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1 Introduction

Fractional differential equations (FDEs) can be viewed as the generalized type of the or-
dinary differential equations (ODEs). The FDEs have attracted the researchers’ attention
over the past two decades because the effects in ODEs are neglected. Oldham and Spanier
[1] are the first researchers who have taken the FDEs into consideration. The search for the
exact solutions of FDEs plays an important role in understanding the qualitative and quan-
titative features of many physical phenomena, which are described by these equations.
For instance, the nonlinear oscillation of an earthquake can be modeled by derivatives
of fractional order. Actually, the physical phenomena may not depend only on the time
moment but also on the former time history, which can be successfully modeled utiliz-
ing the theory of fractional integrals and derivatives [2—4]. Fractional evolution equations
play a significant role in various fields like engineering, biology, physics, signal processing,
rheology, fluid flow, finance, electrochemistry, and so on [5-9]. Several efficient methods
have recently been developed to get analytical solutions for FDEs. For example, the gen-
eralized tanh-coth method [10], the auxiliary equation method [11], the (%)—expansion
method [12-23], the improved F-expansion method [24], the exponential rational func-
tion method [25-27], the simplest equation method [28], the modified simple equation
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method [29-32], the first integral method [33-37], the Kudryashov method [38-43], the
G 1
) G’G
etc. [52—-56]. The basic idea of the (%)—expansion method is that the traveling wave so-

modified extended tanh expansion method [44], the ( )-expansion method [45-51],
lutions of nonlinear FDEs can be presented via a polynomial in one variable (%), where
G satisfies the equation G” + LG’ + uG = 0. In this study, the (%, é)—expansion method
is employed. It can be an extension of the (%)—expansion method. The main idea of the
(%, é)—expansion method is that the traveling wave solutions for NTFDEs can be pre-
sented via a polynomial in the (é) and (%), where G satisfies the equation G” + AG = . Li
et al. [45] are the first researchers, who proposed the (%, é)-expansion method to solve
the Zakharov equations. Sar et al. [46], Guner et al. [47] and Topsakal et al. [48] have used
this method to extract the exact solutions for some space-time NFDEs.

This research paper aims to implement the (%, é)—expansion method to obtain new ex-
act solutions for some NTFDEs in biology and mathematical physics. The first considered
model is a nonlinear (2 + 1)-dimensional BP model with time-fractional derivative [13, 41]:

Dfu = (uz)m + (uz)yy + h(u2 - r), t>0,0<B<lxy€eR, (1.1)

in which u denotes the density of population, %(u? — r) shows the population supply be-
cause of deaths and births and %, r are constants. When 8 — 1, the BP model assists us to
understand the dynamical proceeding of population changes and provides valuable pre-
dictions. Recently, Zhang and Zhang [57], Lu [58], Bekir et al. [59], Bekir and Gtiner [13]
and Manafian and Lakestani [10] have found the exact solutions of Eq. (1.1) using the
fractional sub-equation method, the Backlund transformation of fractional Riccati equa-
tion, the exp-function method, the (%)-expansion method, and the generalized tanh-coth
method, respectively. The comparison of the obtained results with the results obtained in
[13, 57-59] will be discussed in the following sections of the paper.

The second studied model is nonlinear (3 + 1)-dimensional KdV-ZK equation with
time-fractional derivative [60]:

D’fu + AUy + Uy + C(Uyys + Uzze) =0,  £>0,a,c=const,0< B < 1. (1.2)

When g — 1, the KdV-ZK equation is derived for plasma comprised of hot and cool elec-
trons and fluid ions species. Recently, Sahoo et al. [60] have found the exact solutions of
Eq. (1.2) utilizing the improved fractional sub-equation method, whereas Kaplan et al. [61]
have obtained the exact solutions of Eq. (1.2) using the exp(—¢(£)) method. The study is or-
ganized as follows: In Sect. 2, the description of the conformable fractional derivative and
&6
method are discussed. In Sect. 4, the new exact solutions for the conformable BP model

its important properties are presented. In Sect. 3, the main ideas of the ( )-expansion

and KdV-ZK equation with time-fractional derivative by the (%, é)—expansion method

are constructed. Finally, conclusions are presented in Sect. 5 of this paper.

2 Conformable fractional derivative and its important properties

The conformable fractional derivative of g of order g is defined as follows [62—-64]:

. gle+xttP)—g(t)
Tp@) = lim =————,
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which g: [0,00) > R, £ >0and B € (0,1). Some important properties of the above defini-

tion are given by

Tglag + bf) =aTg(g) + bTs(f), Va,beR.
Tp (t") =ut" P, VYueR

Tp(gof)(®) = £ P (g (£ (2).

3 Key ideas of the (%’, é)-expansion method to the NTFDEs

Li et al. [45] suggested the (%, 1)-expansion method as follows:

For the auxiliary equation

G +1G = 1, (3.1)
we set
G®) 1
_GE) L 3,
e VTew (3.2)

From Egs. (3.1) and (3.2), we get

¢ =-¢*+uy—r Y =-¢y. (3.3)

The general solution of the ODE (3.1), in the following three distinct subcases:
Case 1If A < 0, the general solution of the ODE (3.1) is

G = Ay sinh V/=AE + Ay cosh V/oAE + % (3.4)

and thus
2o T [$2-2 Al, 3.5
i ] L (3.5)

where Aj, A; are two arbitrary constants and o = A? — A2
Case 2 If A > 0, the general solution of the ODE (3.1) is given by

G = Ay sin Vg + Ay cos VAE + % (3.6)
therefore, we have

¥? = S[0° —2uy + 4], (3.7)

Ao —u

where o = A? + A3.
Case 3 If A = 0, the general solution of the ODE (3.1) is

1
G= Euéz + A€ + A, (3.8)
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and hence

y?= [¢° -2y ]. (3.9)

A2 —2uA,

The main steps of the two variables (%, é)—expansion method are described in the follow-
ing steps.
Step 1 Assume that we have the following general NFDE

Pu ou du du 9%u ’u 0, 0<pel (3.10)
U o Ty T a5 ] =0 < < 1. .
ath " dx” dy 0z 9t 9x?
By introducing the transformation
th
ulx,y,z,t) = f(£), §=ax+by+cz—lg, (3.11)

where [, a, b and c are nonzero arbitrary constants. Equation (3.10) can be reduced into
ODE in the following form:

P(f.f".f"f"s...) =0. (3.12)

Step 2 Assume that the solution of ODE (3.12) can be expressed by a polynomial in ¢,
Y as follows:

fE) =) aig'+)_ By, (3.13)
i=0 i=1

whereq; (i=0,...,m)and B; (i = 1,...,m) are constants, and m in (3.13) can be determined
by utilizing the homogeneous balance between the nonlinear terms and the highest-order
derivative in (3.12).

Step 3 Substituting (3.13) into Eq. (3.12) utilizing (3.3) and (3.5), we obtain a polynomial
in ¥ and ¢, where the degree of v is not bigger than one. Setting the coefficients of ¢
(i=0,1,...) and ¥/ (f = 0,1) to be zero, yields a set of algebraic equations, which can be
solved with the help of Mathematica or Maple software package to obtain the values of «;,
Bi, I, a, b and ¢ in which (A < 0).

Step 4 Substituting (3.13) into (3.12) with (3.3) and (3.7) or ((3.3) and (3.9)), we get the
exact solutions of Eq. (3.12).

G 1
G'G
In this part, new exact solutions of the (2 + 1)-dimensional BP model and (3 + 1)-

4 Applications of ( )-expansion method to NTFDEs in mathematical physics
dimensional KdV-ZK equation with time-fractional derivative are extricated by utilizing
the (%, é)-expansion method.

4.1 (2 + 1)-dimensional BP model with time-fractional derivative

Using the fractional traveling wave variable,

B
ule,y, ) =f(€), & =x+y—l%, (4.1)
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the nonlinear BP model can be reduced into ODE:

I +4ff" +4(f")" + hf* - hr=0. (4.2)
To get the exact solution, we utilize the transformation

f=v7 (4.3)
in Eq. (4.2) to find a new equation,

—IVAV —aVV" +12(V) + BV - kv = 0. (4.4)

By utilizing the homogeneous balance principle, we get m = 1. Therefore, Eq. (1.1) has the
formal solution

V(E)=ao+a1¢ + p1V, (4.5)

where g, o1 and B, are constants.

Case 1 When A < 0 (hyperbolic function solutions)

By substituting (4.5) into (4.4) and utilizing (3.3) and (3.5), we obtain a polynomial in
¥ and ¢. Equating the coefficients of the equation to zero, we get a system of algebraic
equations for «yg, o1, B1 and [ as follows:

4532 482 a1 B 603 BIhA

ot — fl ”22_ 2/31 2~ glﬂl 2 O;Iﬂl 2r_alllhr+°‘:fl+4’af:0’
Wo+p2) Mo+t Mo+pt Mo+u
4oy B3N 2

¢3¢ . a1131 r :31 > + 80{1,31 + 30[12/31[—4-(1%/31]’!}" = 0,

"A20+u? Ao+ u
3. 283021 8a1 BihA i 120001 BhAr 8o Bk
T (A20 +u2)?  (A20 + u?)? Ao+ u? Ao+ u?

207 Blur  2a0B7iN
+
2

2 3
220+ Ao+ + 2a007 ] — dagay hr — 8apory =0,

5y 4BThA*rp N daoBihrr ~ 1202B2hari 4B3Au

(Ao + u?)?  A20 + p? A2o + u? Ao + u?

7a1 Bl
+ —_—
Ao+ u?
2 AR 200 BI P Bag A ru ~ 882122 ~ 281hA3r
T(A2o+u2)3 M20+u2)? (20 +u2)?2 (A20 +u2)?2 (A20 + u?2)?
. 200001 Brlp ) 6aipiha’r  Bihh  dagfipr . 6agprhar  12aip’h
Ao+ u? Mo +u2 Mo+ p? AMo+pu2 Mo +p? Ao +pu?

o3l — 8apBy — 1203 11 — 12a0a} Brhr + datgaty f1l = O,

4o, B2IN?
T ot 2 11 7~ 6a§a%hr + aflk + a%h + agall + 16afk =0,
o+
¢w 4ﬂ%l}\,2[,l,2 16(){1/3?]/1)\_2;”“2 40!%,311M2)» 4a1,313hA2r 16(x1,31u2}\
: — _ + B
()‘20 + /4«2)2 ()\,20 + M2)2 2o+ M2 2o + MZ 220 + MZ

daofiiapn  24daga BEhrui /e
+ - -
Ao+ u? Ao+ u? Mo+ u

2 + 20!1ﬂ1h - 1201(2)0[1,311’17'
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+ 207 B1lh — 20003 L + oy Brl + 12001 Brd + 120001 1 = 0,
8oy Bir 2B 12aean fTHACT 207 Bilpd’ 20070
" (A20 +u2)?  (A20 + u?)? 220 + p? Ao +u2  A20 +u?
8oty 1 A2
+ e
Mo+ u?
8B 3r® Ay BEINAUE 16a0B3hA ru® 1682223 4BthAiru
- - - +
(A20 + u2)3  (A20 + u?)? (A20 + pu2)? (A0 + 2?2 (A20 + u?)?
3a1 BN dapai BilpPh 8B AagBinAr 242 ud)
+ - + +
220 + u? Ao+ pu? Ao+ u? Mo +u? Ao+ u?
1202B%harn 128302 2Bihau
Ao+ u? Mo+ pu? Ao+ pu?

— 40110531/1;" — 8o A + 20{0&%1)» + 2apa1h =0,

v

+ 20[0,31]’1 - 4060ﬁ1)\

- 24af)\u - ozgocll,u - 4018’,31111” + 20001 8111 = 0,
o ABthAtru’ . 8aoBihA3r ~ Bihrtr ~ 8873 u? .\ 201 B3 u?
(A2 +u2)3 0 (A20 +u2)?2 (A20 +pu2)? (W20 +u2)? (W20 + p2)?
. 200001 B2 N 48723 ~ o1 B3 ~ daofipudr’  6alBinA r
Ao+ pu? Mo +u? Mo +u? Ao+ pu? Ao+ pu?
BihA? 120307 u?
Ao +u? A20 + pu?

+ 120322 + adh + afor Ih — aghr = 0.

By solving the algebraic equations mentioned above utilizing the Maple software package,
the following results are obtained.

Result 1

1 272
. Q=
2«/; —hr

6
l=+——~~hJr,  h=32, = 0.
7 NG n

By substituting (4.6) into (4.5) with (4.3) and (4.1), utilizing (3.2) and (3.4), we get the
exact solutions of Eq. (1.1) as follows:

oo =F
(4.6)

Aj cosh(v/—1€) + Ay sinh(v/—2£)\ !
ul(x,y,t)=¢2ﬁ(1+ 1 COSh(V25) + A, sinh( S)) . (4.7)
Aj sinh(v/=AE) + A, cosh(v/—AE)
In particular, if we put A; = 0 and A, > 0 in Eq. (4.7), we get the solitary solution
2Jr
uy, Xy t)=F———, (4.8)
ey i 1 + tanh(+/—A&)
while if we set A, = 0 and A; > 0, then we get the solitary solution
2Jr
uy, Xy t)=F—mm——, (4.9)
12\ i 1 + coth(+/—A&)

where £ = x +y + 244/ -A %.
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Result 2

1 V2 p [h20 + 6412
oy =F——, o] = F—, = _
0 q:2ﬁ 1=+ I 1=+ 2y

(4.10)
6
l=+—~~hJr,  h=8x
V2 vr
Based on Result 2, an exact solution of Eq. (1.1) is obtained. We have
1 52 (Ar cosh(v=RE) + A sinh(v=RE)) + £ \ -1
uy(x,y,t) = (:F— F : . (4.11)
2r Ay sinh(v/—-A&) + Ay cosh(v-28) + &

In particular, if we put © = 0,4; =0 and A, > 0 in Eq. (4.11), we get the solitary solution

1 1 1 -
Uy, (%,9,t) = (:Fz—ﬁ F 2—ﬁ tanh(ﬂg) F Z—J?r sech(ﬂ&)) , (4.12)

but if we set i = 0,A; = 0 and A; > 0, then we get the solitary solution

NG
1 + coth(v/—A&) + csch(v/-A€) ’

uz, (x,y, t) =+ (4‘.13)

where £ =x+y+ 12\/—_11”%.

Case 2 When A > 0 (trigonometric function solutions)

By substituting (4.5) into (4.4) and utilizing (3.3) and (3.7), we obtain a polynomial in
Yand ¢. Equating the coefficients of the equation to zero to obtain a set of algebraic equa-
tions for ag, a1, B1 and [ as follows:

_ Bth’r 483 Baifiln  6aipihir
()L2(I _ MZ)Z Ao — M2 Ao — MZ Mo — MZ
da1Bihar  BPIA

- +
Mo —u2 Ao-pu

~ 2830020 8ayBihAtru ~ 12a0a B2HAr _ Baifiud

()\20 _ MZ)Z ()\20 _ MZ)Z Ao — MZ Ao — MZ

20{2 Lui 20 21)\
_ 2aiBilp L 5 + 2000071 — 4o} hr — 8y = 0,

P*:

—athr+ a3l +4a? =0,

VR 5 +8a1 By + 3 il — 4o} prhr = 0,

¢

Ao — u? " Mo —u
4BthA re daoBihar  12a}Biharp ABIAR

¢2¢ ) 2)2 12 2 2 2 2 2
(A20 — u?) Ao - Ao - Ao —p
7a1 B2
- —ﬂfl_ M'l; — a3l — 8apBy — 120t — 120002 Brhr + datpaty frl = 0,
5 4BthA3rpn? 201 BRI SaoBihAtri 8BIAN? 2BthA3r

— + -— —
Ao —p?)3P (Wo-wu?)?  (Wo-wu?)? (Ao-wu?)? (Ao -—u?)?
20001 f1lpk 6aiBihA*r . BEhA . dooPiph 6a3 Bihrr N 1203 1%
Ao — pu? Ao —u2 A2 —pu? A0 -—up?r A200-—pu? A0 —p?
4a; BN
+ e
Ao — u?

—6agathr + ok + ath + ajoyl + 16ai) = 0,
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o 483102 ~ 16a; BihA2rp? . 4o Byl ~ 4oy BN r 1600 B’
: (}\.20 _ MZ)Z ()\.20 _ /1'2)2 Ao — Iu2 A0 — MZ Ao — MZ

~ daoB2iu . 2400 BEhr A N BIr?
Ao — pu? 220 — pu? Ao —

5+ 2001 B — 12a§a1,31hr

+ 20{%/31& - 20{001%[;1 + aéﬁll + 1201 1A + 1200011 = 0,
81 Binadrin 28303 LRaoar fIHAr 2a3Bilpd? 2a0BEIA?
: - - - +
()Lza _ MZ)Z ()\20 _ M2)2 AZO _ //LZ kza _ M2 )\20- _ Mz
8oy B1 a2
Ao — pu?

" 8B 3 ru® A BRI 16a0BinAcru®  16B2A2u3  ABthA3ru

- 4051a3hr — 8o A + 20[005%[)» + 20011 =0,

- - + +
(Ao —p2) (Ao -u?)? (Mo -p?)? (Ao -p?)? (Ao -p?)?
30{1/3121)»2/1, dogar Brlp?r 8B 40(0/313h)»2r 24(1%“3)»
Ao — u? Mo —pu? Mo — p? Mo +u? Ao —pu?
1202B2harn 12B20%u  2Bihiap
+ + -
220 — pu? Ao —u?  A20 — p?

+ 20[()/31]’! - 40[(),61)\

- 240[%)\,# - aétxllu - 40(8,311/1}" + 20001 81X = 0,

4BthAtrpn® 8aoBihadri Bihatr 88723 u? 201 B2I03
+ - - +
(Ao —p?)3  Wo-p?)? (Ao -p?)? (Ao -p?)? (Ao -u?)?
~ 200001 Brlr? ~ 48223 a1 B3 .\ dorg B> ~ 6a2Bih *r  BEhA?
Ao — p? Ao —u?2 A0 —p? Ao —u? Ao —u?2  A20 — pu?
1205%)\2“2
Ao — u?

¢’ -

+ 120302 + agh + aday I — aghr = 0.

By solving the algebraic equations mentioned above utilizing the Maple software package,

the following results are obtained.
Result 1

-t w2 g0
0= ~ 1= — 1=Y
2./r

(4.14)
6
I=+—~hy=r, h=32), =0.
V2 a

By substituting (4.14) into (4.5) with (4.3) and (4.1), utilizing (3.2) and (3.6), we get the
exact solutions of Eq. (1.1) as follows:

1 (A cos(vAE) — Aysin(v/AE)\\
ui(x%,y,t) = (:F ( )) ’

1
27 T 2 \ Ay sin(VE) + Ay cos(v/AE) (419

In particular, if we put A; = 0 and A, > 0 in Eq. (4.15), we get the periodic solution

-1
uy, (%,9,) = (;2%/; + 2%/-7 tan(ﬁs)) ) (4.16)
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whereas if we set A, =0 and A; > 0, then we get the periodic solution

ulz(x,y,t)=< cot(«/_$)> , (4.17)

EENARN=
where & = x +y + 244/ -A %
Result 2

1 V2 64u? — 2o
—_—, o1 = = :F e —
2\/; —hr 4h2r

6
I=+—~hy=r, h=8.
V2

Based on Result 2, exact solutions of Eq. (1.1) are obtained. We have

(4.18)

1 (A1 cos(VAE) - Apsin(vAE)) +,/ 152 -1
ZJ_ A sin(v/AE) + Ay cos(v/AE) )+ 5 '

Uy (x,9,t) = ( (4.19)

In particular, if we put u = 0,4; =0 and A, > 0 in Eq. (4.19), we get the periodic solution

1 1 1

but if we set u = 0,A3 =0 and A; > 0, then we get the periodic solution

-1
Uy, (%,y,t) = (:F sec(ﬁé)) , (4.20)

cot(WAE) F —— csc(x/—§)> , (4.21)

1
uzZ(x,y,t)=( 2\[ W W

where § =x +y+ 12V —Ar%

Remark1 By comparing our results with the results obtained by Lu [58], Zhang and Zhang
[57], Bekir et al. [59], Bekir and Giiner[13] and Manafian and Lakestani [10], we conclude
that all our solutions of Eq. (1.1) are new and satisfy the equation.

4.2 (3 + 1)-dimensional KdV-ZK equation with time-fractional derivative
The fractional traveling wave variable

B

t
u(x,y,z,t) = f(&), S:x+y+z—lg, (4.22)
reduces Eq. (1.2) to the following ODE:
—If + gfz +(2c+ 1)f" +& =0. (4.23)

By balancing f” with f2 in Eq. (4.23), we get m = 2. Thus, we get

fE) = a0 +a1¢ +020” + frYr + Bad ¥, (4.24)

in which g, o1, a3, 1 and B, are constants.

Page 9 of 15
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Case 1 Hyperbolic function solution when A < 0.

If A < O substituting (4.24) into (4.23) and using (3.3) and (3.5), we obtain a polynomial
in ¢ and ¢. Equating the coefficients of this equation to zero yields a set of algebraic equa-
tions in ag, 1, o2, B1, B2, 0, A and p which can be solved by applying Maple to get the

following values:

50(2¢c+1) -1 6(2c+1)
=———"-—""-—, a; =0, ay=—-——,
a a

2 2
6 = 6u(2¢ + 1), By = :F6(20 +1) /_A o; n , (4.25)
a a

A2(2c+ 1) -2
2a )

§o =

From (3.4), (4.24) and (4.25), we get the exact solution of Eq. (1.2) as follows:
" zt)_l—10ck—5A+ 6u(2c+1)
Ty et = a a(A; sinh/—A& + Ay cosh/-2A& + )

. (12¢ + 6)(A; coshv/—A& + Ay sinh v/—A&)
a(A; sinh /=1& + Ay coshv/—AE + £)2

X (Alk coshv/—A& + AyAdsinhv/—AE F /220 + Mz). (4.26)

In particular, if we put u = 0,4; =0 and A, > 0 in Eq. (4.26), we get the solitary solution

Uy, (xryr z, t)

= - 10;)\ -5 + 6“2: 1) (tanh \/Ig)(tanh «/35 Fisech «/35), (4.27)

while if we set . = 0, Ay = 0 and A; > 0, then we get the solitary solution

ulg (x’_y’z’ t)

_ [=10cr - 52 + 6)L(2: +1) (coth v/=A£)(coth /=A& F cschv/-1&), (4.28)

a

in which & =x+y+z—l%.

Case 2 Trigonometric function solution when A > 0.

If A > O substituting (4.24) into (4.23) and using (3.3) and (3.7), we obtain a polynomial
in ¥ and ¢. Equating the coefficients of this equation to zero yields a set of algebraic equa-

tions, which can be solved by applying Maple to get the following values:

50(2c+1)-1 6(2c+1)
p=——"", (11=0, Oy =—"—"",
a a

24 — 142
g M2exD L 8Cex D) JA — (4.29)
a a

A2(2c+ 1) -1
2a ’

§o =
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From (3.6), (4.24) and (4.29), we get the exact solution of Eq. (1.2) as follows:
1-10c -5 61(2c + 1)
a(Aq sinv/AE + Ay cos V/AE + )

6(2¢ + 1)(A; cos V/AE — Ay sin V/AE)
a(A; sinv/AE + Ay cosv/AE + Ly

x (A1hcos VAE — Axhsin VA& £ /220 — ). (4.30)

ui1(x,y,2,t) =

Particularly, if we put = 0,A; =0 and A, > 0 in Eq. (4.30), we get the periodic solution

u, (%,5,2,t) = - 10? =5k 6k(2: +1) (tan v/A£)(tan VAE F sec VAE), (4.31)

but if we set i = 0,A; =0 and A; > 0, then we get the periodic solution

u1,(%,9,2,t) = - 10? — 5% - 6)\(2: D (cot V/AE)(cot vVAE + cscV/AE), (4.32)

where & =x+y+z—l%.

Case 3 Rational function solution when X = 0.

If A = 0 substituting (4.24) into (4.23) and using (3.3) and (3.9), we obtain a polynomial
in ¢ and ¢. Equating the coefficients of this equation to zero yields a set of algebraic equa-
tions, which can be solved by applying Maple to get the following values:

6(2c+1) 5 6u(2c+1)
e 1=—

a a
6(2c+1) 1
! = aay, B2= :FT\/A% =245, o = Eﬂaé

From (3.8), (4.24) and (4.33), we get the exact solution of Eq. (1.2) as follows:

Qo = oo, a; =0, a =-—
(4.33)

6u(2c+1) B 6(2¢c + 1)(u& + Ay)
a(/28? + A1 + Ay)  a(u/282 + AL§ + Ay)?

x (,Lg v A £ A2 - 2A2u>, (4.34)

s
where & =x +y+2z - aco’.

u1(x,9,2,t) = g +

Remark 2 1f we compare our results with the results obtained by [60, 61], we can see that
our solutions of Eq. (1.2) are new and satisfy the equation.

4.2.1 Graphical presentation of some exact solutions
We presented some graphs to illustrate the behavior of exact solutions of Egs. (1.1)
and (1.2). Figures 1-5 show the solitary and periodic wave forms.

5 Conclusion
The (%, é)—expansion method is used to discuss the exact solutions to NFDEs. The (%, é)
is successfully implemented to solve two NTFDEs. As applications, new exact solutions
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Figure 1 Solitary wave solution of Eq. (4.8) with 8 = 0.5 and B = 0.9, respectively, when A = -1

Figure 3 Solitary wave solution of real part for Eq. (4.27) with 8 =0.25 and 8 = 0.9, respectively, when A = -1

for (2 + 1)-dimensional BP model and (3 + 1)-dimensional KdV-ZK equation with time-
fractional derivative are obtained. When the parameters i, A;, and A, are given special
values, the solitary wave solutions (4.8), (4.9), (4.12), (4.13), (4.27) and (4.28) and the peri-
odic solutions (4.16), (4.17), (4.20), (4.21), (4.31) and (4.32) are obtained. When u = 0 and
Bi =0in Eq. (3.1) and Eq. (3.13), respectively, the (%, é)-expansion method is reduced
to the (%)—expansion method. Therefore, it can be concluded that the (%, é)—expansion
method is more general and efficient than the (% )-expansion method. In comparison with
other methods, the key feature of this method is that it possesses all three types of solu-
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Figure 4 Periodic wave solution of Eq. (4.31) with 8 =0.25 and B = 0.9, respectively, when A =1

-30000

Figure 5 Periodic wave solution of Eq. (4.32) with 8 =0.25 and B = 0.9, respectively, when A =1

tions. Some diagrams have been given in three dimensions for fractional order to illustrate
the behavior of the solutions when the parameters take some special values.
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