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Abstract
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1 Introduction and preliminaries
In recent years, the notion of measure of noncompactness has been effectively utilized
in sequence spaces for different classes of differential equations (see [4, 5, 8, 11–15]). By
applying this notion, Aghajani and Pourhadi [2] investigated the infinite system of second-
order differential equations in an �1-space. Since then Mohiuddine et al. [10] and Banaś
et al. [6] focused on this system in the sequence space �p.

A measure of noncompactness is a nonnegative real-valued map defined on a collection
of bounded subsets of a normed (metric) space which maps the class of relatively compact
sets (known as kernel) to zero, while other sets are mapped to a positive value. There
are several ways to define this notion on a given space. The widely used approach is the
axiomatic one, introduced in [3], which is given below.

Let ME denote the family of all nonempty bounded subsets of a Banach space E and NE

be its subfamily consisting of all relatively compact sets. Let B(x, r) denote the closed ball
centered at x with radius r and Br = B(θ , r).

We recall the following definition given in [3].

Definition 1.1 ([3, Definition 3.1.3]) A mapping μ : ME −→ R
+ is called a measure of

noncompactness (MNC for short) if
(i) kerμ is nonempty and a subset of NE .

(ii) μ(X) ≤ μ(Y ) for X ⊂ Y .
(iii) μ(X) = μ(X).
(iv) μ(Conv X) = μ(X).
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(v) For all λ ∈ [0, 1],

μ
(
λX + (1 – λ)Y

) ≤ λμ(X) + (1 – λ)μ(Y ).

(vi) If (Xn)n∈N is a sequence of closed sets from ME satisfying

Xn+1 ⊂ Xn for all n ∈ N and μ(Xn) → 0 as n → ∞,

then

X∞ =
∞⋂

n=1

Xn �= ∅.

Definition 1.2 ([5, Definition 3.1.3]) For a measure of noncompactness μ in E, the map-
ping G : B ⊆ E −→ E is said to be a μE-contraction if there exists a constant 0 < k < 1 such
that

μ
(
G(Y )

) ≤ kμ(Y ) (1.1)

for any bounded closed subset Y ⊆ B.

Darbo [7] used the idea of measure of noncompactness to obtain a new fixed point the-
orem which generalizes the Banach contraction principle and assures the existence of a
fixed point concerning the so-called condensing operators.

Theorem 1.1 ([7]) Let � be a nonempty, closed, bounded, and convex subset of a Banach
space E, and let G : � 	→ � be a continuous mapping such that there exists a constant θ ∈
[0, 1) with the property μ(G(�)) ≤ θμ(�). Then G has a fixed point in �.

The following definition was given in [1] which is a generalization of Meir–Keeler con-
traction (MKC) given in [9].

Definition 1.3 ([1]) For an arbitrary measure of noncompactness μ on a Banach space X,
we say that an operator T : B 	→ B is a Meir–Keeler condensing operator if for any ε > 0
there exists δ > 0 such that

ε ≤ μ(E) < ε + δ 
⇒ μ
(
T(E)

)
< ε (1.2)

for any bounded subset E of B; where B is a nonempty subset of X.

Now we state the following theorem for Meir–Keeler condensing operators which will
be applied in our main results.

Theorem 1.2 ([1]) Let μ be an arbitrary measure of noncompactness on a Banach space X.
If T : B 	→ B is a continuous and Meir–Keeler condensing operator, then T has at least one
fixed point and the set of all fixed points of T in B is compact, where B is a nonempty,
bounded, closed, and convex subset of X.
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2 The sequence space n(φ)
We denote by C the space of finite sets of distinct positive integers. For any σ ∈ C , we
define α(σ ) = {αn(σ )} such that αn(σ ) is 1 if n is in σ ; and 0 elsewhere. Write

Cr =

{

σ ∈ C :
∞∑

n=1

αn(σ ) ≤ r

}

,

and define


 =
{
φ = (φk) : 0 < φ1 ≤ φn ≤ φn+1 and (n + 1)φn ≥ nφn+1

}
.

Sargent [16] defined the following sequence spaces which were further studied in [11].
Write S(x) for the set of all sequences that are rearrangements of x. For φ ∈ 
,

m(φ) =
{

x = (xk) : ‖x‖m(φ) = sup
r≥1

sup
σ∈Cr

(
1
φr

∑

k∈σ

|xk|
)

< ∞
}

,

n(φ) =

{

x = (xk) : ‖x‖n(φ) = sup
u∈S(x)

( ∞∑

k=1

|uk|�φk

)

< ∞
}

,

where �φk = φk – φk–1. Note that, for all n ∈N ={1, 2, 3, . . .}, m(φ) = �1, n(φ) = �∞ if φn = 1;
and m(φ) = �∞, n(φ) = �1 if φn = n.

We have the following important result.

Theorem 2.1 ([12]) For any bounded subset Q of n(φ), we have

χ (Q) = lim
k→∞

sup
x∈Q

(

sup
u∈S(x)

( ∞∑

n=k

|un|�φn

))

,

where χ (Q) denotes the Hausdorff measure of noncompactness of the set Q which is de-
fined by

χ (Q) := inf

{

ε > 0 : Q ⊂
n⋃

i=1

B(xi, ri), xi ∈ X, ri < ε(i = 1, 2, . . .)

}

.

3 Infinite system of second order differential equations in n(φ)
We study the following infinite system:

d2ui

dt2 = –fi
(
t, u1(t), u2(t), u3(t), . . .

)
; ui(0) = ui(T) = 0, t ∈ [0, T], i = 1, 2, 3 . . . (3.1)

Let C(I,R) be the space of all continuous real functions on the interval I = [a, b] and
C2(I,R) be the class of functions with the second continuous derivative on I . A function
u = (ui) ∈ C2(I,R) is a solution of (3.1) if and only if u ∈ C(I,R) is a solution of the system
of integral equations

ui(t) =
∫ T

0
G(t, s)fi

(
s, u(s)

)
ds for t ∈ I, (3.2)
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where fi(t, u) ∈ C(I ×R
∞,R), i = 1, 2, 3, . . . ; and the Green’s function associated with (3.1)

is given by

G(t, s) =

⎧
⎨

⎩

t
T (T – s), 0 ≤ t ≤ s ≤ T ,
s
T (T – t), 0 ≤ s ≤ t ≤ T .

(3.3)

From (3.2) and (3.3)

ui(t) =
∫ t

0

s
T

(T – t)fi
(
s, u(s)

)
ds +

∫ T

t

t
T

(T – s)fi
(
s, u(s)

)
ds.

Now compute

d
dt

ui(t) = –
1
T

∫ t

0
sfi

(
s, u(s)

)
ds +

1
T

∫ T

t
(T – s)fi

(
s, u(s)

)
ds.

Again differentiating we get

d2ui(t)
dt2 = –

1
T

(
tfi

(
t, u(t)

))
+

1
T

(t – T)fi
(
t, u(t)

)
) = –fi

(
t, u(t)

)
).

The solution of the infinite system (3.1) in the sequence space �1 was discussed by Agha-
jani and Pourhadi [2] by establishing a generalization of Darbo type fixed point theorem
using the concept of α-admissibility function and Schauder’s fixed point theorem. Here,
we determine the solvability of system (3.1) in Banach sequence spaces n(φ). Our result is
more general than that of [2].

Assume that
(i) The functions fi are defined on the set I ×R

∞ and take real values. The operator f
defined on the space I × n(φ) into n(φ) as

(t, u) → (fu)(t) =
(
f1

(
t, u(t)

)
, f2

(
t, u(t)

)
, f3

(
t, u(t)

)
, . . .

)

is such that the class of all functions ((fu)(t))t∈I is equicontinuous at every point of
the space n(φ).

(ii) The following inequality holds:

∣
∣fn

(
t, u1(t), u2(t), u3(t), . . .

)∣∣ ≤ gn(t) + hn(t)
∣
∣un(t)

∣
∣,

where gn(t) and hn(t) are real functions defined and continuous on I such that
∑∞

k=1 gk(t)�φk converges uniformly on I and the sequence (hn(t)) is equibounded
on I .

Write

G = sup
t∈I

∞∑

k=1

gk(t)�φk

and

H = sup
n∈N,t∈I

hn(t).
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Theorem 3.1 Let conditions (i)–(ii) hold. Then system (3.1) has at least one solution u(t) =
(ui(t)) ∈ n(φ) for all t ∈ [0, T].

Proof Let S(u(t)) denote the set of all sequences that are rearrangements of u(t). If v(t) ∈
S(u(t)), then

∑∞
k=1 |vk(t)|�φk ≤ M, where M is a finite positive real number for all u(t) =

(ui(t)) ∈ n(φ) for all t ∈ I . Using (3.2) and (ii), we have, for all t ∈ I ,

∥∥u(t)
∥∥

n(φ)

= sup
v∈S(u(t))

( ∞∑

k=1

∣∣
∣∣

∫ T

0
G(t, s)fk

(
s, u(s)

)
ds

∣∣
∣∣�φk

)

≤ sup
v∈S(u(t))

( ∞∑

k=1

∫ T

0

∣
∣G(t, s)fk

(
s, u(s)

)∣∣ds�φk

)

≤ sup
v∈S(u(t))

( ∞∑

k=1

∫ T

0

∣∣G(t, s)
∣∣(gk(t) + hk(t)

∣∣vk(t)
∣∣)ds�φk

)

= sup
v∈S(u(t))

( ∞∑

k=1

∫ T

0
G(t, s)gk(t)�φk ds +

∞∑

k=1

∫ T

0
G(t, s)

∣∣vk(t)
∣∣�φk ds

)

≤ sup
v∈S(u(t))

(∫ T

0
G(t, s)

{ ∞∑

k=1

gk(t)�φk

}

ds + H
∫ T

0
G(t, s)

{ ∞∑

k=1

∣∣uk(t)
∣∣�φk

}

ds

)

≤ G sup
v∈S(u(t))

∫ T

0
G(t, s) ds + H sup

v∈S(u(t))

∫ T

0
G(t, s)M ds

≤ GT2

8
+

HMT2

8
= R,

say.
Let u0(t) = (u0

i (t)) where u0
i (t) = 0 for all t ∈ I .

Consider the closed ball B̄ = B̄(u0, r1) centered at u0 and of radius r1 ≤ r which is of
course a nonempty, bounded, closed, and convex subset of n(φ). Consider the operator
F = (Fi) on C(I, B̄) defined as follows. For t ∈ I ,

(Fu)(t) =
{

(Fiu)(t)
}

=
{∫ T

0
G(t, s)fi

(
s, u(s)

)
ds

}
,

where u(t) = (ui(t)) and ui(t) ∈ C(I,R).
We have (Fu)(t) = {(Fiu)(t)} ∈ n(φ) for each t ∈ I . Since (fi(t, u(t))) ∈ n(φ) for each t ∈ I ,

we have

sup
v∈S(u(t))

( ∞∑

k=1

∣
∣(Fku)(t)

∣
∣�φk}ds

)

≤ R < ∞.

Also since (Fiu)(t) satisfies the boundary conditions, we have

(Fiu)(0) =
∫ T

0
G(0, s)fi

(
s, u(s)

)
ds = 0
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and

(Fiu)(T) =
∫ T

0
G(T , s)fi

(
s, u(s)

)
ds = 0.

Since ‖(Fu)(t) – u0(t)‖n(φ) ≤ R, F is an operator on B̄.
The operator F is continuous on C(I, B̄) by assumption (i). Now, we shall show that F

is a Meir–Keeler condensing operator. For ε > 0, we have to find δ > 0 such that ε ≤ χ (B̄) <
ε + δ ⇒ χ (F B̄) < ε. Now

lim
k→∞

{

sup
u(t)∈B̄

(

sup
v∈S(u(t))

( ∞∑

n=k

∣
∣∣
∣

∫ T

0
G(t, s)fn

(
s, v(s)

)
ds

∣
∣∣
∣�φn

))}

≤ lim
k→∞

{

sup
u(t)∈B̄

(

sup
v∈S(u(t))

( ∞∑

n=k

∫ T

0

∣∣G(t, s)fn
(
s, v(s)

)∣∣�φn ds

))}

≤ lim
k→∞

{

sup
u(t)∈B̄

(

sup
v∈S(u(t))

( ∞∑

n=k

∫ T

0
G(t, s)gn(s)�φn ds

))}

+ lim
k→∞

{

sup
u(t)∈B̄

(

sup
v∈S(u(t))

( ∞∑

n=k

∫ T

0
G(t, s)hn(s)

∣
∣vn(s)

∣
∣�φn ds

))}

≤ lim
k→∞

{

sup
u(t)∈B̄

(

sup
v∈S(u(t))

(∫ T

0
G(t, s)

( ∞∑

n=k

gn(s)�φn

)

ds

))}

+ H lim
k→∞

{

sup
u(t)∈B̄

(

sup
v∈S(u(t))

∫ T

0
G(t, s)

( ∞∑

n=k

∣∣vn(s)
∣∣�φn

)

ds

)}

≤ Hχ (B̄)
∫ T

0
G(t, s) ds ≤ HT2

8
χ (B̄).

Hence χ (F B̄) < HT2

8 χ (B̄) < ε ⇒ χ (B̄) < 8ε

HT2 .
Taking δ = ε

HT2 (8–HT2), we get ε ≤ χ (B̄) < ε+δ. Therefore,F is a Meir–Keeler condens-
ing operator defined on the set B̄ ⊂ n(φ). So F satisfies all the conditions of Theorem 1.2
which implies that F has a fixed point in B̄, which is a required solution of system (3.1). �

Remark 3.1 For φn = n, for all n ∈ N, the above result is reduced to that of Aghajani and
Pourhadi [2] but our proof is quite different.

4 Example
In order to illustrate the above result, we provide the following example.

Example 4.1 Let us consider the system of second order differential equations

–
d2uj(t)

dt2 =
j√t
j4 +

∞∑

i=j

t cos(t)ui(t)
i4 , j ∈N, t ∈ I = [0, T]. (4.1)

Here fi(t, u1(t), u2(t), u3(t), . . .) =
j√t
j4 +

∑∞
i=j

t cos(t)ui(t)
i4 , and so (4.1) is a special case of the

considered system (3.1). Clearly
j√t
j4 and

∑∞
i=j

t cos(t)ui(t)
i4 are continuous on I for each n ∈N.
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Notice that, for any t ∈ I = [0, T], (fk(t, u(t))) ∈ n(φ) if (uk(t)) ∈ n(φ). Moreover, we have

∞∑

k=1

∣∣fk
(
t, u(t)

)∣∣ =
∞∑

k=1

∣∣
∣∣
∣

k√t
k4 +

∞∑

i=k

t cos(t)ui(t)
i4

∣∣
∣∣
∣

≤
∞∑

k=1

k√t
k4 +

∞∑

k=1

∞∑

i=k

∣
∣∣∣
t cos(t)ui(t)

i4

∣
∣∣∣

≤ Tπ4

90
+

∞∑

k=1

∞∑

i=k

t
i4

∣
∣ui(t)

∣
∣

≤ Tπ4

90
+ T

∥
∥u(t)

∥
∥

n(φ) < ∞.

We will show that assumption (i) is satisfied. Let us fix ε > 0 arbitrarily and u(t) = (uk(t)) ∈
n(φ). Then, taking v(t) = (vk(t)) ∈ n(φ) with ‖u(t) – v(t)‖ ≤ δ(ε):= ε

T , we have

∣
∣f

(
t, u(t)

)
– f

(
t, v(t)

)∣∣ =
∞∑

i=j

t(ui(t) – vi(t))
i4

≤ T
∥∥u(t) – v(t)

∥∥
n(φ)

≤ Tδ < ε,

which implies continuity as in assumption (i). Now, we show that assumption (ii) is satis-
fied.

∣
∣fj

(
t, u(t)

)∣∣ =

∣∣
∣∣
∣

j√t
j4 +

∞∑

i=j

t cos(t)ui(t)
i4

∣∣
∣∣
∣

≤
√

t
j4 +

∞∑

i=j

t
i4

∣∣ui(t)
∣∣

≤ gj(t) + hj(t)
∣
∣uj(t)

∣
∣.

The function gj(t) =
√

t
j4 is continuous and

∑
j≥1 gj(t) converges uniformly to

√
tπ4

90 , also

hj(t) = tπ4

90 is continuous and the sequence (hj(t)) is equibounded on I by H = Tπ4

80 . Also
HT2

8 < 1 is satisfied by taking T = 1.2, which gives H ≈ 1.9739 and G ≈ 1.9739.
Thus, from Theorem 3.1, for a suitable value of r1 (as discussed in Theorem 3.1) the

operator F as defined in Theorem 3.1 on B̄(u0, r1) has a fixed point u(t) = ((ui(t)) ∈ n(φ),
which is a solution of system (4.1).
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