part, the convergence of the difference approximation is discussed. Notice that if Un

ij

is the exact solution of the system (1)–(3) and un
ij is the numerical solution of the difference

scheme (19)–(21), then the error is denoted as

en
ij = Un

ij – un
ij, 0 ≤ i ≤ M1, 0 ≤ j ≤ M2, 0 ≤ n ≤ N .

Subtracting (19)–(21) from (16)–(18), we get the error equations

Δβ

K∑
l=1

p(βl)
τ 1–βl

Γ (3 – βl)

[
a(βl)

0 δte
n– 1

2
ij –

n–1∑
k=1

(
a(βl)

n–k–1 – a(βl)
n–k
)
δte

k– 1
2

ij

]

+
τ

4μ
δ2

xδ
2
y

en
ij – en–1

ij

τ

= δ2
x en– 1

2
ij + δ2

y en– 1
2

ij + f
(
xi, yj, tn–1, Un–1

ij
)

– f
(
xi, yj, tn–1, un–1

ij
)

+ Rn– 1
2

ij + R̃n– 1
2

ij + R̂n– 1
2

ij , 1 ≤ i ≤ M1 – 1, 1 ≤ j ≤ M2 – 1, 1 ≤ n ≤ N , (36)

e0
ij = 0, 1 ≤ i ≤ M1 – 1, 1 ≤ j ≤ M2 – 1,

en
ij = 0, (i, j) ∈ γ , 0 ≤ n ≤ N .

Theorem 3 Suppose that the continuous problem (1)–(3) has a solution u(x, y, t) ∈
C4,4,3

x,y,t (Ω̄ × [0, T]) and condition (4) is satisfied. Then there is a positive constant C such
that

∥∥en∥∥≤ C
(
τ + h2

1 + h2
2 + Δβ2).

Proof Multiplying (36) by h1h2τδte
n– 1

2
ij , summing over i from 1 to M1 – 1, over j from 1 to

M2 – 1, and over n from 1 to s, each term in the resulted equation is estimated.
Firstly, employing an analogous strategy as that used in (30)–(34), we have the following

equations:

Δβ

K∑
l=1

p(βl)
τ 2–βl

Γ (3 – βl)
h1h2

M1–1∑
i=1

M2–1∑
j=1

{ s∑
n=1

[
a(βl)

0 δte
n– 1

2
ij

–
n–1∑
k=1

(
a(βl)

n–k–1 – a(βl)
n–k
)
δte

k– 1
2

ij

]
δte

n– 1
2

ij

}

≥ 1
2
τKs

s∑
n=1

∥∥δten– 1
2
∥∥2, (37)

h1h2τ

M1–1∑
i=1

M2–1∑
j=1

s∑
n=1

τ

4μ
δ2

xδ
2
y

en
ij – en–1

ij

τ
δte

n– 1
2

ij

=
1

4μ

s∑
n=1

∥∥δxδy
(
en – en–1)∥∥2 ≥ 0, (38)
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τ

s∑
n=1

[
h1h2

M1–1∑
i=1

M2–1∑
j=1

(
δte

n– 1
2

ij
)(

δ2
x en– 1

2
ij

)]
= –

1
2
∥∥δxes∥∥2, (39)

τ

s∑
n=1

[
h1h2

M1–1∑
i=1

M2–1∑
j=1

(
δte

n– 1
2

ij
)(

δ2
y en– 1

2
ij

)]
= –

1
2
∥∥δyes∥∥2, (40)

and

h1h2

M1–1∑
i=1

M2–1∑
j=1

[
τ

s∑
n=1

(
δte

n– 1
2

ij
)(

f
(
xi, yj, tn–1, Un–1

ij
)

– f
(
xi, yj, tn–1, un–1

ij
))]

≤ h1h2

M1–1∑
i=1

M2–1∑
j=1

[
τ

s∑
n=1

∣∣δte
n– 1

2
ij

∣∣∣∣f (xi, yj, tn–1, Un–1
ij
)

– f
(
xi, yj, tn–1, un–1

ij
)∣∣
]

≤ Lf h1h2

M1–1∑
i=1

M2–1∑
j=1

[
τ

s∑
n=1

∣∣δte
n– 1

2
ij

∣∣∣∣en–1
ij
∣∣
]

≤ Lf h1h2

M1–1∑
i=1

M2–1∑
j=1

τ

s∑
n=1

[
Ks

4Lf

(
δte

n– 1
2

ij
)2 +

Lf

Ks

(
en–1

ij
)2
]

=
τKs

4

s∑
n=1

∥∥δten– 1
2
∥∥2 +

τL2
f

Ks

s∑
n=1

∥∥en–1∥∥2. (41)

Then for the term containing the remainders, it can be deduced that

h1h2

M1–1∑
i=1

M2–1∑
j=1

s∑
n=1

τ
(
δte

n– 1
2

ij
)(

Rn– 1
2

ij + R̃n– 1
2

ij + R̂n– 1
2

ij
)

≤ h1h2

M1–1∑
i=1

M2–1∑
j=1

s∑
n=1

τ

(
Ks

4
(
δte

n– 1
2

ij
)2 +

1
Ks

(
Rn– 1

2
ij + R̃n– 1

2
ij + R̂n– 1

2
ij

)2
)

≤ τKs

4

s∑
n=1

∥∥δten– 1
2
∥∥2 +

τh1h2

Ks

M1–1∑
i=1

M2–1∑
j=1

s∑
n=1

[
C3
(
τ 1+ Δβ

2 + h2
1 + h2

2 + Δβ2)

+ C4τ + C5τ
3| ln τ |]2

≤ τKs

4

s∑
n=1

∥∥δten– 1
2
∥∥2 +

τh1h2

Ks

M1–1∑
i=1

M2–1∑
j=1

s∑
n=1

[
(C3 + C4 + C5)

(
τ + h2

1 + h2
2 + Δβ2)]2

≤ τKs

4

s∑
n=1

∥∥δten– 1
2
∥∥2 +

TL1L2

Ks

[
(C3 + C4 + C5)

(
τ + h2

1 + h2
2 + Δβ2)]2. (42)

Due to (37)–(42), this yields

1
2
(∥∥δxes∥∥2 +

∥∥δyes∥∥2)≤ TL1L2

Ks

[
(C3 + C4 + C5)

(
τ + h2

1 + h2
2 + Δβ2)]2

+
τL2

f

Ks

s∑
n=1

∥∥en–1∥∥2,
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i.e.,

1
2
∣∣es∣∣2

1 ≤ TL1L2

Δβ
∑K

l=1 p(βl) 1
Γ (2–βl)

T1–βl

[
(C3 + C4 + C5)

(
τ + h2

1 + h2
2 + Δβ2)]2

+
τL2

f

Ks

s∑
n=1

∥∥en–1∥∥2.

From Lemma 1, we obtain

∥∥en∥∥2 ≤ L3
1L3

2

3(L2
1 + L2

2)Δβ
∑K

l=1 p(βl) T–βl
Γ (2–βl)

[
(C3 + C4 + C5)

(
τ + h2

1 + h2
2 + Δβ2)]2

+
τL2

f L2
1L2

2

3(L2
1 + L2

2)Δβ
∑K

l=1 p(βl) T1–βl
Γ (2–βl)

n∑
k=1

∥∥ek–1∥∥2, 1 ≤ n ≤ N .

Therefore, by using Lemma 4, we have

∥∥en∥∥2 ≤ L3
1L3

2

3(L2
1 + L2

2)Δβ
∑K

l=1 p(βl) T–βl
Γ (2–βl)

[
(C3 + C4 + C5)

(
τ + h2

1 + h2
2 + Δβ2)]2

· exp

( L2
f L2

1L2
2

3(L2
1 + L2

2)Δβ
∑K

l=1 p(βl) T–βl
Γ (2–βl)

)
, 1 ≤ n ≤ N .

This completes the proof. �

4 Description of the ADI scheme
For ease of computation, the ADI scheme is developed in this section. Considering
Eqs. (19)–(21), and noticing a(βl)

0 = 1, we rewrite Eq. (19) as

Δβ

K∑
l=1

p(βl)
1

τβlΓ (3 – βl)
un

ij –
1
2
δ2

x un
ij –

1
2
δ2

y un
ij +

1
4μ

δ2
xδ

2
y un

ij

= Δβ

K∑
l=1

p(βl)
1

τβlΓ (3 – βl)

[
un–1

ij +
n–1∑
k=1

(
a(βl)

n–k–1 – a(βl)
n–k
)(

uk
ij – uk–1

ij
)

+ τa(βl)
n–1(ψ2)ij

]
+

1
2
δ2

x un–1
ij +

1
2
δ2

y un–1
ij +

1
4μ

δ2
xδ

2
y un–1

ij + f
(
xi, yj, tn–1, un–1

ij
)
,

or
(√

μI –
1

2√
μ

δ2
x

)(√
μI –

1
2√

μ
δ2

y

)
un

ij

=
(√

μI +
1

2√
μ

δ2
x

)(√
μI +

1
2√

μ
δ2

y

)
un–1

ij + Δβ

K∑
l=1

p(βl)
1

τβlΓ (3 – βl)

·
[ n–1∑

k=1

(
a(βl)

n–k–1 – a(βl)
n–k
)(

uk
ij – uk–1

ij
)

+ τa(βl)
n–1(ψ2)ij

]
+ f
(
xi, yj, tn–1, un–1

ij
)
,

where I denotes the identity operator.
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Let

u∗
ij =

(√
μI –

1
2√

μ
δ2

y

)
un

ij.

Then we have the ADI form of difference scheme (19)–(21), and the procedure can be
executed as follows:

At each time instance t = tn (1 ≤ n ≤ N ), firstly, for all fixed y = yj (1 ≤ j ≤ M2 – 1),
by solving a set of M1 – 1 equations at the mesh points xi (1 ≤ i ≤ M1 – 1), we get the
intermediate solution u∗

ij:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(√μI – 1
2√

μ
δ2

x )u∗
ij

= (√μI + 1
2√

μ
δ2

x )(√μI + 1
2√

μ
δ2

y )un–1
ij

+ Δβ
∑K

l=1 p(βl) 1
τβl Γ (3–βl)

[
∑n–1

k=1(a(βl)
n–k–1 – a(βl)

n–k)(uk
ij – uk–1

ij )

+ τa(βl)
n–1(ψ2)ij] + f (xi, yj, tn–1, un–1

ij ), 1 ≤ i ≤ M1 – 1,

u∗
0j = (√μI – 1

2√
μ
δ2

y )un
0j, u∗

M1j = (√μI – 1
2√

μ
δ2

y )un
M1j;

(43)

afterwards, for all fixed x = xi (1 ≤ i ≤ M1 – 1), by solving a set of M2 – 1 equations at the
mesh points yj (1 ≤ j ≤ M2 – 1), the solution un

ij can be obtained:

⎧⎨
⎩

(√μI – 1
2√

μ
δ2

y )un
ij = u∗

ij, 1 ≤ j ≤ M2 – 1,

un
i0 = φ(xi, y0, tn), un

iM2
= φ(xi, yM2 , tn).

(44)

Also, the ADI form of (22)–(24) can be described as:
At each time instance t = tn (1 ≤ n ≤ N ), firstly, for all fixed y = yj (1 ≤ j ≤ M2 – 1),

solving a set of M1 – 1 equations at the mesh points xi (1 ≤ i ≤ M1 – 1), the intermediate
solution u∗

ij is derived:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(
√

μ̃I – 1
2
√

μ̃
δ2

x )u∗
ij

= (
√

μ̃I + 1
2
√

μ̃
δ2

x )(
√

μ̃I + 1
2
√

μ̃
δ2

y )un–1
ij

+ Δβ

2
∑K

l=1 p(β̃ (1)
l ) 1

τ
β̃

(1)
l Γ (3–β̃

(1)
l )

[
∑n–1

k=1(a(β̃(1)
l )

n–k–1 – a(β̃(1)
l )

n–k )(uk
ij – uk–1

ij )

+ τa(β̃(1)
l )

n–1 (ψ2)ij]

+ Δβ

2
∑K

l=1 p(β̃ (2)
l ) 1

τ
β̃

(2)
l Γ (3–β̃

(2)
l )

[
∑n–1

k=1(a(β̃(2)
l )

n–k–1 – a
(β̃(2)

l )
n–k )(uk

ij – uk–1
ij )

+ τa(β̃(2)
l )

n–1 (ψ2)ij] + f (xi, yj, tn–1, un–1
ij ), 1 ≤ i ≤ M1 – 1,

u∗
0j = (

√
μ̃I – 1

2
√

μ̃
δ2

y )un
0j, u∗

M1j = (
√

μ̃I – 1
2
√

μ̃
δ2

y )un
M1j;

(45)

next, for all fixed x = xi (1 ≤ i ≤ M1 – 1), by solving a set of M2 – 1 equations at the mesh
points yj (1 ≤ j ≤ M2 – 1), the solution un

ij can be obtained:

⎧⎨
⎩

(
√

μ̃I – 1
2
√

μ̃
δ2

y )un
ij = u∗

ij, 1 ≤ j ≤ M2 – 1,

un
i0 = φ(xi, y0, tn), un

iM2
= φ(xi, yM2 , tn).

(46)
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5 Three-dimensional problem
In what follows, we present numerical schemes for the three-dimensional problem.

Consider the three-dimensional time-fractional wave equation of distributed-order with
a nonlinear source term along with its initial and boundary conditions:

∫ 2

1
p(β)C

0 Dβ
t u(x, y, z, t) dβ

=
∂2u(x, y, z, t)

∂x2 +
∂2u(x, y, z, t)

∂y2 +
∂2u(x, y, z, t)

∂z2

+ f
(
x, y, z, t, u(x, y, z, t)

)
, (x, y, z) ∈ Ω , t ∈ (0, T], (47)

u(x, y, z, t) = φ(x, y, z, t), (x, y, z) ∈ ∂Ω , t ∈ [0, T], (48)

u(x, y, z, 0) = ψ1(x, y, z), ut(x, y, z, 0) = ψ2(x, y, z), (x, y, z) ∈ Ω , (49)

where Ω = (0, L1) × (0, L2) × (0, L3), and ∂Ω is the boundary of Ω . We still assume that
p(β), φ(x, y, z, t), ψ1(x, y, z), ψ2(x, y, z) and f (x, y, z, t, u) are continuous, and the nonlinear
source term f satisfies a Lipschitz condition of the form

∣∣f (x, y, z, t, u1) – f (x, y, z, t, u2)
∣∣≤ Lf |u1 – u2|, (50)

where Lf is a positive constant.
Let M1, M2, M3 and N be positive integers, and hi = Li/Mi (i = 1, 2, 3) and τ = T/N

represent the uniform step sizes in spatial and temporal directions, respectively. Denote

Ωh =
{

(xi, yj, zm) | 1 ≤ i ≤ M1 – 1, 1 ≤ j ≤ M2 – 1, 1 ≤ m ≤ M3 – 1
}

,

∂Ωh =
{

(xi, yj, zm) | i = 0 or i = M1 or j = 0 or j = M2 or m = 0 or m = M3
}

,

Ω̄h = Ωh ∪ ∂Ωh,

Ωτ = {tn | tn = nτ , 0 ≤ n ≤ N}.

Then the partition of Ω̄ × [0, T] is Ω̄h × Ωτ .
Take Un

ijm = u(xi, yj, zm, tn), the grid functions on Ω̄h × Ωτ , with 0 ≤ i ≤ M1, 0 ≤ j ≤ M2,
0 ≤ m ≤ M3, 0 ≤ n ≤ N . Similar to the derivation of Eq. (14), we get the equation

Δβ

K∑
l=1

p(βl)
τ 1–βl

Γ (3 – βl)

[
a(βl)

0 δtU
n– 1

2
ijm –

n–1∑
k=1

(
a(βl)

n–k–1 – a(βl)
n–k
)
δtU

k– 1
2

ijm

– a(βl)
n–1ψ2(xi, yj, zm)

]

= δ2
x Un– 1

2
ijm + δ2

y Un– 1
2

ijm + δ2
z Un– 1

2
ijm + f

(
xi, yj, zm, tn–1, Un–1

ijm
)

+ Rn– 1
2

ijm + R̃n– 1
2

ijm , (51)

where there exist positive constants C6 and C7 such that

∣∣Rn– 1
2

ijm
∣∣≤ C6

(
τ 1+ 1

2 Δβ + h2
1 + h2

2 + h2
3 + Δβ2),
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and

∣∣̃Rn– 1
2

ijm
∣∣≤ C7τ .

Adding the high order term

R̂n– 1
2

ijm =
τ

4μ
δ2

xδ
2
y

Un
ijm – Un–1

ijm

τ
+

τ

4μ
δ2

y δ
2
z

Un
ijm – Un–1

ijm

τ
+

τ

4μ
δ2

z δ
2
x

Un
ijm – Un–1

ijm

τ

–
1

8μ2 δ2
xδ

2
y δ

2
z
(
Un

ijm + Un–1
ijm
)

(52)

on both sides of (51), we derive

Δβ

K∑
l=1

p(βl)
τ 1–βl

Γ (3 – βl)

[
a(βl)

0 δtU
n– 1

2
ijm –

n–1∑
k=1

(
a(βl)

n–k–1 – a(βl)
n–k
)
δtU

k– 1
2

ijm

– a(βl)
n–1ψ2(xi, yj, zm)

]
+

τ

4μ
δ2

xδ
2
y

Un
ijm – Un–1

ijm

τ
+

τ

4μ
δ2

y δ
2
z

Un
ijm – Un–1

ijm

τ

+
τ

4μ
δ2

z δ
2
x

Un
ijm – Un–1

ijm

τ
–

1
8μ2 δ2

xδ
2
y δ

2
z
(
Un

ijm + Un–1
ijm
)

= δ2
x Un– 1

2
ijm + δ2

y Un– 1
2

ijm + δ2
z Un– 1

2
ijm + f

(
xi, yj, zm, tn–1, Un–1

ijm
)

+ Rn– 1
2

ijm + R̃n– 1
2

ijm

+ R̂n– 1
2

ijm . (53)

From Eq. (52), it is observed that

∣∣̂Rn– 1
2

ijm
∣∣≤ C8τ

3| ln τ |,

where C8 is a positive constant. For the initial and boundary conditions, we have

U0
ijm = ψ1(xi, yj, zm), (xi, yj, zm) ∈ Ωh, (54)

Un
ijm = φ(xi, yj, zm, tn), (xi, yj, zm) ∈ ∂Ωh, 0 ≤ n ≤ N . (55)

Let un
ijm be a numerical approximation to u(xi, yj, zm, tn). Neglecting the small terms Rn– 1

2
ijm ,

R̃n– 1
2

ijm and R̂n– 1
2

ijm in (53), and using un
ijm instead of Un

ijm in (53)–(55), we develop the finite
difference scheme for (47)–(49) as follows:

Δβ

K∑
l=1

p(βl)
τ 1–βl

Γ (3 – βl)

[
a(βl)

0 δtu
n– 1

2
ijm –

n–1∑
k=1

(
a(βl)

n–k–1 – a(βl)
n–k
)
δtu

k– 1
2

ijm

– a(βl)
n–1(ψ2)ijm

]
+

τ

4μ
δ2

xδ
2
y

un
ijm – un–1

ijm

τ
+

τ

4μ
δ2

y δ
2
z

un
ijm – un–1

ijm

τ

+
τ

4μ
δ2

z δ
2
x

un
ijm – un–1

ijm

τ
–

1
8μ2 δ2

xδ
2
y δ

2
z
(
un

ijm + un–1
ijm
)

= δ2
x un– 1

2
ijm + δ2

y un– 1
2

ijm + δ2
z un– 1

2
ijm + f

(
xi, yj, zm, tn–1, un–1

ijm
)
,
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1 ≤ i ≤ M1 – 1, 1 ≤ j ≤ M2 – 1, 1 ≤ m ≤ M3 – 1, 1 ≤ n ≤ N , (56)

u0
ijm = (ψ1)ijm, 1 ≤ i ≤ M1 – 1, 1 ≤ j ≤ M2 – 1, 1 ≤ m ≤ M3 – 1, (57)

un
ijm = φn

ijm, (i, j, m) ∈ γ =
{

(i, j, m)|(xi, yj, zm) ∈ ∂Ωh
}

, 0 ≤ n ≤ N , (58)

where

(ψ1)ijm = ψ1(xi, yj, zm), (ψ2)ijm = ψ2(xi, yj, zm),

1 ≤ i ≤ M1 – 1, 1 ≤ j ≤ M2 – 1, 1 ≤ m ≤ M3 – 1

and

φn
ijm = φ(xi, yj, zm, tn), (i, j, m) ∈ γ , 0 ≤ n ≤ N .

By defining the discrete norms and Sobolev seminorm corresponding to the three-
dimensional problems, we can prove that Lemmas 1 and 2 are available for the cuboidal
domain. The theoretical analysis for the three-dimensional problem can be performed in a
similar manner as of the two-dimensional case in Sect. 3, though it is much more compli-
cated. For the sake of briefness, we won’t repeat it and list the theoretical results directly.
Hence, as generalizations of Theorems 1, 2 and 3, we have the following conclusions.

Theorem 4 The finite difference scheme (56)–(58) is uniquely solvable.

Theorem 5 If condition (50) is satisfied, then the difference scheme (56)–(58) is uncondi-
tionally stable.

Theorem 6 Suppose that the continuous problem (47)–(49) has a solution u(x, y, z, t) ∈
C4,4,4,3

x,y,z,t (Ω̄ × [0, T]) and condition (50) is satisfied. Then there is a positive constant C such
that

∥∥en∥∥≤ C
(
τ + h2

1 + h2
2 + h2

3 + Δβ2).

For ease of implementation, we adopt the following ADI scheme when computing.
At each time instance t = tn (1 ≤ n ≤ N ), firstly, for all fixed y = yj (1 ≤ j ≤ M2 – 1)

and z = zm (1 ≤ m ≤ M3 – 1), solving a set of M1 – 1 equations at the mesh points xi

(1 ≤ i ≤ M1 – 1), the first intermediate solution u∗∗
ijm is given as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

( 3√μI – 1

2μ
2
3
δ2

x )u∗∗
ijm

= ( 3√μI + 1

2μ
2
3
δ2

x )( 3√μI + 1

2μ
2
3
δ2

y )( 3√μI + 1

2μ
2
3
δ2

z )un–1
ijm

+ Δβ
∑K

l=1 p(βl) 1
τβl Γ (3–βl)

[
∑n–1

k=1(a(βl)
n–k–1 – a(βl)

n–k)(uk
ijm – uk–1

ijm )

+ τa(βl)
n–1(ψ2)ijm]

+ f (xi, yj, zm, tn–1, un–1
ijm ), 1 ≤ i ≤ M1 – 1,

u∗∗
0jm = ( 3√μI – 1

2μ
2
3
δ2

y )u∗
0jm, u∗∗

M1jm = ( 3√μI – 1

2μ
2
3
δ2

y )u∗
M1jm;

(59)
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afterwards, for all fixed z = zm (1 ≤ m ≤ M3 – 1) and x = xi (1 ≤ i ≤ M1 – 1), by solving a
set of M2 – 1 equations at the mesh points yj (1 ≤ j ≤ M2 – 1), the second intermediate
solution u∗

ijm can be obtained:

⎧⎪⎨
⎪⎩

( 3√μI – 1

2μ
2
3
δ2

y )u∗
ijm = u∗∗

ijm, 1 ≤ j ≤ M2 – 1,

u∗
i0m = ( 3√μI – 1

2μ
2
3
δ2

z )un
i0m, u∗

iM2m = ( 3√μI – 1

2μ
2
3
δ2

z )un
iM2m;

(60)

finally, for all fixed x = xi (1 ≤ i ≤ M1 – 1) and y = yj (1 ≤ j ≤ M2 – 1), solving a set of M3 – 1
equations at the mesh points zm (1 ≤ m ≤ M3 – 1), we have un

ijm:

⎧⎨
⎩

( 3√μI – 1

2μ
2
3
δ2

z )un
ijm = u∗

ijm, 1 ≤ m ≤ M3 – 1,

un
ij0 = φ(xi, yj, z0, tn), un

ijM3
= φ(xi, yj, zM3 , tn).

(61)

Also, by employing the composite two-point Gauss–Legendre quadrature rule, the ADI
scheme for the three-dimensional problem is obtained, and it is described as following:

At each time instance t = tn (1 ≤ n ≤ N ), firstly, for all fixed y = yj (1 ≤ j ≤ M2 – 1)
and z = zm (1 ≤ m ≤ M3 – 1), solving a set of M1 – 1 equations at the mesh points xi

(1 ≤ i ≤ M1 – 1), the first intermediate solution u∗∗
ijm is given as:

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

( 3√μ̃I – 1

2μ̃
2
3
δ2

x )u∗∗
ijm

= ( 3√μ̃I + 1

2μ̃
2
3
δ2

x )( 3√μ̃I + 1

2μ̃
2
3
δ2

y )

· ( 3√μ̃I + 1

2μ̃
2
3
δ2

z )un–1
ijm + Δβ

2
∑K

l=1 p(β̃ (1)
l ) 1

τ
β̃

(1)
l Γ (3–β̃

(1)
l )

· [
∑n–1

k=1(a(β̃(1)
l )

n–k–1 – a
(β̃(1)

l )
n–k )(uk

ijm – uk–1
ijm ) + τa

(β̃(1)
l )

n–1 (ψ2)ijm]

+ Δβ

2
∑K

l=1 p(β̃ (2)
l ) 1

τ
β̃

(2)
l Γ (3–β̃

(2)
l )

[
∑n–1

k=1(a(β̃(2)
l )

n–k–1 – a(β̃(2)
l )

n–k )(uk
ijm – uk–1

ijm )

+ τa(β̃(2)
l )

n–1 (ψ2)ijm] + f (xi, yj, zm, tn–1, un–1
ijm ), 1 ≤ i ≤ M1 – 1,

u∗∗
0jm = ( 3√μ̃I – 1

2μ̃
2
3
δ2

y )u∗
0jm, u∗∗

M1jm = ( 3√μ̃I – 1

2μ̃
2
3
δ2

y )u∗
M1jm;

(62)

afterwards, for all fixed z = zm (1 ≤ m ≤ M3 – 1) and x = xi (1 ≤ i ≤ M1 – 1), by solving a
set of M2 – 1 equations at the mesh points yj (1 ≤ j ≤ M2 – 1), the second intermediate
solution u∗

ijm can be obtained:

⎧⎪⎨
⎪⎩

( 3√μ̃I – 1

2μ̃
2
3
δ2

y )u∗
ijm = u∗∗

ijm, 1 ≤ j ≤ M2 – 1,

u∗
i0m = ( 3√μ̃I – 1

2μ̃
2
3
δ2

z )un
i0m, u∗

iM2m = ( 3√μ̃I – 1

2μ̃
2
3
δ2

z )un
iM2m;

(63)

finally, for all fixed x = xi (1 ≤ i ≤ M1 – 1) and y = yj (1 ≤ j ≤ M2 – 1), solving a set of M3 – 1
equations at the mesh points zm (1 ≤ m ≤ M3 – 1), we have un

ijm:

⎧⎨
⎩

( 3√μ̃I – 1

2μ̃
2
3
δ2

z )un
ijm = u∗

ijm, 1 ≤ m ≤ M3 – 1,

un
ij0 = φ(xi, yj, z0, tn), un

ijM3
= φ(xi, yj, zM3 , tn).

(64)
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6 Numerical results
In this section, numerical examples are given to demonstrate the availability of the pro-
posed schemes and verify the theoretical results, including convergence orders and nu-
merical stability. Both the discrete L2 and L∞ norms are taken to measure the numerical
errors. Denote

∥∥eN∥∥
L2 :=

(M3–1∑
m=1

M2–1∑
j=1

M1–1∑
i=1

∣∣UN
ijm – uN

ijm
∣∣2h1h2h3

) 1
2

,

and

∥∥eN∥∥
L∞ := max

1≤m≤M3–1,1≤j≤M2–1,1≤i≤M1–1

∣∣UN
ijm – uN

ijm
∣∣.

Example 1 We consider

∫ 2

1
Γ (4 – β)C

0 Dβ
t u(x, y, t) dβ

=
∂2u(x, y, t)

∂x2 +
∂2u(x, y, t)

∂y2 + sin x sin y
[

2
(
t3 + 2t + 4

)
+

6t2 – 6t
ln t

]

–
(
t3 + 2t + 4

)2
sin2 x sin2 y + u2(x, y, t),

0 < t ≤ 1/2, (x, y) ∈ Ω = (0,π ) × (0,π ),

u(x, y, t) = 0, (x, y) ∈ ∂Ω , 0 ≤ t ≤ 1/2,

u(x, y, 0) = 4 sin x sin y, ut(x, y, 0) = 2 sin x sin y, (x, y) ∈ Ω ,

whose analytical solution is known and is given by

u(x, y, t) =
(
t3 + 2t + 4

)
sin x sin y.

A comparison of the numerical and exact solutions for Example 1 is presented in Fig. 1.
It can be seen that they agree well with each other.

Table 1 records the numerical accuracy of scheme (43)–(44) and scheme (45)–(46) in
time for Example 1. Let the step sizes h1, h2, and Δβ be fixed and small enough such that
the dominating error arises from the approximation of the time derivatives. In the current
test, the fixed step sizes are set as h1 = h2 = π/500, Δβ = 1/160 for scheme (43)–(44), and
h1 = h2 = π/100, Δβ = 1/10 for scheme (45)–(46), respectively. Varying the step size in
time, the numerical errors in the discrete L2 norm and the associated convergence orders
are shown in this table, which can be found in agreement with the theoretical analysis.

In Table 2, the fixed and small enough step sizes in space are taken, and an optimal step
size ratio in time and distributed order is adopted for difference scheme (43)–(44). As
Δβ and τ vary, we compute the errors and convergence orders listed in the table, which
indicate that the convergence orders in time and distributed order are about one and two,
respectively. It is in accord with the theoretical analysis.

Tables 3 and 4 display the computed results for Example 1 by the difference scheme (43)–
(44) and scheme (45)–(46) with an optimal step size ratio in time, space and distributed
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Figure 1 Exact solution (a) and numerical solution (b) at T = 0.5 with mesh h1 = h2 = π
64 , Δβ = 1

64 and
τ = 1

4096 by scheme (43)–(44) (Example 1)

Table 1 Errors and convergence orders of scheme (43)–(44) and scheme (45)–(46) in temporal
direction (Example 1)

τ Scheme (43)–(44) Scheme (45)–(46)

‖eN‖L2 Order CPU time ‖eN‖L2 Order CPU time

1/10 0.1225 – 0.1882 s 0.1222 – 0.0129 s
1/20 0.0634 0.9502 0.4328 s 0.0632 0.9512 0.0411 s
1/40 0.0326 0.9596 1.0168 s 0.0324 0.9639 0.0580 s
1/80 0.0167 0.9650 2.6598 s 0.0164 0.9823 0.1016 s
1/160 0.0085 0.9743 8.4336 s 0.0082 1.0000 0.2387 s

Table 2 Errors and convergence orders of scheme (43)–(44) with h1 = h2 = π
500 , and an optimal step

size ratio for τ and Δβ (Example 1)

τ Δβ ‖eN‖L2 Order ‖eN‖L∞ Order CPU time

1/100 1/10 0.0133 – 0.0093 – 3.7889 s
1/400 1/20 0.0034 1.9678 0.0024 1.9542 44.8796 s
1/1600 1/40 8.6411e–04 1.9762 6.0481e–04 1.9885 654.4187 s
1/6400 1/80 2.1076e–04 2.0365 1.4751e–04 2.0357 2 h 48 m 8 s

Table 3 Errors and convergence orders of scheme (43)–(44) with an optimal step size ratio for τ , h1,
h2 and Δβ (Example 1)

τ h1 = h2 Δβ ‖eN‖L2 Order ‖eN‖L∞ Order CPU time

1/64 π /2 1/8 0.7230 – 0.4602 – 0.0816 s
1/256 π /4 1/16 0.1689 2.0978 0.1195 1.9453 0.0483 s
1/1024 π /8 1/32 0.0426 1.9872 0.0301 1.9892 0.2603 s
1/4096 π /16 1/64 0.0107 1.9932 0.0075 2.0048 5.4613 s
1/16,384 π /32 1/128 0.0027 1.9866 0.0019 1.9809 166.2940 s
1/65,536 π /64 1/256 6.6801e–04 2.0150 4.7098e–04 2.0123 1 h 46 m 27 s

Table 4 Errors and convergence orders of scheme (45)–(46) with an optimal step size ratio for τ , h1,
h2 and Δβ (Example 1)

τ h1 = h2 Δβ ‖eN‖L2 Order ‖eN‖L∞ Order CPU time

1/16 π /4 1/2 0.0913 – 0.0641 – 0.0234 s
1/256 π /16 1/4 0.0056 4.0271 0.0040 4.0023 0.0729 s
1/4096 π /64 1/8 3.3948e–04 4.0440 2.4093e–04 4.0533 30.6810 s
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order, respectively. One can conclude from Table 3 that the convergence orders of scheme
(43)–(44) with respect to time, space and distributed order are about one, two and two.
While in Table 4, it can be found that the convergence orders of scheme (45)–(46) in time,
space and distributed order are approximately one, two and four. These results agree well
with the theoretical convergence orders.

Example 2 We now consider

∫ 2

1
Γ (4 – β)C

0 Dβ
t u(x, y, z, t) dβ

=
∂2u(x, y, z, t)

∂x2 +
∂2u(x, y, z, t)

∂y2 +
∂2u(x, y, z, t)

∂z2

+ sin x sin y sin z
[

3
(
t3 + 2t + 4

)
+

6t2 – 6t
ln t

]

–
(
t3 + 2t + 4

)2
sin2 x sin2 y sin2 z + u2(x, y, z, t),

0 < t ≤ 1/2, (x, y, z) ∈ Ω = (0,π ) × (0,π ) × (0,π ),

u(x, y, z, t) = 0, (x, y, z) ∈ ∂Ω , 0 ≤ t ≤ 1/2,

u(x, y, z, 0) = 4 sin x sin y sin z, ut(x, y, z, 0) = 2 sin x sin y sin z, (x, y, z) ∈ Ω ,

whose analytical solution is known and is given by

u(x, y, z, t) =
(
t3 + 2t + 4

)
sin x sin y sin z.

Comparisons of numerical solutions with the exact solutions for Example 2 are shown
in Figs. 2 and 3. In Fig. 2(a), let y = z = π

2 . Then the numerical and exact solutions along
the x-axis for different time instances are plotted with mesh h1 = h2 = h3 = π

32 , Δβ = 1
32 ,

and τ = 1
1024 . Based on the same partition, fixing x = π

4 , z = 3π
4 , the numerical and exact

solutions along the y-axis at different times are plotted in Fig. 2(b). Similarly, taking x = π
16 ,

y = 3π
4 , the numerical and exact solutions are drawn at different times along the z-axis

in Fig. 2(c). Figure 3 presents the graphs of isosurfaces of the numerical solution (red)
and exact solution (blue) when three isovalues are assigned with mesh h1 = h2 = h3 = π

50 ,
Δβ = 1

20 , and τ = 1
200 . It can be seen intuitively from all these figures that the numerical

solution is highly consistent with the exact solution, which indicates the reliability of the
algorithm (59)–(61) for the three-dimensional problem.

In Table 5, taking the step sizes h1, h2, h3 and Δβ as fixed and small enough, then varying
the step sizes in time, the numerical errors in the discrete L2 norm and the associated
convergence orders are computed and illustrated. For scheme (59)–(61), the fixed step
sizes are assigned as h1 = h2 = h3 = π/100 and Δβ = 1/160. When scheme (62)–(64) is
employed, the step sizes in space and distributed order are h1 = h2 = h3 = π/50 and Δβ =
1/10, respectively. This table shows numerical accuracy of difference schemes (59)–(61)
and (62)–(64) in time, which agrees well with the theoretical results.

In Tables 6 and 7, the algorithms (59)–(61) and (62)–(64) for Example 2 are tested fur-
ther. The discrete L2 and L∞ norms errors are given by taking an optimal step size ratio
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Figure 2 Exact solutions (lines) and numerical solutions (symbols) at t = 0.1 (red), t = 0.3 (magenta) and
t = 0.5 (blue) by using scheme (59)–(61) (Example 2)

in time, space and distributed order. This shows that the convergence orders of scheme
(59)–(61) with respect to time, space and distributed order are approximately one, two
and two, and that of scheme (62)–(64) are about one, two and four, respectively. The nu-
merical results are in good agreement with the theoretical analysis, which demonstrates
the effectiveness of the proposed methods for the three-dimensional problem.

Example 3 We consider

∫ 2

1
5βC

0 Dβ
t u(x, y, z, t) dβ

=
∂2u(x, y, z, t)

∂x2 +
∂2u(x, y, z, t)

∂y2 +
∂2u(x, y, z, t)

∂z2

0 < t ≤ 1, (x, y, z) ∈ Ω = (0, 1) × (0, 1) × (0, 1),

u(x, y, z, t) = 0, (x, y, z) ∈ ∂Ω , 0 ≤ t ≤ 1,

u(x, y, z, 0) = x2(1 – x2)y2(1 – y2)z2(1 – z2), ut(x, y, z, 0) = 0, (x, y, z) ∈ Ω .
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Figure 3 The graphs of isosurfaces for the approximation solution (red) and exact solution (blue) with
different isovalues by scheme (59)–(61) (Example 2)

Table 5 Errors and convergence orders of scheme (59)–(61) and scheme (62)–(64) in the temporal
direction (Example 2)

τ Scheme (59)–(61) Scheme (62)–(64)

‖eN‖L2 Order CPU time ‖eN‖L2 Order CPU time

1/10 0.1869 – 0.9506 s 0.1855 – 0.1057 s
1/20 0.0958 0.9642 2.0467 s 0.0944 0.9746 0.1882 s
1/40 0.0488 0.9731 4.8517 s 0.0474 0.9939 0.3908 s
1/80 0.0246 0.9882 12.9781 s 0.0232 1.0308 0.7970 s
1/160 0.0123 1.0000 39.2808 s 0.0108 1.1031 2.1005 s

Table 6 Errors and convergence orders of scheme (59)–(61) with an optimal step size ratio for τ , h1,
h2, h3 and Δβ (Example 2)

τ h1 = h2 = h3 Δβ ‖eN‖L2 Order ‖eN‖L∞ Order CPU time

1/16 π /4 1/4 0.1717 – 0.0998 – 0.0285 s
1/64 π /8 1/8 0.0435 1.9808 0.0256 1.9629 0.0348 s
1/256 π /16 1/16 0.0108 2.0100 0.0064 2.0000 0.2327 s
1/1024 π /32 1/32 0.0027 2.0000 0.0016 2.0000 14.0054 s
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Table 7 Errors and convergence orders of scheme (62)–(64) with an optimal step size ratio for τ , h1,
h2, h3 and Δβ (Example 2)

τ h1 = h2 Δβ ‖eN‖L2 Order ‖eN‖L∞ Order CPU time

1/16 π /4 1/2 0.1708 – 0.0992 – 0.0033 s
1/256 π /16 1/4 0.0107 3.9966 0.0063 3.9769 0.2109 s
1/4096 π /64 1/8 6.5768e–04 4.0241 3.8735e–04 4.0236 1 h 6 m 37 s

Figure 4 The graphs of isosurfaces for the approximate solution with different isovalues by scheme (59)–(61)
(Example 3)

In the current example, a three-dimensional distributed-order wave equation with a zero
source term is considered. Figure 4 presents the graphs of isosurfaces of the numerical
solution with mesh h1 = h2 = h3 = 1

100 , Δβ = 1
50 , and τ = 1

200 at the final time T = 1.

7 Conclusion
In this paper, based on two quadrature rules, two ADI difference schemes are established
for two- and three-dimensional time-fractional wave equation of distributed-order, where
a nonlinear source term is considered and handled. As a representative, we provide the
theoretical analysis on unique solvability, unconditional stability and convergence for the
two-dimensional case by the discrete energy method. Numerical results show that the
proposed methods are feasible and effective. Moreover, comparisons between the two ADI
schemes for two- and three-dimensional problems are reported, respectively. In a future
work, we intend to investigate the higher order approaches for handling the nonlinear
term and for approximating the time-fractional derivatives, so as to develop higher order
schemes for solving the fractional problems with nonlinear terms.
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