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1 Introduction

Multi-term fractional differential equations involve more than one fractional order dif-
ferential operators and appear in the mathematical models of many real world problems.
Bagley—Torvik [1] and Basset equations [2] are important examples of this class of equa-
tions.

Fractional differential equations find useful applications in several disciplines of science
and engineering such as blood flow phenomena, virology, bio-engineering, image process-
ing, control theory, etc. For details and examples, see [3-7].

The literature on initial and boundary value problems of differential equations and in-
clusions containing a single fractional order operator is now much enriched and one can
find useful results in a series of articles [8—19] and the references cited therein. However,
the topic of boundary value problems of differential equations and inclusions containing
more than two fractional order operators needs to be investigated. For some works on
differential equations and inclusions involving two fractional order operators (sequential
fractional differential equations) can be found in [20-23].

In this paper, we introduce and investigate a new boundary value problem of multi-term
fractional differential equations supplemented with nonlocal multi-point and multi-strip
boundary conditions given by

(82CD‘“2 +8,°D% 4 SOCDO‘)x(t) :f(t,x(t)), O<a<1,0<t<1, (1.1)
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where °D* denotes the Caputo fractional derivative of order o, f : [0,1] x R — R is a given
continuous function, 0 < £ <Ny <My <+ <N <V <O <V <0y<-+- < <0ox<1l,j; €R,
i=1,....,m,; €R,i=1,...,k, §; are real numbers {i = 0, 1,2}, with §; #0.

The rest of the paper is organized as follows. In Sect. 2, we recall some preliminary ideas
of fractional calculus and prove some important lemmas. Section 3 contains existence and
uniqueness results for the problem (1.1)—(1.2) with 87 — 4808, > 0, which are obtained by
applying some well-known theorems of the fixed point theory. Though the tools of the
fixed point theory are standard, their exposition helps to develop the existence theory for
the given problem. In Sects. 4 and 5, we outline the idea for dealing with the problem (1.1)-
(1.2) involving the cases 8% — 4808, = 0 and 8% — 488, < 0, respectively. The last section
describes the importance and the scope of the obtained work.

2 Basicresults
Before presenting some auxiliary results, let us recall some preliminary concepts of frac-
tional calculus [24, 25].

Definition 2.1 Let g be alocally integrable real-valued functionon—co <a <t < b < +oo0.
The Riemann-Liouville fractional integral I of order g € R (g > 0) is defined as

. RN
1160 = €+ K)(0 = [ (£ g(s)ds,

where K, (¢) = %, I' denotes the Euler gamma function.

Definition 2.2 Let g € L'[a,b], ~0o <a <t <b < +o0 and g * K,y € W™'[a,b], m =
lq] + 1, g > 0, where W[4, b] is the Sobolev space defined as

W [a,b] = {geLl[a,b] : Z—mgeﬂ[a,b]}.

The Riemann-Liouville fractional derivative DI of order ¢ >0 (m - 1< q < m, m € N) is
defined as
am 1 am

IMg() =
g(t) T

Dq t)= — -
80 = Zla (m—q) di"

t
f (t—s)""g(s)ds.
Definition 2.3 Let g € L'[a,b], —0o <a <t <b < +o0 and g * K,,; € W™[a,b], m = [q],
g > 0. The Caputo fractional derivative °Df of order g € R (m—1 < g < m, m € N) is defined
as
(t—a) _ (t—a)y™?!
Dig(t) = D1| g(t) - ga) — g (@) ——— — -+ — g D(@)———|.
40} a[g() gla) -gla)—; g @
If g € C™[a, b], then the Caputo fractional derivative <D? of order geR(m-1<qg<m,
m € N) is defined as

Di[g](t) = Iiqu(m)(t) _ F(m;_q) /‘t (- s)m’kqg(m)(s) ds.
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In the sequel, the Riemann—Liouville fractional integral I7 and the Caputo fractional
derivative °D with a = 0 are respectively denoted by 17 and “D“.

Property 2.4 ([24]) With the given notations, the following equality holds:
Iq(Cqu(t)) =pt)—co—crt—-—c,t" Y, t>0,m—1<q<n, (2.1)
where ¢; (i=1,...,n—1) are arbitrary constants.

Definition 2.5 A function x € C3[0,1] satisfying (1.1)—(1.2) is called a solution of this
problem on [0, 1].

The following lemma associated with the linear variant of problem (1.1)—(1.2) plays an
important role in the sequel.

Lemma 2.6 For any y € C([0,1],R) and §} — 4808, > 0, the solution of linear multi-term
fractional differential equation

(8D + 8;°D**! + 8o°D¥)x(t) = y(t), O<a<1,0<t<]1, (2.2)

supplemented with the boundary conditions (1.2) is given by

L e gm0
x(2) S{/o/o(e e ) ) y(u) duds

Esm—s m—s(_)a_1
+p1(t)[/0 /O(e 26-9) _ gmie ))%y(u)duds

)u—l

n ni ps (s—u
_ ,i emZ(’]i’S) _ ™M mi-s)\ 2 _ 27 (L{) duds
;1 /0 /0 ( ) ') 4

1 s a-1
+ pa(t) |:/(; /(; (emz(l—s) _ em1(1—5)) (57;22) y(u) duds

k , , ,
o s (emz(a,—s) -1) (eml(a,—s) —1)\ (s— u)a_l
) ;Ai fv; /0 ( ny - "y ) M) y(u) du ds] } (2.3)

where
—(31 — 4/ (S% - 48082 —51 + 4/ (S% - 48032
m=—-, Mmy=——"——"——~,
! 28, 2 28,
V82 4808y  «
8y(my —my) = AR B L
2
t)— t t)— t
ou(8) = w401 (f) — w302( ), oa(t) = w102(t) — w201 ( ),
M1 M1
8almy (1 — ™) — my(1 — ™))
Ql(t) = )
o
S mot mit 80
02(t) = 8(e™" — ™), mimy = —, M1 = w104 — w3 70,
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— 82 - i mi1€ - i oM
w1 % |:m2 (1 ;], e 4 ;]le (2.4)
n n
—m (1 - Zh _emE Zji3m2ni>:|¢
i=1 i=1
n n
Wy = S(emlé _™mf _ Zjiemmi + Z]'l,emzni)’
i=1 i=1
5, k k
w3 = — |:m2 <1 —emM - Z)Li(gj —u;) + Zki/ml(eml”" - emlui))
%o i-1 i-1
k k
- m (1 - - Zki(ai -y + Z)Li/mz (e - e"’z“")):|,
i=1 i=1

k k
ws =08 (eml —em - Zki/ml (em“"' - em“’i) + Zki/mz(em”i - emzv")).
i=1 i=1

Proof Applying the operator I* on (2.2) and using (2.1), we get

t (t _ s)ot—l

(82D2 + 81D + So)x(t) = A W

y(s)ds + c1, (2.5)

where c; is an arbitrary constant. By the method of variation of parameters, the solution
of (2.5) can be written as

_ myt mat l ' m (t-s) s u)ml )
x(t) = cpe™’ + cze 3 |:/(; e (/0 T y(u)du +¢1 ) ds
t ~ N (S _ u)a—l
my (t—s)
+/0 e (/0 —F(a) y(u) du + cl) ds], (2.6)

where m; and m, are given by (2.4). Using x(0) = 0 in (2.6) and simplifying the coefficient
of ¢, we get

0 = ¢ <52[m2(1 —e™i) - mi(1 - emt)]) b eyt - )
508

l ‘ mo(t—s) _ my(t—s) ( s(s_u)(kl > i|
+(§|:/0 (e e ) /07[‘(01) y(u)du | ds |, (2.7)

which, together with the conditions x(§) = Y, jix(n;) and x(1) = Zle A j:’ x(s) ds, yields

the following system of equations in the unknown constants ¢; and c;:

w1 + cwy = V7, (2.8)

Clw3 + Cawy = V7, (2.9)

where § and w; (i =1,2,3,4) are given by (2.4), and

& ps (S _ u)oz—l
Vi=- e _emE-NZ_"L oy duds
1 /0 /0 ( ) @

+iﬁ/’h‘ /S(emz(ni—s)_eml(ﬂi—s))ﬂy(u) duds,
= fo o ['(a)
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1 s
_/ / (emz(l—s) _e
0 Jo

k o; s (ml(a—s)
e —
+ E A
i-1 l~/l‘),‘ /(; |: my

Wu(lfS)) (S—l:(oz:_l y(u) duds
D _ (€0 -] 6- !
_ - ] ) y(u) du ds.

Solving the system (2.8)—(2.9), we find that

Viws — Vo,
GQ=————————" Cy =
M1

Vowy -

Vla)g
231 '

Substituting the value of ¢; and c; in (2.7), we obtain the solution (2.3). This completes the

proof.

Lemma 2.7 For any y € C([0, 1],

fractional differential equation

(82CD(¥+2 + (SchaJrl + SOCDa)x(t) :y(t),

R) and 83 -

O

4808, = 0, the solution of linear multi-term

O<a<l,0<t<], (2.10)

supplemented with the boundary conditions (1.2) is given by

I'(a)

+X1(t[/ [ =9

—;]'i/(;m/os(m—s)
+ 000 [/ [a-ger

a—1
“) y(u)duds

)a—l

T —y(u)duds

a-1
) - ;Zj) y(u)du ds:|

u)a 1

) ———y(u)duds

k o ps L m(o;—s) _ ,m(oj—s) 1 _ N1
_ Z )w/ /0 (m(ol s)e - e + ) (s F(Mq)) y(u) du ds:| } (2.11)
i=1 i

where

-8 w325 (t) — waz1(2) w21 (t) — m122(2)
m=—, x1(t) = , X)) = ———mM,

232 12%) H2

mte™ — ™ + 1
z1(t) = — zy(t) = 8yte™,
m

mEe™ —e™ + 1 -3 ji(mn;e™ — ™ + 1)

w1 = )

m2

mm)
)

n
wy =&y <§emé - Z/i’h‘e

i=1

w3 =

1
— mze"’—mem+m—m2 ki(oie
m

(2.12)

k
mo; Uiemu,-)

i=1

Page 5 of 23
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k k
+2 Zki(em”i - em”i) -m Zki(ﬁi - Ui)i|:

i=1 i=1

mPe™ —m Y s hi(0i€"% — v ") + 3k Ai(e — )
@y =0y ’

2
Uo = Ty — a3 7 0.

Proof Since the proof is similar to that of Lemma 2.6, we omit it. O

Lemma 2.8 For any y € C([0,1],R) and 8§} — 4808, < 0, the solution of linear multi-term
fractional differential equation

(8D + 8;°D™*! + §o°D¥)x(t) = y(t), O<a<1,0<t<]1, (2.13)

supplemented with the boundary conditions (1.2) is given by

_ )1

+7 t)|:// S) sin b(& —s)%y(u)duds
_Zh f f -9 gin (g - ) S ()) y(u)duds}

+1,(0) [ / / a9 i (1 — s)%y(u) duds

> bzf / b be =9 cos b(o; — 5)
a2+

—a(oj-s) .: (S—bt)uk1
—ae™ ) sinb(o; - 5)) ———~—y(u) duds | 1, (2.14)
(o)
where
. 81 4808, — 812
Wll2=—(l:|:bl, a=—, b:4,
’ 28, 28,
t)— t t)— t
a = B2O-am® o en®) g
M3 M3
b + be™ cos bt — ae™ sin bt
vi(t) = Toe ae o , vy (t) = 8ybe™ sin bt,
a? + b2
b —be™ cos b§ —ae™* sinbé — Y 1, ji(b — be™* cos bn; — ae~*"i sin b;)
q1 =

)
a’ + b?

i=1

n
qz = 82b (e‘“é sin b€ — Zjie_“”i sin bn,),

k
1
qs = a2+b2|:b be*cosb —ae“sinb — b;k(al v;) (2.15)
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Ai(e* sinbo; — e *V sin by;)

2ab
s Z Li(e™* cos bo; — eV cos bui)i|,
a2+

k
Zi:l Ai

a? + b2

qa = 62b [e‘“ sinb + (be‘“"i cos bo; — be™*Vi cos bu;
+ ae i sin bo; — ae” ™V sin bv,r)i| ,
u3 = q1q4 — 4293 7 0.
Proof We do not provide the proof as it is similar to that of Lemma 2.6. d
3 Existence and uniqueness results for the case 8, - 46,5, > 0
Denote by C = C([0, 1], R) the Banach space of all continuous functions from [0,1] to R
endowed with the norm defined by ||x|| = sup {|x(¢)| : ¢ € [0, 1]}.

By Lemma 2.6, we transform the problem (1.1)-(1.2) with 8,2 — 4608, > 0 into a fixed
point problem as

x=Jx, (3.1)

where the operator J : C — C is defined by

m2 t—s) 1(t-s ( - )oz—l
(Tx)(t) = {// ))%f(u,x(u))duds

Esm—s m—s(_)a_1
+p1(t)|:/0 /O(e 26-9) _ gm (& ))%f(u,x(u))duds
n i S _ a1
_Z]'i/()n /o (emz(m—s)_em(ni—S))(s F(L:x)_) f(u,x(u)) duds:|
i=1

1 K o—
+ 0o(t) |:f0 /0 (emz(lfs) _eml(ls))%f(u,x(u)) duds

k o; ps (emz(a—s) -1 (eml(U*S) -1)
[ ()
; l v JO my "

(s —u)*!

X Wf(u,x(u)) du ds:| },

with p;(¢) and p,(t) given by (2.4).

In the sequel, for the sake of computational convenience, we set

p1 = max 02 = max
tel0,1] te[0,1]

€= trérl{g)f]‘mz( — &™) —my(1-e™")],
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|82| ~ o m € mok
== 1_e™E) _ 1_e™
|505|r(oz+1){‘9+pl[g a1 = €15) = (1 - 7))

n
+Z|]'i|7’l?’m2(1—emmi) - my(1 —e"’2”i)‘:| (3.2)

i=1

+ Z)}|:|m2(1 —e") —m(1-e™)

k

|82 o

+ %l E |hilof |m3 (my (o — v;) — e 1)
0 a1

— m}(my(o; — v;) — €™ 1 1) |:| ],

|82]e

AT TS

Now the stage is set to present our main results. In the first result, we use Krasnoselskii’s
fixed point theorem to prove the existence of solutions for the problem (1.1)—(1.2) with
8% — 45082 > 0.

Theorem 3.1 (Krasnoselskii’s fixed point theorem [26]) Let Y be a bounded, closed, con-
vex, and nonempty subset of a Banach space X. Let F, and F, be operators satisfying the
conditions: (i) F1y1 + F2y, € Y whenever y1,y, € Y; (ii) F is compact and continuous; (iii) F,

is a contraction mapping. Then there exists a y € Y such thaty = F1y + Fyy.
In the forthcoming analysis, we need the following assumptions:
(A1) [f(t,x)—f(&y)| <Llx—y|, forallt€[0,1],x,y e R, £>0.
(A2) |f(tx)| < (), for all (¢x) € [0,1] x R and @ € C([0,1], R*).

Theorem 3.2 Let f : [0,1] x R — R be a continuous function satisfying conditions (A1)
and (Ay). Then the problem (1.1)—(1.2), with §7 — 4608, > 0, has at least one solution on

[0,1] if

Lp <1, (3.3)
where ¢, is given by (3.2).
Proof Setting sup,[o 17 [9(£)| = ||# ]|, we can fix

8219l

- | go 1 —e™$) _ 1 — M2t
o) -

n
# D2 il a1 = €)= (1 ﬂ] % 2["”2(1 - ") —mi(1-e")]

i=1

k
+ g—z Z il |13 (m1 (0 — v7) — €™+ 1) — md (my (07 — v;) — €™ 4 1) ’:| }’
i-1
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and define B, = {x € C : ||x|| < r}. Introduce the operators [7; and 7, on B, as follows:
(T = / [ (e - emi) 6= ) duds G4)
F (a) ) o

and

_ -1
(sz)(t)——{m(t){ / / e m1<s—s>)%f(u,x(u))duds

I'a)
- le/’h/ M2 ni=s) _ g ""5))7( F(M):lf(u,x(u)) duds:|
_ -1
+ 0o(2) |:/ / "‘2(1‘3 — M- s)) %f(u,x(u)) duds
k ) , ,
o; s (emz(a,—s) _ 1) (eml(a,—s) _ 1)
- ;Al /u,- /0‘ ( my - n )
a-1
x %f(u,x(u)) duds:| ] (3.5)

Observe that J = J1 + J». For x,y € B,, we have

| 7x+ Tyl
= sup ’(jlx)(t + (jzy)(t)‘

tel0,1]

=% e[ou[// (e —em ”))%V(u’x(umdum
+|o1(®)] [ /0 E /0 S(e’”Z‘f‘” - eml(é"”)%[]‘(u, y(w))| duds
+ Zl il /O ' /0 (et _ gmtns )%V(w, ¥(0) | ds:|
|p2(t)|[ / / emi-9 S))%[f(u,y(umduds
' i o /v” /OS<(8’”2(‘Z - (e’”l((;:) - 1)) - 1:(12:_1 If (4, y()) | du ds:| }
+| o) |:§-ot /OE |69 _ g €=9)| s 4 li; ljiln® /om |720i=5) _ gmni-9) dsj|

1
+ | p2(8)] [/ 72179 _ gm=9)| gg
0

IA
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+Z|A|a /Gl

|82/ {12 ]
T 1808|T (e + 1)

my mi

(7m0 — 1) (embi) - 1) ‘ dsi| }

{e + 01 [“g‘"‘|mz(1 —e™5) —my (1 - ")

n

-3 il a1 = )~ 1 >’] *ﬁ{'mz(l —) - m(1-e7)]
i1

:22: ZM lof ‘mz ml —gmiv) 4 1)

— m}(my(o; - v;) — €™ 1 1) |:| }

<r.

Thus Jix + Joy € B,. Using assumption (A;) together with (3.3), we show that 7, is a
contraction as follows:

| JFax — Tyl
= sup [(2x)() = (T2)(0)]

tel0,1]

M2 ™M E=s) (S_u)(kl
=Bl é}épu[wt) [/ / ) T

X [f(u,x(u)) —f (u,y(w)) ’ duds

u)a—l

n ) ni s o s (_
+i21:|]i|/o /O(e 2(0i=9) _ g ))SFT[f(u,x(u)) —f(u,y(u))|duds:|

_ -1
|Pz(t)|[/ / 0= _ g 1s>)(sr(“02) I (1, (00) — £ (10 3(00) | e

K o 0 [ (gm0i=s) _ 1) (em@im9) _ 1)
o[ -
i1 v JO ) my

(s—u)*!

X M) [f(u,x(u)) —f(u,y(u)) | duds:| }

&
sup 1 [ (0)]| € / |ma6-s) _ gmE-9)| g
18] tefo] o
1 ni
+Z|ji|nf‘/ |em2(ﬂi—s)_em1(m_s)|ds:|
i1 0

1 s
+ |p2(t)| [/ / |em2(1’s) - em1(1’3)|du ds
0o Jo

9| (¢Mm2(0i=s) _ 1 m1(oi—s) _ ]
+ Z Ao / (e ) _ (e )

nmy my

| ~

=

o>

o]
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[521€
T 1808|T (e + 1)

n
# 3 Vil s (1= €)1 ﬂ] e 2["”2(1 - ) —m(1-¢™)

i=1

([ ma-e)-maa-e)

k

|82 v

+ %l E |ilof |3 (my (o - V) — M) 1)
0l a1

_ m% (le(Ui —u) - emz(ai—vi) + 1) |:| } llx -yl
=Lrllx -yl

Note that continuity of f implies that operator 7; is continuous. Also, J; is uniformly

bounded on B, as

182111 le
|7l = sup |[()(t)| < ————.
' te[oﬂ]| )00 1808 (@ + 1)

Now we prove the compactness of operator J;. We define sup,  c(o11x5, f (£:%)| = f.

Thus, for 0 < £; < £, < 1, we have

|(7120)(82) = (T12)(81)|

— % /tl /S[(em(tz—S) _ eml(tz—S)) _ (eVnz(tl—S) _ eml(tl—S))]
o Jo
_ -1
%f(u,x(u)) duds
ty ps _ -1
n /t‘ /(; (emz(tz—s) _ em1(t2—S))%f(u,x(u)) duds
1

= %{(t? _ tg) |W11(1 _ emz(tz—n)) _ m2(1 _ eml(tz—t1))|
0 o+

+ t‘l"|m1(em2t2 — ™) —my (e - em1t1)|} — 0, ast; — b,

independent of x € B,. Thus, J; is relatively compact on B,. Hence, by the Arzeld—Ascoli
Theorem, 77 is compact on B,. Thus all the assumptions of Theorem 3.1 are satisfied. So,
by the conclusion of Theorem 3.1, the problem (1.1)—(1.2) with 8,2 — 48¢8, > 0 has at least

one solution on [0, 1]. The proof is completed. d

Remark 3.3 In the above theorem we can interchange the roles of operators J; and J; to

obtain a second result by replacing (3.3) with the following condition:

1621 €
— <
[608|T (¢ + 1)

In the next result, we prove the uniqueness of solutions for the problem (1.1)—(1.2) with
812 — 4808, > 0 by applying Banach contraction mapping principle.
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Theorem 3.4 Assume that f : [0,1] x R — R is a continuous function such that (A1) is
satisfied. Then there exists a unique solution for the problem (1.1)—(1.2), with §;* — 48085 >
0,0m [0,1] if £ < 1/¢, where ¢ is given by (3.2).

Proof Letus define SUP;c[0,1] |f(t,0)| = M and select 7 > 1"”{; to show that 7 B; C B;, where

B; ={x € C:||x|| <7} and J is defined by (3.1). Using condition (A;), we have

[f(t,%)] = [f(&,%) - f(£,0) +£(£,0)| < |f(&,%) - £(£,0)| + |f(£,0)]
< Ollxll + M < €7 + M. (3.6)

Then, for x € By, we obtain

| 7@
= sup |T@)(®)

tel0,1]

)a—l

m2(t—s _mi(t-s) (SL
S 6[01]{/ / e" ) T() lf(u,x(u))|duds
& ps el
' '”l“)'[fo [ (e - emted) ST ) s
u)ot—l

n ni s -
+ Z |];| v/o A (emz(r]i—s) _ em1(m—5)) (SFT) Lf(u,x(u)) ‘ du d5i|
i=1

1 s _ -1
+ |pa®) [‘/(; /0 (7209 _eml(l-s))%br(u,x(umduds
m2 0j=S) _ m1(oj—s) _ _ -1
+Z|A|/ j( 1) (e - 1))(SF(L2) V(u,x(u))|duds:“

- (er + M) sup /‘ (=) _ g (t—s)‘ s* ds
T8 tepo Mo +1)

& 5
+ [ (0)] /0 |em26=s) eml(s‘s)ygr(a D ds

n n; o
; (ni-9) (ni-s)|__5
+Z|}i|/O |em2”s—emlns‘r(a+l)ds:|
i=1

my(1-s) _ 1-s) s*
|p2(t)|[f & e ®
ety ey s
+Z|M/ T TesD®

So|(lr + M
< i +1)>{8+ﬁ1[5“|’”2<1—em1é) —m(1-e)|

n
# 3 il s (1= ) — (1 ﬂ] *’72[””2(1 - o) —m(1- ™)
i=1
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:22: ZM lof |m2 m1 —emoimui) 1)

- m% (mz(oi — ;) — ™) 1) |:| }
=r+M)p <r,

which clearly shows that Jx € B; for any x € B;. Thus JB; C B;. Now, for x,y € C and for
each ¢ € [0, 1], we have

||(Jx) -y

_ a1
< sup [/ / mz(t—s _em t—s)) (s F;’Z) Lf(u,x(u)) —f(u,y(u))|du ds

|8] tefo,1]

& s _ a1
+ |,01(l')| |:/0 [) (emz(c?—s) _ eml(é—s)) (s FZ):) lf(u,x(u)) —f(u,y(u)) | duds

a—1
+ Z |]L| / / mz(ﬂ,—S) —e" 1(n;=s) ) (s 1—-(02) lf(u,x(u)) —f(u,y(u)) | du dS:|

s _ a-1
+ ’pz(t)’ [/0 /0 (emzu_s) - e"’l(l_s)) % [f(u,x(u)) —f(u,y(u)) ’ duds

o ()

(s 1)

I'(a) If (s, 2(u0)) = f (u, y(u))|duds:|}

— sup / |em2 (t-s) —e" 1(t=s | s* s
18] tef0,1] Ma+1)

T\ e _ -9 S
2\6=S8) _ 16—
+|,01(t)| ‘/(; |e e |F(a+1)ds
n n; , ‘ s
+Z|]l|/0 |em2('h—5)_eml(nl—5)|r(a+1) ds:|
|,02 / |em21 s) _ gl _s’ s ds
Mo +1)

m2 0j=S) _ (eml 0;=S) 1) ” ”
p— x pa—
m F(a + 1) 4

[62]€ | e € ok
_— 1_ 156 _ 1_ 28
|505|r(a+1){8+p1[5 a1 €)= (1= "))

n
+ Z ljiln§ |m2 (1 — ™) — my (1 —e'”2'7i)’:| + ,32|:|m2(1 —e™) —my(1-e™)|

i=1

IA

IA

:22: ZM lof ‘mz ml —gmiv) 4 1)
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—mﬂmﬁm—v»—d”@””+0q}ﬂx—ﬂ
= ¢gllx-yl,

where ¢ is given by (3.2) and depends only on the parameters involved in the problem. In
view of the condition £ < 1/¢, it follows that 7 is a contraction. Thus, by the contraction
mapping principle (Banach fixed point theorem), the problem (1.1)—(1.2) with §,% — 4808 >

0 has a unique solution on [0, 1]. This completes the proof. d
The next existence result is based on Leray—Schauder nonlinear alternative.

Theorem 3.5 (Nonlinear alternative for single valued maps [27]) Let C be a closed, convex
subset of be a Banach space E and U an open subset of C with 0 € U. Suppose that F : U —
C is a continuous, compact (that is, F(U) is a relatively compact subset of C) map. Then
either

(i) F has a fixed point in U, or

(ii) thereisa u € U (the boundary of U in C) and € € (0,1) with u = €eF(u).

We need the following assumptions:

(Hi1) There exist a function g € C([0, 1], R*), and a nondecreasing function Q : R* — R*

such that | (¢,y)| < g(®)Q(llyl), Y(¢,y) € [0,1] x R.
(Hy) There exists a constant K > 0 such that

7K >1
gl QIK)g

Theorem 3.6 Let f: [0,1] x R — R be a continuous function and suppose assumptions
(H,) and (Hy) are satisfied. Then the problem (1.1)—(1.2), with §,* — 4846, > 0, has at least

one solution on [0, 1].

Proof Consider the operator J : C — C defined by (3.1). We show that J maps bounded
sets into bounded sets in C = C([0, 1], R). For a positive number ¢,let B, = {x € C : ||x|| < ¢}

be a bounded set in C. Then we have

|T@| = sup |Tx)@)|
te[0,1]

_ pgy (8 —1)*!
m2 s) s)
< 3l dou: / / )7”0[) If (w0, (w)) | dus dls
m g™ ( ~ )OFI
+ o (®)] [f / 26 €9 SF(L;) If (6, 2() | die s
ni _ B ( M)
"”2 17;=5) _ ml(rh s)
+E |]z|/ / ) —— T [f(u,x(u))|dudsj|

1 K _ a—1
+|02(0)] |:/0 /(; (emz(l’s) - eml(l’s))% If (14, %(10)) | duu dls
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k o s ( my(oj—s) mi (o;—s)
emi=s) 1) (¢mloi=s) — 1)
+§ 2] / f ( -
i1 v Jo my my

(S _ u)a—l

it |

lglQe) { /‘,emzu_s) 9| Sy
6]  tefo1]|Jo Mo +1)
é (1
+|o1(®)] |:/o ‘em(é_s) —e™ _S)| T(a+1) ds
SO[
+ Z]lf 27 - | MNa+1) dSi|
1 e
+|pa(0)] |:~/(; e —em ] Mo +1) @

(€m2 (03=s) _ 1 (eml (0j=s) _ 1)
Ai d
+ Z | | / . a " 1) 'S

BIQO) [ T iy 1o
|505|F(a+1){ ’01|:E ’le(l e ) Wll(l e )‘

IA

4t

IA

+2Nmmmuwmw—wu—wwﬂ

i=1

:22: Zl)‘ o |m3 (m1 (0 — vy) — €™ 1+ 1)

— m}(my(o; — v;) — ™) 4 1) |:| },
which yields

é
1Tl < ;{%”f% {g e PiE (1 ) (1 )|
0

n
+ Z iln |ma (1 = €™%) — my (1 - 727)
i1

+@Dwu—wv—wa—wm

:§2:2|)\| a|m2 my (o — M i)+1)

— m} (my(0; — v;) — ™2 4 1) |i| }
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Next we show that 7 maps bounded sets into equicontinuous sets of C. Let 1, € [0, 1]
with ; < ¢, and y € B,, where B; is a bounded set of C. Then we obtain

|(T2)(t2) - (T x)(81)]

1 t s
< my(ta—s) _ mi(ta—=s)\ _ (,m2(t1—s) _ ,mi(t1-s)
<[ [T omte) sy

X Mf(u,x(u)) duds

@)

I(
tr ps B ~ (S_u)oz—l
ma(ta=s) _ milta=s)\ > )
+/tl /O(e e ) r@) f (14, %(11)) dus ds

& s _ -1
+ |P1(t2) - ,01(t1)| /0 /0 (emZ(s_s) - eml(é_s)) % [f(u,x(u)) | duds

n , ni s o (s - (_ )oz—l
+;|ji|/o /0|:(e 2(0i=s) _ g1 (1 ))%V(u,x(u))]duds}

a—-1

1 ps _
+|p2(t2) = pa2(t1)| [ /0 /0 (€721 — gm1=) % If (s, () | e dis

k o, s ( o (oj—s) my (o;—s)
em\oi=s) 1) (¢™M\is) 1)
+ E |)w'|/ / ( -
i1 v Jo 1745) mi

X % [f(u,x(u)) | du ds:| }
182111g11Q(Z)

< d (4 1 _ gm2-t1)) _ 1 _ gml2-t)
B |<308|F(Ot+1){(1 £)lm(1=¢ Jmm{l=e )

+ t‘l)‘ |m1(em2t2 _ em2t1) _ mz(emltz _ Mt ‘)

+|p1(82) = p1(11)| [ga’mz(l — ™M) —my (1- ™)

n
it 1) 1) |

i=1

+ | pa(t2) = pa(81)| |:|m2(1 —e™) —my(1-e™)]|

k

32 s

+ m Z |X,»|ol-“|m%(m2(oi - U,‘) — e"‘z(”’ vi) + 1)
0l ;1

— m3(my(o; — v;) — &™) 4 1) I} }

which tends to zero independently of x € B; as t, — t; — 0. As J satisfies the above as-
sumptions, it follows by the Arzeld—Ascoli theorem that 7 : C — C is completely contin-
uous.

The result will follow from the Leray—Schauder nonlinear alternative once it is shown
that the set of all solutions to the equation x = 6 7x is bounded for 6 € [0, 1]. For that, let
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x be a solution of x = 0 Jx for 0 € [0,1]. Then, for ¢ € [0,1], we have

lx(®)| = [0 Tx(8)]

_ 1(t-s) ( M)OFI
Séﬁfi]i/ I ) "y V)| duds

m gmE=s ( - )01—1
‘pl |:// 26 ¢ ))%[f(u,x(u))‘duds

=

)al

+ Z |]l| / / m2 ni—s) _ ml(r]._s)) ( F( ) lf(u,x(u))|du de|

1 K _ a1
+ \pz(t)| |:/0 /0 (emZ(l_S) - eml(l_s))% [f(u,x(u)) | duds

k o; s ( my(0;—s) m1(0;—s)
emoi=s) 1) (¢mMloi=s) — 1)
+ E |M|/ / -
1 v 0 my my

(s—u)* !

T@) [f(u,x(u)) | du dsi| }

t o
< 1D "g”Q(”x“) sup / }emz(t—s) _eml(t—s)‘ S ds
Hi tefo1] | Jo [ +1)
F s S

t m2(§=s) _ g1 E-s d
tloel| [l e
ma (1;=s) _ mi(ni=s) s d

+Z|}l|/ |e |I‘(oz+1) Sj|

! (1-s) (1-s) s*
+|p2(t)||:/o e B |F(a+1) @
o; (€m2 (0j=s) _ 1 (erl (03=s) _ 1)
+Z|A|/ " a+1)d5:|}

820g1QUEI [ [t (0 mey o e
7|80§|F(oz+1) {8+p1|:§ ’mz(l e ) m1(1 e )’

n
+ ) il [ (1= ) =i (1 ﬂ}

i=1

IA

+ ﬁ}|:|m2(1 —e™) —m(1-e™)|

:22: Zlk lof ’ml I’}’lg o — ;) — "2ivi) +1)

— m3(my (o — v;) — ™M) 4 1) |:| }

= llghQ(llxl)¢,
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which implies that

el _
lghQixe =

In view of (Hj), there is no solution x such that ||x|| # K. Let us set
u-= {xeC: [ <I(}.

The operator J : U — C is continuous and completely continuous. From the choice of U/,
there is no u € dU such that u = 0 7 (u) for some 0 € (0, 1). Consequently, by the nonlinear
alternative of Leray—Schauder type [27], we deduce that 7 has a fixed point # € U which
is a solution of the problem (1.1)—(1.2) with 8,2 — 48¢8, > 0. The proof is completed. [

Example 3.7 Consider the following multi-term fractional differential equation

(2¢D7" + 3°D*? + <D'3)x(t) = tan'x +sin(¢+3), O<t<l, (3.7)

A
4(1 + 1)
subject to the boundary conditions

3/5 4/5

x(s)ds+3/ x(s)ds. (3.8)
2

x(0) =0, x(1/6) = 2x(1/5) + x(2/5), x(l)=/
1 /3

/4

Here o = 1/3, § =1/6, 91, = 1/5, no = 2/5, vy = 1/4, vy = 2/3, 01 = 3/5, 09 = 4/5 j; = 2,
j2=1,)\.1=1,)\2:33nd

tan~!x + sin (¢ + 3),

A
S0 = e
A is positive number. Clearly, §7 — 4608, = 1 > 0, |[f(¢,x) — f(¢, )| < £|x — y| with £ = A/4.
Using the given values, we find that ¢ ~ 0.66348 and ¢; ~ 0.49011. Further, we have that
ft,x)| < 8(’17%)2 +sin(t + 3) = ¥(¢) and £¢; < 1 when A < 8.16143. As all the conditions of
Theorem 3.2 are satisfied, the conclusion of Theorem 3.2 applies to the problem (3.7)-
(3.8). On the other hand, as £¢ < 1 for A < 6.02882, there exists a unique solution for the

problem (3.7)—(3.8) on [0, 1] by Theorem 3.4.

Example 3.8 Consider the multi-term fractional differential equation:

1
(2°D7" + 3°D*? + °D'?)x(t) = + —), 0<t<l, (3.9)

2 x|
|| ( )
Vit* + 64 ( lx[+1/) 5
supplemented with the boundary conditions (3.8).

Observe that §7 — 48,80 = 1 > 0 and |f(¢,x)| < g(£)Q(|lx||) with g(¢) = ﬁ and Q(|lx) =
Il + % Due to condition (H3), using ¢ ~ 0.66348, we find that K > 0.15908. Thus, by the
conclusion of Theorem 3.6, there exists at least one solution for the equation (3.9) with
the boundary conditions (3.8).
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4 Existence results for problem (1.1)-(1.2) with §7 - 45,6, =0
In view of Lemma 2.7, we can transform problem (1.1)—(1.2) with 87 — 48,8, = 0 into an

equivalent fixed point problem as
x =Hx, (4.1)

where the operator H : C — C is defined by

F()

m(&—s) M)OHI
+x(t [/ /(E—S T ———f(u, () duds

i ni s _e-1
- Zji ./o /0 (n; — 5)e"i=9) %f(u,x(u)) du ds:|
i=1

(Hx)(t) = —[/ / (t — 5)e™t — ™ 1f(u,x(u)) duds

1 s —1
+ x2(8) |:/(; /0 (1 -s)e™19 %f(u,x(u)) duds

Zk:k /(Ti fs<m(0 _S)em(d—s) _ em(a—s) + 1)
i=1 o o .

(s—w!

X Tq)f(u,x(u)) du ds:| },

x1(t) and x»(t) are defined by (2.12). Moreover, we set

X1 = max X2 = max
te[0,1] te[0,1]
ﬂ:é (1+22)‘(m—1)e’"+1|
|82 |2 (e + 1)

m[s |(mt — 1)e™ +1|+Z|/,|n, (mn; 1) '""l+1|} (4.2)
i=1
k
~ Qi 1Ailof
+X221_1| |O—L
||
[(m —1)e™ + 1|
|83]m2T (o + 1)

|I’l’l(0‘l' - Ui)(em(“"_“") + 1) + 2(1 - e’"("i‘“i)) | ],
Br=8-

Now we present existence results for the problem (1.1)—(1.2) with 82 — 4808, = 0 without
proof. One can complete the proofs for these results following the arguments used in the

previous section.

Theorem 4.1 Let f:[0,1] x R — R be a continuous function satisfying conditions (A1)
and (Ay). Then the problem (1.1)—(1.2), with §7 — 4808, = 0, has at least one solution on
[0,1] if £B1 < 1, where By is given by (4.2).
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Theorem 4.2 Assume that f : [0,1] x R — R is a continuous function and condition (A;)
is satisfied. Then there exists a unique solution for problem (1.1)—(1.2), with 82 — 48¢8, = 0,
on [0,1] if £ < 1/B, where B is given by (4.2).

Theorem 4.3 Let f: [0,1] x R — R be a continuous function. In addition, suppose that
(H1) and the following condition hold:

(HY) There exists a constant Ky > 0 such that IIglléﬁ > 1, where B is defined by (4.2).
Then the problem (1.1)—(1.2), with 87 — 4808, = 0, has at least one solution on [0, 1].

Example 4.4 Let us consider the multi-term fractional differential equation

||

B
+t
1+ |x| )2¢ﬁ+4

(CD7/3 +2°DY3 4 CDl/?’)x(t) = ( +cost, O<t<l1, (4.3)

supplemented with the boundary conditions (3.8), where

x|

B
+
+ |x| )2¢ﬂ+4

+COSt

t,x) =
f(t,%) (1
and B is positive number.

Obviously, 82 — 4808, = 0, and |f(t,x) — f(¢,y)| < £|x — y| with £ = B/4. Using the given
values, we find that 8 ~ 0.39636 and B; ~ 0.10045. It is easy to check that |f(f,x)| <
BU+) 4 cost = 9 (¢) and £B1 < 1 when B < 39.82081. As all the condition of Theorem 4.1

2Vt 44
are satisfied, equation (4.3) with the boundary data (3.8) has at least one solution on [0, 1].

On the other hand, £8 < 1 whenever B < 10.091836, so there exists a unique solution for
equation (4.3) with the boundary data (3.8) on [0, 1] by Theorem 4.2.

5 Existence results for problem (1.1)-(1.2) with §2 - 4803, <0
By Lemma 2.8, the fixed point problem equivalent to the problem (1.1)—(1.2) with §7 —
480685 < 0 can be written as

x = Kux, (5.1)

where the operator K : C — C is defined by

t K a—-1
(waﬂzliz{ﬁ;1;eMfﬂgnbu-sﬁi%é%—fhhﬂu»duds
3 s . (S _ u)oz—l
~a(§-s) _
+ 11(¢) |:/0 /0 e sinb(& —s) ) f(u,x(u)) duds

u nops e
_;]}/0 /0 e~ ani-9) sinb(m—s)%f(u,x(u))duds}

1 s o ) (S _ u)q—l
a(1-s) _
+ 1(8) [/0 /0 e sinb(1 S)—F(q) f (u,(w)) du ds
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a? +b?

k .
: )\i [of] s
i / / (b—be™ ™ cos b(o —s)
v; JO

—ae " sinb(o —s)) Gl f (u,x(w)) duds
1_‘(a) ) )
71(¢) and 1,(¢) are defined by (2.15).
Further, we set

71 = max |‘L’1(L‘) , 7, = max |rz(t)|
te(0,1] tel0,1]

1 ~ .
y = m[(l + t2)|b—be_“cosb—ae_“ smh|
+7 [5“ |b — be ™ cos bE — ae™ sin b%“
n (5.2)
+ Z ljiln? |b — be " cos bn; — ae”*" sin bm‘:|
i=1
k
+’T\2 Z |)\,l'|0'ia |b(0’i - U,‘) - e—a(ai—ui) sinb(ai - U,‘)’ },
i=1
B |b—be *cosb —ae*sinb| _ 81 _ V48085 — 812
n=v 180b| (e + 1) ’ 28, ST,

Asbefore, we can formulate existence results for the problem (1.1)—(1.2) with §7 — 488> < 0
as follows.

Theorem 5.1 Let f: [0,1] x R — R be a continuous function satisfying conditions (A;)
and (Az). Then the problem (1.1)—(1.2), with §? — 4808, < 0, has at least one solution on
[0,1] provided that £y, < 1, where y is given by (5.2).

Theorem 5.2 Assume that f : [0,1] x R — R is a continuous function such that (A;) is
satisfied. Then there exists a unique solution for the problem (1.1)—(1.2), with §2 — 48,8, < 0,
on [0,1] if £ < 1/y, where y is given by (5.2).

Theorem 5.3 Let f:[0,1] x R — R be a continuous function. Further, suppose that (H;)
and the following condition hold:

(H3) There exists a constant K, > 0 such that IIgHgf%Q)V > 1, where y is defined by (5.2).
Then the problem (1.1)—(1.2), with 82 — 4808, < 0, has at least one solution on [0, 1].

Example 5.4 Consider the following multi-term fractional differential equation
(2°D7P +2°D*3 + DV )x(t) = f(t,x), O0<t<], (5.3)

equipped with the boundary conditions (3.8), where

(Cosx + e’zt), L>0.

L
W
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Clearly, 87 — 4808, = —4 < 0 and |f(¢,x) — f(¢,y)| < £|x — y| with £ = L/9. Using the given
values, it is found that y = 0.57912 and y; =~ 0.38098. Further, it is easy to check that
ft,x)| < Lg(l*t—d%zé) = ¥(¢t) and £y; < 1 when L < 23.62329. As all the conditions of Theo-
rem 5.1 are satisfied, equation (5.3) with the boundary conditions (3.8) has at least one
solution on [0, 1]. On the other hand, since ¢y < 1 for L < 15.54082, there exists a unique
solution for equation (5.3) with the boundary conditions (3.8) on [0, 1] by Theorem 5.2.

6 Conclusions

We have derived existence results for a multi-term fractional differential equation associ-
ated with different combinations (87 — 4808, > 0, 87 — 4808 = 0, and 87 — 4808, < 0) of the
constants involved in the equation equipped with nonlocal multi-point and multi-strip
boundary conditions. Our results are not only new in the given context, but also yield
some interesting new results as special cases of the obtained work. For instance, by tak-
ing 1, =0,i=1,...,k in the results of this paper, we obtain new results for the multi-term
fractional differential equation (1.1) associated with the boundary condition of the form:
x(0) = 0, x(§) = Y, jix(n:), x(1) = 0. Our results correspond to those for (1.1) with the
nonlocal multi-strip boundary condition: x(0) = 0, x(§) = 0, x(1) = Zle A f;f x(s) ds if we
fixj; =0,i=1,...,nin the obtained results.
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