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Abstract
In this article,we present some new sufficient conditions for the oscillation of all
solutions of a second order difference equation with several super-linear neutral
terms. The results obtained here extend or complement some of the known results
reported in the literature. Examples illustrating the importance of the main results are
included.
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1 Introduction
This paper deals with the oscillatory behavior of solutions of second order difference equa-
tion with several super-linear neutral terms of the form

�
(
a(n)�z(n)

)
+ q(n)xβ (n + 1 – �) = 0, n ≥ n0 ≥ 0, (1.1)

where z(n) = x(n) +
∑m

i=1 pi(n)xαi (n – ki), subject to the following conditions:
(H1) αi ≥ 1 for i = 1, 2, . . . , m and β are ratios of odd positive integers;
(H2) {a(n)}, {q(n)}, and {pi(n)} for i = 1, 2, . . . , m are positive real sequences for n ≥ n0;
(H3) � and ki (i = 1, 2, . . . , m) are positive integers.
Let θ = max{�, k1, k2, . . . , km}. By a solution of Eq. (1.1) we mean a real sequence {x(n)}

defined for n ≥ n0 – θ and satisfying Eq. (1.1) for all n ≥ n0. We consider only those solu-
tions {x(n)} of Eq. (1.1) which satisfy sup{|x(n)| : n ≥ N} > 0 for all n ≥ N , and assume that
Eq. (1.1) possesses such solutions. As usual, a solution of Eq. (1.1) is called oscillatory if it
is neither eventually positive nor eventually negative; otherwise it is called nonoscillatory.
If all the solutions are oscillatory, then the equation itself is called oscillatory.

In the past few years there has been an increasing interest in studying the oscillatory
behavior of difference equations with linear neutral terms, see [1, 3, 7, 9, 10, 12, 13, 15,
16] and the references contained therein. As indicated by Hale [4], MacDonald [8], and
others, neutral equations having a nonlinearity in the neutral arise in many applications
in population dynamics, in the study of vibrating masses attached to an elastic bar, electic
networks containing lossless transmission lines as in high-speed computers, and in the
solutions of variational problems with time delays.
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In view of the above discussion, in this paper we choose to examine the oscillatory behav-
ior of such type of difference equations because similar properties for difference equations
with linear neutral term received great attention of the researchers. The oscillatory be-
havior of second order difference equations with sub-linear neutral term, that is, xα(n – k)
with 0 < α < 1, was studied in [2, 6, 14, 17, 18], and therefore in this paper we investigate
the oscillatory properties of solutions of Eq. (1.1) with super-linear neutral terms, that is,
xαi (n – ki) with αi > 1 for i = 1, 2, . . . , m.

In [7], the author considered equation of the form

�
(
xn – pnxα

n–k
)

+ qnxβ

n–� = 0, n ≥ n0 (1.2)

and studied its oscillatory behavior. In [5], the authors considered equation of the form

�
(
an�

(
xn + pnxα

n–k
))

+ qnxβ

n–� = 0, n ≥ n0, (1.3)

where α > 1 and β > 0 and discussed the oscillatory behavior of solutions.
Recently, in [9, 15], the authors considered Eq. (1.1) with αi = 1 for all i = 1, 2, . . . , m and

investigated the oscillatory behavior of all solutions in the two cases

∞∑

n=n0

1
a(n)

= ∞ (1.4)

and

∞∑

n=n0

1
a(n)

< ∞. (1.5)

Motivated by the above observations, in this paper, we have obtained some new suffi-
cient conditions for the oscillation of all solutions of Eq. (1.1) by using a Riccati type trans-
formation, a summation averaging technique, and a comparison method. Thus the results
obtained in this paper are new and extend those reported in [5, 9, 10, 15–18]. Examples
are provided to illustrate the importance of the main results.

2 Oscillation results
In this section, we obtain sufficient conditions for the oscillation of all solutions of Eq. (1.1).
Due to the form of our equation, we only need to give proofs for the case of eventually pos-
itive nonoscillatory solutions since the proofs for negative nonoscillatory solutions would
be similar.

We begin with the following lemma.

Lemma 2.1 Let (H1)–(H3) and condition (1.4) hold. If {x(n)} is a positive solution of
Eq. (1.1), then the corresponding function {z(n)} satisfies

z(n) > 0, �z(n) > 0, and �
(
a(n)�z(n)

)
< 0 (2.1)

eventually.
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Proof The proof is similar to that of Lemma 1 of [18] and hence the details are omitted. �

Lemma 2.2 Let {x(n)} be an eventually positive solution of Eq. (1.1), and suppose (2.1)
holds. Then there is an integer N ≥ n0 such that

x(n) ≥ (
1 – P(n)

)
z(n), (2.2)

where P(n) =
∑m

i=1 Mαi–1pi(n)Rαi–1(n) and R(n) =
∑n–1

s=N
1

a(s) for all n ≥ N and for every con-
stant M > 0.

Proof From (H2) and the definition of z(n), we have z(n) ≥ x(n) for all n ≥ n1 ≥ n0. Further,
from (2.1), we have

z(n) = z(n1) +
n–1∑

s=n1

a(s)�z(s)
a(s)

≥ R(n)a(n)�z(n), (2.3)

and hence �( z(n)
R(n) ) < 0 for all n ≥ n1. That is, z(n)

R(n) is decreasing for all n ≥ n1. Now

x(n) = z(n) –
m∑

i=1

pi(n)xαi (n – ki) ≥ z(n) –
m∑

i=1

pi(n)zαi (n)

≥
(

1 –
m∑

i=1

Mαi–1pi(n)Rαi–1(n)

)

z(n),

where we have used z(n) is increasing and z(n)
R(n) ≤ M for all n ≥ N ≥ n1. �

Lemma 2.3 Let (H1)–(H3) and condition (1.5) hold. If {x(n)} is a positive solution of
Eq. (1.1), then the corresponding sequence {z(n)} satisfies one of the following two cases
for all sufficiently large n:

(1) z(n) > 0, �z(n) > 0, �(a(n)�z(n)) < 0,
(2) z(n) > 0, �z(n) < 0, �(a(n)�z(n)) < 0.

Proof The proof is similar to that of Lemma 2.1 of [15] and hence the details are omitted. �

Lemma 2.4 Let {x(n)} be a positive solution of Eq. (1.1) and the corresponding function
{z(n)} satisfies Case (2) of Lemma 2.3. Then there exists an integer N ≥ n0 such that

x(n) ≥ (
1 – Q(n)

)
z(n), (2.4)

where

Q(n) =
m∑

i=1

Kαi–1pi(n)
Aαi–1(n – ki)

A(n)

and

A(n) =
∞∑

s=n

1
a(n)

for n ≥ N ,

and for all constants K > 0.
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Proof From (H2) and the definition of z(n), we have z(n) ≥ x(n) for all n ≥ n1 ≥ n0. Further,
from Case (2) of Lemma 2.3, we have

�z(s) ≤ a(n)�z(n)
a(s)

, s ≥ n.

Summing the last inequality from n to j, we obtain

z(j + 1) – z(n) ≤ a(n)�z(n)
j∑

s=n

1
a(s)

,

and then letting j → ∞, we obtain

0 ≤ z(n) + A(n)a(n)�z(n), n ≥ n1.

Hence �( z(n)
A(n) ) ≥ 0 for all n ≥ n1, and therefore z(n)

A(n) is increasing for all n ≥ n1. From the
definition of z(n), we have

x(n) = z(n) –
m∑

i=1

pi(n)xαi (n – ki) ≥ z(n) –
m∑

i=1

pi(n)zαi (n – ki)

≥
(

1 –
m∑

i=1

pi(n)
Aαi (n – ki)

A(n)
Kαi–1

)

z(n),

where we have used z(n)
A(n) ≥ K and αi > 1 for i = 1, 2, . . . , m and for all n ≥ N . �

We begin with the following oscillation result.

Theorem 2.1 Assume that (H1)–(H3) and (1.4) hold. If (1 – P(n + 1 – �)) > 0 for all n ≥
N ≥ n0 and

∞∑

n=N

q(n)
(
1 – P(n + 1 – �)

)β = ∞, n ≥ N ≥ n0 (2.5)

hold, then every solution of Eq. (1.1) is oscillatory.

Proof Let {x(n)} be a positive solution of Eq. (1.1), say x(n) > 0, x(n–ki) > 0 and x(n+1–�) >
0 for i = 1, 2, . . . , m and for all n ≥ n1 ≥ n0. From the definition z(n), we have z(n) > 0 for
all n ≥ N ≥ n1, where N is chosen so that (2.1) holds for all n ≥ N . From Lemma 2.2 and
Eq. (1.1), we have

�
(
a(n)�z(n)

)
+ q(n)

(
1 – P(n + 1 – �)

)βzβ (n + 1 – �) ≤ 0, n ≥ N . (2.6)

Summing the last inequality from N to n, we obtain

n∑

s=N

q(s)
(
1 – P(s + 1 – �)

)β ≤ a(N)�z(N).
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Since z(n) ≥ M > 0, the last inequality contradicts (2.5) as n → ∞. This completes the
proof. �

In the next theorem, we reduce the oscillation of Eq. (1.1) to that of a first order delay
difference equation.

Theorem 2.2 Assume that (H1)–(H3) and (1.4) hold. If (1 – P(n + 1 – �)) > 0 for all n ≥ n0

and the delay difference equation

�w(n) + q(n)
(
1 – P(n + 1 – �)

)βRβ (n + 1 – �)wβ (n + 1 – �) = 0, n ≥ n0 (2.7)

is oscillatory, then every solution of Eq. (1.1) is oscillatory.

Proof Let {x(n)} be a positive solution of Eq. (1.1), say x(n) > 0, x(n–ki) > 0 and x(n+1–�) >
0 for i = 1, 2, . . . , m and for all n ≥ n1 ≥ n0. Proceeding as in the proof of Theorem 2.1, we
obtain (2.6). Now, using z(n) ≥ R(n)a(n)�z(n), we have

�
(
a(n)�z(n)

)
+ q(n)

(
1 – P(n + 1 – �)

)βRβ (n + 1 – �)
(
a(n + 1 – �)�z(n + 1 – �)

)β ≤ 0

for n ≥ N ≥ n1. Set w(n) = a(n)�z(n). Then {w(n)} is a positive solution of the inequality

�w(n) + q(n)
(
1 – P(n + 1 – �)

)βRβ (n + 1 – �)wβ (n + 1 – �) ≤ 0, n ≥ N .

It follows from Lemma 2.7 of [16] that the corresponding Eq. (2.7) also has a positive
solution, which is a contradiction. The proof is now complete. �

Remark 2.1 Employing sufficient conditions for the oscillation of all solutions of Eq. (2.7)
for different values of β , one can obtain easily verifiable criteria for the oscillation of all
solutions of Eq. (1.1).

Corollary 2.1 Assume (H1)–(H3) and (1.4) hold. If β = 1, � ≥ 2 and

lim
n→∞ inf

n–1∑

s=n–�+1

q(s)
(
1 – P(s + 1 – �)

)
R(s + 1 – �) >

(
� – 1

�

)�

(2.8)

hold, then every solution of Eq. (1.1) is oscillatory.

Proof Condition (2.8) and Theorem 7.5.1 of [3] imply oscillation of Eq. (2.7). The assertion
now follows from Theorem 2.2. This completes the proof. �

Corollary 2.2 Assume (H1)–(H3) and (1.4) hold. If β < 1, � ≥ 2 and

∞∑

n=N

q(n)
(
1 – P(n + 1 – �)

)βRβ (n + 1 – �) = ∞ (2.9)

hold, then every solution of Eq. (1.1) is oscillatory.



Banu and Nalini Advances in Difference Equations  (2018) 2018:345 Page 6 of 10

Proof Condition (2.9) and Theorem 1 of [11] imply oscillation of Eq. (2.7). The assertion
now follows from Theorem 2.2, and this completes the proof. �

Corollary 2.3 Assume that (H1)–(H3) and (1.4) hold. If β > 1, � ≥ 2, and there exists λ >
1

�–1 lnβ such that

lim
n→∞ inf

[
q(n)

(
1 – P(n + 1 – �)

)βRβ (n + 1 – �) exp
(
–eλn)] > 0 (2.10)

hold, then every solution of Eq. (1.1) is oscillatory.

Proof Condition (2.10) and Theorem 2 of [11] imply oscillation of Eq. (2.7). The assertion
now follows from Theorem 2.2. This completes the proof. �

Our next results are for the case where (1.5) holds in place of (1.4). We will also need the
condition

B(n) =
(
1 – Q(n)

)
> 0 (2.11)

for all n ≥ N ≥ n0.

Theorem 2.3 Let β > 1, and (H1)–(H3), (1.5) and (2.11) hold. If there exists a positive
nondecreasing real function {ρ(n)} such that

lim
n→∞ sup

n∑

s=N

[
ρ(s)q(s)

(
1 – P(s + 1 – �)

)βAβ–1(s + 1 – �) –
a(s – �)(�ρ(s))2

4ρ(s)

]
= ∞ (2.12)

and

∞∑

n=N

1
a(n)

n–1∑

s=N

q(s)
(
1 – Q(s + 1 – �)

)βAβ (s + 1 – �) = ∞ (2.13)

hold, then every solution of Eq. (1.1) is oscillatory.

Proof Let {x(n)} be a positive solution of Eq. (1.1) such that x(n) > 0, x(n – ki) > 0 and
x(n + 1 – �) > 0 for i = 1, 2, . . . , m and for all n ≥ n1 ≥ n0. From the definition of z(n), we
have z(n) > 0 for all n ≥ N ≥ n1, where N is chosen so that two cases of Lemma 2.3 hold
for all n ≥ N . We shall show that in each case we are led to a contradiction.

Case (1) From the proof of Theorem 2.1, we see that (2.6) holds. Since z(n) is increasing
and A(n) is decreasing and tending zero, we have z(n) ≥ A(n) for all n ≥ N . Using this in
(2.6), we obtain

�
(
a(n)�z(n)

)
+ q(n)

(
1 – P(n + 1 – �)

)βAβ–1(n + 1 – �)z(n + 1 – �) ≤ 0 (2.14)

for all n ≥ N since β > 1. Define

w(n) = ρ(n)
a(n)�z(n)

z(n – �)
, n ≥ N .
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Then w(n) > 0 for all n ≥ N , and using (2.14), we obtain

�w(n) ≤ –ρ(n)
(
1 – P(n + 1 – �)

)βAβ–1(n + 1 – �) +
�ρ(n)

ρ(n + 1)
w(n + 1)

–
ρ(n)

ρ(n + 1)
w2(n + 1)
a(n – �)

, n ≥ N .

Applying the completing the square and then summing the resulting inequality, we obtain

n∑

s=N

[
ρ(s)

(
1 – P(s + 1 – �)

)βAβ–1(s + 1 – �) –
a(s – �)(�ρ(s))2

4ρ(s)

]
≤ w(N).

Letting n → ∞ in the above inequality, we get a contradiction with (2.12).
Case (2) From Eqs. (1.1) and (2.4), we have

�
(
a(n)�z(n)

)
+ q(n)

(
1 – Q(n + 1 – �)

)βzβ (n + 1 – �) ≤ 0, n ≥ N .

Summing the last inequality from N to n – 1, we obtain

1
a(n)

n–1∑

s=n
q(s)

(
1 – Q(s + 1 – �)

)βzβ (s + 1 – �) ≤ –�z(n).

Summing again the last inequality, we get

n–1∑

s=N

1
a(s)

s–1∑

t=N

q(t)
(
1 – Q(t + 1 – �)

)βzβ (t + 1 – �) ≤ z(N). (2.15)

Since z(n)
A(n) is increasing, there exists a constant M > 0 such that z(n)

A(n) ≥ M for all n ≥ N . Us-
ing this in (2.15) and letting n → ∞, we obtain a contradiction with (2.13). This completes
the proof. �

Theorem 2.4 Let β = 1, and (H1)–(H3), (1.5) and (2.11) hold. If there exists a positive
nondecreasing function {ρ(n)} such that

lim
n→∞ sup

n∑

s=N

[
ρ(s)q(s)

(
1 – P(s + 1 – �)

)
–

a(s – �)(�ρ(s))2

4ρ(s)

]
= ∞ (2.16)

and

∞∑

n=N

1
a(n)

n–1∑

s=N

q(s)
(
1 – Q(s + 1 – �)

)
A(s + 1 – �) = ∞ (2.17)

hold, then every solution of Eq. (1.1) is oscillatory.

Proof The proof is similar to that of Theorem 2.3, and hence it is omitted. �

Theorem 2.5 Let 0 < β < 1, and (H1)–(H3), (1.5) and (2.11) hold. If conditions (2.9) and
(2.13) hold, then every solution of Eq. (1.1) is oscillatory.
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Proof The proof follows from Corollary 2.2 and Theorem 2.3, and hence the details are
omitted. �

3 Examples
In this section, we present some examples to illustrate the main results.

Example 3.1 Consider the second order neutral difference equation

�

(
1

n + 1
�

(
x(n) +

1
n5 x3(n – 2) +

1
n9 x5(n – 1)

))
+ n2x5/3(n – 1) = 0, n ≥ 1. (3.1)

Here a(n) = 1
n+1 , p1(n) = 1

n5 , p2(n) = 1
n9 , q(n) = n2, α1 = 3, α2 = 5, β = 5

3 , k1 = 2, k2 = 1, and
� = 2. Now R(n) = ( n2+n–2

2 ), P(n) = M2

n5 ( n2+n–2
2 )2 + M4

n9 ( n2+n–2
2 )4, and (1–P(n)) ≥ 1– M2

4n – M4

16n >
0 for all n ≥ N where N is sufficiently large. Further condition (2.5) becomes

∞∑

n=N

q(n)
(
1 – P(n + 1 – �)

)β ≥
∞∑

n=N

n2
(

1 –
M2

4(n – 1)
–

M4

16(n – 1)

) 5
3

= ∞.

Hence all the conditions of Theorem 2.1 are satisfied, and therefore every solution of
Eq. (3.1) is oscillatory.

Example 3.2 Consider the second order neutral difference equation

�2
(

x(n) +
1
2n x7/3(n – 1) +

1
3n x3(n – 2)

)
+ 3nx1/3(n – 1) = 0, n ≥ 1. (3.2)

Here a(n) = 1, p1(n) = 1
2n , p2(n) = 1

3n , q(n) = 3n, α1 = 7
3 , α2 = 3, β = 1

3 , k1 = 1, k2 = 2, and

� = 2. Now R(n) = n, P(n) = M
4
3

2n n 4
3 + M2

3n n2, and (1 – P(n)) ≥ (1 – (M
4
3 +M2)
3n n2) > 0 for n ≥ N

where N is sufficiently large. Further condition (2.9) becomes

∞∑

n=N

q(n)
(
1 – P(n + 1 – �)

)βRβ (n + 1 – �) ≥
∞∑

n=N

3n
(

1 –
(M 4

3 + M2)
3n n2

)
(n – 1)

1
3 = ∞.

Hence all the conditions of Corollary 2.2 are satisfied, and therefore every solution of
Eq. (3.2) is oscillatory.

Example 3.3 Consider the second order neutral difference equation

�

(
n(n + 1)�

(
x(n) +

1
n3 x5/3(n – 1) +

1
n4 x7/3(n – 2)

))
+ n3x3(n – 1) = 0, n ≥ 1. (3.3)

Here a(n) = n(n + 1), p1(n) = 1
n3 , p2(n) = 1

n4 , q(n) = n3, α1 = 5
3 , α2 = 7

3 , β = 3, k1 = 1, k2 = 2,
and � = 2. Now R(n) = n–1

n and A(n) = 1
n . Then

P(n) =
M 2

3

n3

(
n – 1

n

) 2
3

+
M 4

3

n4

(
n – 1

n

) 4
3

< 1 for n ≥ N
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and

Q(n) =
K2/3

n2(n – 1)2/3 +
K4/3

n3(n – 2)4/3 < 1 for n ≥ N ,

where N is sufficiently large. By choosing ρ(n) = 1, we see that condition (2.12) becomes

lim
n→∞ sup

n∑

s=N

[
ρ(s)q(s)

(
1 – P(s + 1 – �)

)βAβ–1(s + 1 – �)
]

≥ lim
n→∞ sup

n∑

s=N

(
1 –

M 2
3 + M 4

3

s3

)
= ∞.

Also condition (2.13) becomes

∞∑

n=N

1
a(n)

n–1∑

s=N

q(s)
(
1 – Q(s + 1 – �)

)βAβ (s + 1 – �) ≥
∞∑

n=N

1
n(n + 1)

n–1∑

s=N

(
1 –

K 2
3 + K 4

3

s2

)

≈
∞∑

n=N

1
n + 1

= ∞.

Hence all the conditions of Theorem 2.3 are satisfied, and therefore every solution of
Eq. (3.3) is oscillatory.

4 Conclusions
In this paper, by using the Riccati transformation, the summation averaging technique and
a new comparison theorem, we prove some suffcient conditions which are new, extend
and complement some of the results established in [2, 5, 6, 9, 10, 12–18] either for the
case m = 1 or for the case αi = 1 for i = 1, 2, 3, . . . , m. In particular, the results presented in
[9, 15] cannot be applied to Eqs. (3.1) to (3.3) since α1 �= 1 and α2 �= 1. Further condition
(2.11) is somewhat restrictive, and it implies that we must have {pi(n)} → 0 as n → ∞ for
i = 1, 2, . . . , m. It would be good to obtain a result that did not require this added condition.
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