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Abstract
This paper is devoted to the oscillatory problem in the fractional-order delay
differential equations. First, we prove the convergence of the Laplace transform of a
fractional operator by the generalized Gronwall inequality with singularity and
fractional calculus technique. Then we show that it exhibits oscillation dynamics if the
corresponding characteristic equation has no real roots. We further provide other
direct and effective criteria depending on the system parameters and fractional
exponent. Finally, we carry out some numerical simulations to illustrate our results.
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1 Introduction
Fractional calculus has drawn much attention in various fields of science and engineering
over the past few decades [1–3]. Fractional derivatives provide an excellent instrument for
the description of memory and hereditary properties of various materials and processes.
This main advantage makes them useful to model some neglected effects with classical
integer-order models. The list of applications of fractional calculus has been growing, in-
cluding viscoelastic materials and rheology, electrical engineering, electrochemistry, biol-
ogy, biophysics and bioengineering, signal and image processing, mechanics, mechatron-
ics, physics, and control theory [4, 5].

On the other hand, delay differential equations are adopted to represent systems with
time delay. Such effects arise in many processes, such as chemical processes (behaviors
in chemical kinetics), technical processes (electric, pneumatic, and hydraulic networks),
biosciences (heredity in population dynamics), economics (dynamics of business cycles),
and other branches. The basic qualitative theory of these delay differential equations is
well established, especially in the linear case (for general references, see [6–9]).

With the combination of both fractional derivative and time delay, the topic of fractional-
order delay differential equations (FDDEs) is enjoying growing interest among mathe-
maticians and physicists. For instance, the general results on the existence of solutions
of FDDEs were presented in [10]; the analytical stability bound for FDDEs was discussed
in [11–13]; the finite time stability of robotic systems was studied in [14, 15], where time
delay appears in PDα fractional control system; the necessary and sufficient conditions
for asymptotic stability of d-dimensional linear FDDEs are obtained by using the inverse
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Laplace transform method in [16]; the stability and asymptotic properties of FDDEs were
analyzed in [17].

To the best of our knowledge, however, very little is known regarding the oscillatory
behavior of FDDEs (see [18–22]). For the first-order delay differential equation

x′(t) + px(t – τ ) = 0, t > 0,

it is well known that the classical oscillation result characterized by parameters and frac-
tional exponent is

pτ >
1
e

.

As is customary, a nontrivial solution of a differential equation is said to be oscillatory
if eventually it is neither positive nor negative. Otherwise, the solution is called nonoscil-
latory. If all solutions of an equation are oscillatory, then this equation is said to be oscil-
latory.

The paper is organized as follows. In Sect. 2, we recall some concepts and facts, which are
broadly used for deriving the main results of this paper. In Sect. 3, we present oscillation
criteria for FDDEs of the form

CDα
t x(t) + px(t – τ ) = 0, t > 0, (1.1)

where CDα
t is the Caputo fractional derivative of order 0 < α < 1, and p, τ ∈ R

+. The stan-
dard initial condition associated with (1.1) is

x(t) = ϕ(t), t ∈ [–τ , 0], (1.2)

where ϕ(t) ∈ C([–τ , 0],R). Precisely, we establish sufficient conditions for the oscillation
via the parameter triple (α, p, τ ) in Theorem 3.2. In Sect. 4, we further obtain sufficient
conditions of the oscillation for FDDEs with positive and negative coefficients in The-
orem 4.2. We provide two illustrative examples to demonstrate the applicability of the
theoretical results in Sect. 5.

2 Preliminaries
Let us first recall the necessary definitions of the fractional calculus.

Definition 2.1 The Riemann–Liouville fractional integral operator of order α of a func-
tion f is defined as

Iαf (t) =
1

�(α)

∫ t

0
(t – s)α–1f (s) ds, t ≥ 0,

provided that the right side is pointwise defined on [0,∞), where �(·) is the gamma func-
tion.
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Definition 2.2 The Riemann–Liouville fractional derivative of order α of a function f is
defined as

RLDα
t f (t) =

1
�(1 – α)

d
dt

∫ t

0
(t – s)–αf (s) ds, t ≥ 0.

Definition 2.3 The Caputo derivative of order α for a function f is defined as

CDα
t f (t) =

1
�(1 – α)

∫ t

0
(t – s)–α d

ds
f (s) ds = RLDα

t
(
f (t) – f (0)

)
, t ≥ 0.

We further recall some facts about the Laplace transform, which play a significant role
in the proof of the sufficient conditions for the oscillation of Eq. (1.1). Let L[·] denote the
Laplace transform. If X(s) is the Laplace transform of x(t),

X(s) = L
[
x(t)

]
(s) =

∫ ∞

0
e–stx(t) dt, (2.1)

then the abscissa of convergence of X(s) is defined as

σ0 = inf
{
σ ∈R : X(α) exists

}
.

Therefore, X(s) exists for Re(s) > σ0. The Laplace transform of the Caputo fractional
derivative is given by [2]

L
[CDα

t x(t)
]
(s) = sαX(s) – sα–1x(0).

Lemma 2.4 If x(t) is the solution of Eq. (1.1), then X(s) exists.

Proof We can rewrite Eq. (1.1) as the equivalent integral equation

x(t) = ϕ(0) –
p

�(α)

∫ t

0
(t – s)α–1x(s – τ ) ds, t ≥ 0,

and x(t) = ϕ(t) for t ∈ [–τ , 0].
If t ∈ [–τ , 0], then

∣∣x(t)
∣∣ ≤

(
ptα

�(α + 1)

)
‖ϕ‖ =: r(t), (2.2)

where ‖ϕ‖ = supt∈[–τ ,0] |ϕ(t)|.
If t > τ , then we have

∣∣x(t)
∣∣ ≤ r(t) +

p
�(α)

∫ t

0
(t – s)α–1∣∣x(s)

∣∣ds.

By the generalized Gronwall inequality with singularity [23] it follows that

∣∣x(t)
∣∣ ≤ r(t)Eα

(
ptα

)
, (2.3)

where Eα(·) is the Mittag-Leffler function defined by Eα(z) =
∑∞

k=0
zk

�(kα+1) .
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Combining (2.3) with (2.2), we can see that |x(t)| ≤ r(t)Eα(ptα) for t ≥ 0. It is easy to
show that X(s) exists for Re(s) > p 1

α . The proof is complete. �

3 Oscillation criteria for FDDEs
Now we are in position to give our main results.

Theorem 3.1 Assume that p, τ ∈ R
+, and let α ∈ (0, 1) be the ratio of two odd integers. If

the equation

F(λ) = λα + pe–λτ = 0 (3.1)

has no real roots, then every solution of Eqs. (1.1)–(1.2) oscillates.

Proof Suppose that x(t) is a nonoscillatory solution of Eq. (1.1). Without loss of generality,
we assume that x(t) is an eventually positive solution of Eq. (1.1), that is, there exists a
positive constant T such that x(t) > 0 for t > T . As Eq. (1.1) is autonomous, we may assume
that x(t) > 0 for t ≥ –τ . By Lemma 2.4 we can take the Laplace transform of both sides of
Eq. (1.1), which gives for Re(s) > σ0:

sαX(s) – sα–1x(0) + pe–sτ X(s) + pe–sτ
∫ 0

–τ

e–stx(t) dt = 0,

that is,

(
sα + pe–sτ )X(s) = sα–1x(0) – pe–sτ

∫ 0

–τ

e–stx(t) dt = 0.

Let

�(s) = sα–1x(0) – pe–sτ
∫ 0

–τ

e–stx(t) dt. (3.2)

Then we have

F(s)X(s) = �(s), Re(s) > σ0. (3.3)

It is obvious that F(s) and �(s) are entire functions. Since Eq. (3.1) has no real roots and
F(0) = p > 0, we conclude that F(s) > 0 for s ∈ R. Furthermore, σ0 = –∞ (see [6, Theo-
rem 2.1.1]). Thus, we can deduce from (3.3) that

X(s) =
�(s)
F(s)

for all s ∈R. (3.4)

By taking s → –∞ we can see that (3.4) leads to a contradiction because X(s) and F(s) are
always positive whereas �(s) becomes eventually negative by (3.2). Indeed, it follows from
(2.1) and the fact x(t) > 0 for t > 0 that X(s) is positive and F(s) > 0 for all negative real s.
By the positivity of x(t) on [–τ , 0] and lims→–∞ sα–1 → 0 we have lims→–∞ �(s) = –∞. The
proof is complete. �

Having the above result, we further obtain sufficient conditions of oscillation for
Eq. (1.1).
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Theorem 3.2 Assume that p, τ ∈R
+, and let α ∈ (0, 1) be the ratio of two odd integers. If

τp
1
α >

1
e

,

then every solution of Eq. (1.1) oscillates.

Proof Our goal is to prove that Eq. (3.1) has no real roots due to Theorem 3.1. Assume,
for contradiction, that Eq. (3.1) has a negative root λ. In fact, if λ ≥ 0, then λα + pe–λτ > 0.
Without loss of generality, let λ1 = –λ > 0. Since α is the ratio of two odd integers, it follows
from (3.1) that

λα
1 = peλ1τ ≥ p. (3.5)

By (3.5) and the inequality ex ≥ ex for x ≥ 0 we can see that

λα
1 = peλ1τ ≥ λ1pτe = λα

1 λ1–α
1 pτe ≥ λα

1 p
1
α τe,

which implies τp 1
α ≤ 1

e , and this is a contradiction. The proof is complete. �

Consider the linear nonautonomous FDDEs

CDα
t x(t) + P(t)x(t – τ ) = 0, t > 0, (3.6)

with the initial condition (1.2), where P(t) ∈ C((0,∞),R+).

Corollary 3.3 Assume that τ ∈R
+ and that α ∈ (0, 1) be the ratio of two odd integers. If

lim inf
t→+∞ P(t) = p > 0 (3.7)

and

τp
1
α >

1
e

, (3.8)

then every solution of Eq. (3.6) oscillates.

Proof Assume, on the contrary, that Eq. (3.1) has an eventually positive solution x(t), that
is, there exists a sufficiently large positive constant T such that x(t) > 0 and x(t – τ ) > 0 for
t > τ . It follows from (3.7) that

0 = CDα
t x(t) + P(t)x(t – τ ) ≥ CDα

t x(t) + lim inf
t→+∞ P(t)x(t – τ )

= CDα
t x(t) + px(t – τ ), t > T .

Then we can see that the eventually positive solution x(t) satisfies the inequality

CDα
t x(t) + px(t – τ ) ≤ 0, t > T . (3.9)
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According to (3.8) and Theorem 3.2, it follows that Eq. (3.1) has no real roots. Therefore,
similarly to the proof of Theorem 3.1, inequality (3.9) has no eventually positive solution,
which implies that every solution of Eq. (3.6) oscillates. �

4 Oscillation criteria for FDDEs with two constant coefficients
In this section, we consider FDDEs with positive and negative coefficients of the form

CDα
t x(t) + px(t – τ ) + qx(t) = 0, t > 0, (4.1)

where p, τ ∈R
+ and q ∈ R.

Proposition 4.1 Assume that q, p, τ ∈R
+ and that α ∈ (0, 1) is the ratio of two odd integers.

If the equation

λα + pe–λτ + q = 0 (4.2)

has no real roots, then every solution of Eq. (4.1) oscillates.

Proof The proof of this result is similar to that of Theorem 3.1, and thus we omit it. �

Theorem 4.2 Assume that q, p, τ ∈ R
+ and that α ∈ (0, 1) is the ratio of two odd integers.

If

p ≤ q and
pτ

(q + p) α–1
α + qτ

>
1
e

, (4.3)

then every solution of Eq. (4.1) oscillates.

Proof Assume that (4.3) holds and, for contradiction, assume that Eq. (4.2) has a negative
root λ1. Then, in view of (4.2), we have

λ1

(
λα–1

1 + q
∫ τ

0
eλ1s ds

)
= λα

1 + q
(
eλ1τ – 1

)
= –pe–λ1τ – q

(
2 – eλ1τ

)
(4.4)

and

λα
1 = –q – pe–λ1τ < –(q + p). (4.5)

Since α = odd integer/odd integer, from (4.5) we have

λα–1
1 < (q + p)

α–1
α . (4.6)

Consequently, from (4.4) and (4.6) it follows that

0 < λα–1
1 + q

∫ τ

0
eλ1s ds < λα–1

1 + qτ < (q + p)
α–1
α + qτ . (4.7)
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Then, using (4.4) and (4.7), we obtain

0 = λ1

(
λα–1

1 + q
∫ τ

0
eλ1s ds

)
+ pe–λ1τ + q

(
2 – eλ1τ

)

>
[
(q + p)

α–1
α + qτ

]
λ1 + pe–λ1τ + q

(
2 – eλ1τ

)
,

which implies

[
(q + p)

α–1
α + qτ

]
λ1 + pe–λ1τ < 0.

Let

G(λ) = λ +
p

(q + p) α–1
α + qτ

e–λτ = 0.

Since G(0) = p

(q+p)
α–1
α +qτ

> 0 and G(λ1) < 0, G(λ) has a real root in (λ1, 0) by the intermedi-

ate value theorem. Thus, according to the classical oscillation criteria of first-order delay
differential equation (see e.g., [6]), it follows that

pτ

(q + p) α–1
α + qτ

≤ 1
e

. (4.8)

This leads to a contradiction. �

Corollary 4.3 Assume that q, p, τ ∈ R
+ and that α ∈ (0, 1) is the ratio of two odd integers.

If

p > q and
pτ

(q + p) α–1
α + pτ

>
1
e

, (4.9)

then every solution of Eq. (4.1) oscillates.

Proof Assume that (4.9) holds and, for contradiction, assume that Eq. (4.2) has a negative
root λ1. Then, in view of (4.2), we have

λ1

(
λα–1

1 + q
∫ τ

0
eλ1s ds

)
= λα

1 + p
(
eλ1τ – 1

)
= –pe–λ1τ – q – p

(
1 – eλ1τ

)
.

The remainder of the argument is analogous to that in the proof of Theorem 4.2, so it is
omitted. �

Corollary 4.4 Assume that p, τ ∈ R
+, q ∈ R

– and that α ∈ (0, 1) is the ratio of two odd
integers. If

p > –q, (q + p)
α–1
α > –qτ and

(p + q)τ
(q + p) α–1

α + qτ
>

1
e

, (4.10)

then every solution of Eq. (4.1) oscillates.
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Proof Assume that (4.10) holds and, for contradiction, assume that Eq. (4.2) has a negative
root λ1. Then

λ1

(
λα–1

1 + q
∫ τ

0
e–λ1s ds

)
= λα

1 + q
(
e–λ1τ – 1

)
= –(p + q)e–λ1τ . (4.11)

Consequently, by (4.11) and (4.6) we obtain

0 < λα–1
1 + q

∫ τ

0
e–λ1s ds < λα–1

1 + qτ < (q + p)
α–1
α + qτ . (4.12)

Therefore, it follows from (4.11) and (4.12) that

[
(q + p)

α–1
α + qτ

]
λ1 + pe–λ1τ < 0.

The remainder of the argument is analogous to that in the proof of Theorem 4.2. �

5 Numerical simulation
To illustrate the effectiveness and the flexibility of our theoretical analysis, we give two
numerical examples.

5.1 Numerical algorithm
The numerical methods used for solving ordinary differential equations cannot be used di-
rectly to solve fractional differential equations because of the nonlocal nature of fractional
differential equations. Diethelm et al. [24] proposed a numerical algorithm for solving frac-
tional differential equations. This scheme is a generalization of the Adams–Bashforth–
Moulton method, that is, the predictor–corrector approach. Recently, Bhalekar and
Daftardar-Gejji [25] have extended this algorithm to solve FDDEs.

Consider the following FDDE:

{
CDα

t x(t) + f (x(t), x(t – τ )) = 0, t > 0,
x(t) = ϕ(t), t ∈ [–τ , 0].

Assume that we are working on a uniform grid {tn = nh : n = –k, –k + 1, . . . , –1, 0, 1, . . . , N},
where k and N are integers such that h = T

N and h = τ
k . Let

xh(tj) = ϕ(tj), j = –k, –k + 1, . . . , –1, 0,

and note that

xh(tj – τ ) = xh(jh – kh) = xh(tj–k), j = 0, 1, . . . , N .

Suppose that we have already calculated approximations

xh(tj) ≈ x(tj), j = –k, –k + 1, . . . , –1, 0, 1, . . . , n,

and want to calculate xh(tn + 1) using

x(tn+1) = ϕ(0) –
1

�(α)

∫ tn+1

0
(tn+1 – s)α–1f

(
x(s), x(s – τ )

)
ds. (5.1)
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We use approximations xh(tn) for x(tn) in (5.1). Furthermore, we evaluate the integral in
(5.1) by the product trapezoidal quadrature formula. The corrector formula is thus

xh(tn+1) = ϕ(0) –
hα

�(α + 2)
f
(
xp

h(tn+1), xh(tn+1 – τ )
)

–
hα

�(α + 2)

n∑
j=0

aj,n+1f
(
xh(tj), xh(tj – τ )

)

= ϕ(0) –
hα

�(α + 2)
f
(
xp

h(tn+1), x(tn+1–k)
)

–
hα

�(α + 2)

n∑
j=0

aj,n+1f
(
xh(tj), xh(tj–k)

)
,

where

aj,n+1 =

⎧⎪⎨
⎪⎩

nα + 1 – (n – α)(n + 1)α , j = 0;
(n – j + 2)α+1 + (n – j)α+1 – 2(n – j + 1)α+1, 1 ≤ j ≤ n;
1, j = n + 1.

The preliminary approximation xp
h(tn+1) is called the predictor and is given by

xp
h(tn+1) = ϕ(0) –

1
�(α)

n∑
j=0

bj,n+1f
(
xh(tj), xh(tj – τ )

)

= ϕ(0) –
1

�(α)

n∑
j=0

bj,n+1f
(
xh(tj), xh(tj–k)

)
,

where

bj,n+1 =
hα

α

(
(n + 1 – j)α – (n – j)α

)
.

5.2 Numerical results
Example 5.1 Let the system parameters (α, p, τ ) = (0.6, 1.15, 2) for Eq. (1.1). It is clear that

τp
1
α ≈ 2.5246 >

1
e

.

Thus all the solutions of Eq. (1.1) are oscillatory due to Theorems 3.1 and 3.2. However, if
we take (α, p, τ ) = (0.6, 0.2, 2), then

τp
1
α ≈ 0.1368 <

1
e

.

Taking the initial condition ϕ(t) = 0.5 for t ∈ [–2, 0], the step-length h = 0.01, and the it-
erated time N = 10,000, we can observe that the solution of Eq. (1.1) is oscillatory when
(α, p, τ ) = (0.6, 1.15, 2) and non-oscillatory when (α, p, τ ) = (0.6, 0.2, 2), as shown in Fig. 1.
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Figure 1 Oscillatory behavior of Eq. (1.1)

Figure 2 Oscillatory behavior of Eq. (4.1)

Example 5.2 Let the system parameters (α, p, q, τ ) = (0.6, 1, 0.2, 2) for Eq. (4.1). By calcu-
lations we have

p > q, (q – p)
α–1
α > qτ and

(p – q)τ
(q – p) α–1

α – qτ
≈ 2.1042 >

1
e

.

Therefore, by Theorems 4.1 and 4.2 all the solutions of Eq. (4.1) are oscillatory. More-
over, if (α, p, q, τ ) = (0.6, 0.5, 0.6, 2), then the first condition in Theorem 4.2 is not satisfied.
We continue to use the setting as in the previous example and also observe that the so-
lution of Eq. (4.1) is oscillatory when (α, p, q, τ ) = (0.6, 1, 0.2, 2) and non-oscillatory when
(α, p, q, τ ) = (0.6, 0.5, 0.6, 2), as shown in Fig. 2.

6 Conclusion
In this paper, we studied the oscillatory behavior of solutions of FDDEs. We have proved
that FDDEs exhibit oscillation dynamics if the corresponding characteristic equation has
no negative real roots. We further give some sufficient conditions for the oscillation of
FDDEs based on parameters and fractional exponent, which are very convenient for using
in practice. Nevertheless, necessary conditions for the oscillation of FDDEs and oscilla-
tory criteria for nonlinear FDDEs remain open. They will be the subjects of our further
investigation.
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