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Abstract
The global transmission of infectious diseases poses huge threats to human.
Traditional heterogeneous mean-field models on metapopulation networks ignore
the heterogeneity of individuals who are in different disease states in subpopulations
with the same degree, resulting in inaccuracy in predicting the spread of disease. In
this paper, we take heterogeneity of susceptible and infectious individuals in
subpopulations with the same degree into account, and propose a deterministic
unclosed general model according to Markov process on metapopulation networks
to curve the global transmission of diseases precisely. Then we make the general
model closed by putting forward two common assumptions: a two-dimensional
constant distribution and a two-dimensional log-normal distribution, where the
former is equivalent to the heterogeneous mean-field model, and the latter is a
system of weighted ordinary differential equations. Further we make a stability
analysis for two closed models and illustrate the results by numerical simulations.
Next, we conduct a series of numerical simulations and stochastic simulations. Results
indicate that our general model extends and optimizes the mean-field model. Finally,
we investigate the impacts of total mobility rate on disease transmission and find that
timely and comprehensive travel restriction in the early stage is an effective
prevention and control of infectious diseases.

Keywords: Metapopulation network; Infectious diseases; Marcov process; Moment
closure

1 Introduction
In recent years, global transmission of infectious diseases, such as severe acute respira-
tory syndromes (SARS) [1], influenza A (H1N1) flu [2], avian influenza [3], Middle East
respiratory syndrome coronavirus (MERS-CoV) [4], Ebola virus disease [5], and zika [6],
has been threatening human beings. Great attention has been paid to the effects of human
mobility on disease transmission.

In order to study the global spread of infectious diseases, researchers applied a metapop-
ulation model to infectious diseases [7, 8]. The concept of metapopulation was put for-
ward by Levins [9, 10] for the first time to investigate the processes of local extinction,
recolonization and regional persistence of populations, which means “the population of
populations”. With the development of network transmission dynamics, the metapopu-
lation model has been successfully applied to understand the transmission dynamics of
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Figure 1 A metapopulation network model of SIS infections with individuals’ mobility. The model is
composed of a heterogeneous network of subpopulations, connected by mobility processes. Individuals in
each subpopulation stay one of the two states: one is susceptible; the other is infectious. Individuals can
move from a subpopulation to another along links of network. Once there exist infectious individuals in a
subpopulation, it becomes infectious. For infectious diseases, a susceptible individual can be infected at rate
β and become infectious, while an infectious individual may recover at rate μ and be susceptible

spatially structured populations with well-defined social units (on a scale of countries, re-
gions, cities, small as towns, villages, families) connected through individuals’ mobility on
networks, named “metapopulation networks” (see Fig. 1).

In general, we consider susceptible-infectious-susceptible (SIS) transmission process on
a metapopulation network with V nodes, label the nodes with the elements of integer set
A = {1, . . . , V }, and denote by Sk

j and Ik
j the number of susceptible and infectious individ-

uals in a node which gets label j and degree k, respectively. The total individuals of node
whose label is j and degree is k is Nk

j and Nk
j = Sk

j + Ik
j . Then the sum of susceptible and

infectious individuals of all nodes with degree k are

∑

j∈A

Sk
j ,

∑

j∈A

Ik
j ,

respectively. Let V ∗
k denote the number of nodes with degree k. According to heteroge-

neous mean-field (HMF) theory, assuming that subpopulations with the same degree are
statistical equivalence, that is to say, the average number of individuals in all nodes with
degree k is

Nk =
1

V ∗
k

∑

j∈A

Nk
j .
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Further, the average numbers of susceptible and infectious individuals in nodes with de-
gree k are

Sk =
1

V ∗
k

∑

j∈A

Sk
j , Ik =

1
V ∗

k

∑

j∈A

Ik
j , (1.1)

respectively.
Based on the HMF assumption, Colizza and Vespignani [11] proposed some models

to address the transmission of diseases on heterogeneous metapopulation networks un-
der two different mobility patterns. They assumed that the process of diseases spreading
was in the first, and mobility process next. For the mobility process, at each time step,
an individual in a subpopulation with degree k, whether susceptible or infectious, travels
to other subpopulations at total mobility rate δ. Along a link, an individual in a subpop-
ulation whose degree is k travels to another subpopulation of degree k′ at rate dkk′ , and
δ = k

∑
k′ P(k′|k)dkk′ . When the mobility rate depends on traffic (passengers along the link),

dkk′ = δ
wkk′

Tk
, (1.2)

where wkk′ represents the average traffic (passengers along the link node with degree k
and node with degree k′ per day) on the link between two subpopulations with degrees k
and k′, and behaves as

wkk′ = w0
(
kk′)θ , (1.3)

here w0 and θ are positive constants, Tk is the total average traffic (passengers move out
of node) of subpopulations with degree k (per day), and

Tk = k
∑

k′
P
(
k′|k)wkk′ . (1.4)

Then Colizza and Vespignani established a model as follows:

İk = –δIk + (1 – δ)
[

–μIk + β
SkIk

Nk

]
+ k

∑

k′
P
(
k′|k)dk′k

[
(1 – μ)Ik′ + β

Sk′ Ik′

Nk′

]
. (1.5)

As is known in the case of complex networks, the notation P(k′|k) represents the condi-
tional probability that any given edge departing from a node of degree k is pointing to a
node of degree k′. Moreover, this work provided a good tool to calculate a global invasion
threshold.

Applications of HMF theory have launched a variety of researches: factors including
network structures [12–15], human mobility patterns [11, 16–18], human behaviors [19–
22], human contact patterns [14, 23], travel restrictions [24], heterogeneous dwelling time
in subpopulations [18], pathogen competition [25], and so forth, have been investigated.
It has been shown that substrate network structures play an essential role in the spatial
spread of infectious diseases [12, 13, 15]. In real-world networks, human mobility patterns
vary in a very complicated way, e.g., large-scale air-travel (typical case [11]), small-scale
recurrent visits of subpopulations (or commuting flows) [16–18, 26, 27], etc. Safety-driven
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people’s behavioral responses to the infectious diseases have also been found to be able
to accelerate the infectious disease spread [19–22], contrary to willingness. With regard
to human contact patterns, heterogeneous mixing [23] and subpopulations with network
topology have been investigated.

For the results reported so far, the vast majority of researches are based on HMF theory
[11]. According to (1.1), under the assumption that size of population in nodes with the
same degree k stays the same, the equations

∑

j∈A

Sk
j Ik

j = V ∗
k SkIk (1.6)

are equivalent to the case where the number of susceptible and infectious individuals in
nodes whose degree are k are the same with each other, respectively. This conclusion holds
when V ∗

k = 1. For V ∗
k = 2, with loss of generality, these two nodes get label 1 and 2, respec-

tively. The number of susceptible and infectious individuals in node label 1 are Sk
1 and Ik

1 .
And there are Sk

2 susceptible individuals and Ik
2 infectious individuals in a node whose label

is 2. From (1.6), we have

Sk
1Ik

1 + Sk
2Ik

2 = 2SkIk . (1.7)

Substituting (1.1) into (1.7), and multiplying by 2 on the two sides of the above equations
lead to

2
(
Sk

1Ik
1 + Sk

2Ik
2
)

=
(
Sk

1 + Sk
2
)(

Ik
1 + Ik

2
)
,

yielding

(
Sk

1 – Sk
2
)(

Ik
1 – Ik

2
)

= 0.

To make the equations hold, either Sk
1 = Sk

2 or Ik
1 = Ik

2 , according to the assumption Sk
1 + Ik

1 =
Nk

1 = Nk
2 = Sk

2 + Ik
2 , so both Sk

1 = Sk
2 and Ik

1 = Ik
2 are satisfied. For the case of V ∗

k > 2, for
simplicity, label these V ∗

k nodes with integers 1, . . . , V ∗
k , respectively, according to Eq. (1.6)

and Eq. (1.1), we have

V ∗
k

V∗
k∑

j=1

Sk
j Ik

j =
V∗

k∑

j=1

Sk
j

V∗
k∑

j=1

Ik
j .

We use the assumption that all nodes with the same degree k have the same number of
individuals, i.e., Nk

i = Nk
j , i, j = 1, . . . , V ∗

k . Replacing Sk
j by Nk

j – Ik
j , and after some algebra,

we have

V∗
k∑

i=1

(
V ∗

k – 1
)(

Ik
i
)2 –

V∗
k∑

i=1

Ik
i

V∗
k∑

j=1,j �=i

Ik
j = 0,

that is,

V∗
k∑

i=1

V∗
k∑

j=i+1

(
Ik

i – Ik
j
)2 = 0.
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Table 1 Abbreviations in the article

Abbreviations Full names

SARS Severe Acute Respiratory Syndromes
MERS-CoV Middle East respiratory syndrome coronavirus
SIS susceptible-infectious-susceptible
HMF heterogeneous mean-field
CTMC continuous-time Markov chain
DFE disease-free equilibrium

Hence Ik
i = Ik

j , accordingly Sk
i = Sk

j , i, j = 1, . . . , V ∗
k . From what has been discussed above,

under the assumption that the number of individuals of all nodes with degree k keeps
consistent, the number of susceptible individuals and infectious individuals of all nodes
with degree k, respectively, being the same is a necessary condition for Eq. (1.6). Once
Ik

i �= Ik
j for some i and j, Eq. (1.6) does not hold.

It is obvious that the HMF assumption in metapopulation network ignores hetero-
geneities in subpopulations with the same degree. Under this assumption, the total in-
dividuals, the numbers of susceptible individuals and infectious individuals in subpopu-
lations with the same degree are always the same at any time, respectively, which is hard
to achieve. Even though the size of a population in nodes with the same degree is identi-
cal, there may be a great difference for individuals in different states among nodes in the
course of infectious disease spreading, resulting in error for forecasting infectious disease
spreading. Motivated by reducing even eliminating this error, we take heterogeneities in
subpopulations with the same degree into account, define the number of susceptible and
infectious individuals in subpopulations with the same degree as a two-dimensional ran-
dom variable and we propose a deterministic SIS model according to a continuous-time
Markov chain (CTMC) on heterogeneous metapopulation networks to curve the global
transmission of infections more precisely. The results show that our model extends and
optimizes the HMF model in [11].

The paper is organized as follows. In Sect. 2, we firstly present necessary assumptions
and propose a deterministic general model based on CTMC. Next, two moment closure
models are given based on a two-dimensional constant distribution and a two-dimensional
log-normal distribution in Sects. 3 and 4, respectively. Furthermore, in Sect. 5 we conduct
numerical simulations on models and stochastic realizations. Conclusions and a discus-
sion are given in Sect. 6. For simplicity, the definitions of abbreviations presented in the
article are given in Table 1.

2 The SIS infectious disease model based on CTMC
In this section, following the idea of stochastic process, we derive a deterministic SIS
model on metapopulation network. The following assumptions will be used throughout
the paper.

(H1) Global spread of infectious diseases is relatively fast timescales such that changes in
demographics (e.g., births, aging, deaths) is negligible.

(H2) Network is connected and the minimal and maximal degrees are kmin and kmax,
respectively.

(H3) The memory of individuals for the origin is not taken into account.
(H4) For the Markov process, at each time step �t, the following four events occur si-

multaneously.
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Table 2 Parameters description

Major parameters Description

M The maximum number of individuals among all subpopulations.
(Sk , Ik ) Two-dimensional random variable with the numbers of susceptible and infectious

individuals in a subpopulation with degree k.
Vk(s, i)(t) The number of nodes (subpopulations) with degree k, in which susceptible and infectious

individuals are s and i at time t, respectively, s, i ∈ 0, 1, . . . ,M.
pks,i(t) Probability that the numbers of susceptible and infectious individuals in a subpopulation

with degree k are s and i at time t, respectively, that is,
pks,i(t) = P{(Sk , Ik )(t) = (s, i), Sk , Ik ∈ 0, 1, . . . ,M}.

pks+�s,i+�i(�t) The transition probability from state (s, i) to state (s +�s, i +�i) in the interval �t in a
homogeneous Markov process.

〈f (s, i)〉k The expectation of the function f (s, i), 〈f (s, i)〉k =∑
s,i f (s, i)p

k
s,i . Specially, 〈s〉k and 〈i〉k are

expectations of susceptible individuals and infectious individuals, respectively.

(i) Disease transmission process: each susceptible individual is infected at
transmission rate β by infectious individuals.

(ii) Recovery process: every infectious individual recovers at rate μ.
(iii) Mobility process consists of two processes: emigration and immigration.

For a subpopulation with degree k, in emigration process, each individual
in a subpopulation leaves this subpopulation at rate δ to its neighbor
subpopulations; while in an immigration process, each individual in
neighbor subpopulation with degree k′ travels to it at rate dk′k .

2.1 Model derivation
Before using CTMC to derive the deterministic model, in Table 2 we present the necessary
notations for model parameters and model formation. To clarify the derivation of our
models, the probability function is elucidated in what follows.

The probability function with respect to susceptible and infectious individuals in a sub-
population with degree k is

pk
s,i(t) = P

{(
Sk , Ik)(t) = (s, i)

}
=

Vk(s, i)(t)
V ∗

k
,

where s = 0, 1, . . . , M, i = 0, 1, . . . , M – s, and
∑

s,i pk
s,i(t) = 1. If (s, i) lies outside of this range,

the probability is assumed to be zero.

2.1.1 The stochastic process of two-dimensional random variable (Sk , Ik)
For this stochastic process, firstly, we derive the forward Kolmogorov differential equation
about two-dimensional random variable (Sk , Ik).

The forward Kolmogorov differential equation about (Sk , Ik) Define the transition prob-
ability about (Sk , Ik) from state (Sk , Ik)(t) = (s, i) to state (Sk , Ik)(t + �t) = (s + �s, i + �i) in
the time interval �t as

pk
s+�s,i+�i(t + �t, t) = P

{(
Sk , Ik)(t + �t) = (s + �s, i + �i)|(Sk , Ik)(t) = (s, i))

}
.

Note that, for a homogeneous Markov process, the transition probability does not depend
on the starting time t, thus it is expressed as pk

s+�s,i+�i(�t). In the paper, we assume the
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Markov process is homogeneous. Therefore, the transition probabilities about (Sk , Ik) sat-
isfy

pk
s+�s,i+�i(�t) =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

βsi�t + o(�t), �s = –1,�i = 1;

μi�t + o(�t), �s = 1,�i = –1;

δs�t + o(�t), �s = –1,�i = 0;

δi�t + o(�t), �s = 0,�i = –1;

k
∑

k′
∑

s′ ,i′ P(k′|k)dk′ks′�t + o(�t), �s = 1,�i = 0;

k
∑

k′
∑

s′ ,i′ P(k′|k)dk′ki′�t + o(�t), �s = 0,�i = 1;

1 – (βsi + μi + δs + δi

+ k
∑

k′
∑

s′ ,i′ P(k′|k)dk′ks′

+ k
∑

k′
∑

s′ ,i′ P(k′|k)dk′ki′)�t + o(�t), �s = 0,�i = 0;

o(�t), otherwise,

(2.1)

in which the time step �t must be chosen sufficiently small

max
k∈{kmin,...,kmax}

{(
βsi + μi + δs + δi + k

∑

k′

∑

s′ ,i′
P
(
k′|k)dk′ks′

+ k
∑

k′

∑

s′ ,i′
P
(
k′|k)dk′ki′

)
�t

}
≤ 1.

Hence, we obtain the forward Kolmogorov equation as follows:

pk
s,i(t + �t) = β(s + 1)(i – 1)pk

s+1,i–1(t)�t + μ(i + 1)pk
s–1,i+1(t)�t

+ δ(s + 1)pk
s+1,i(t)�t + δ(i + 1)pk

s,i+1(t)�t

+ kpk
s–1,i(t)

∑

k′

∑

s′ ,i′
P
(
k′|k)dk′k

(
s′ + 1

)
pk

s′+1,i′ (t)�t

+ kpk
s,i–1(t)

∑

k′

∑

s′ ,i′
P
(
k′|k)dk′k

(
i′ + 1

)
pk

s′ ,i′+1(t)�t

+ pk
s,i(t)

{
1 –

(
βsi + μi + δs + δi + k

∑

k′

∑

s′ ,i′
P
(
k′|k)dk′ks′pk

s′ ,i′ (t)

+ k
∑

k′

∑

s′ ,i′
P
(
k′|k)dk′ki′pk

s′ ,i′ (t)
)

�t
}

+ o(�t).

Subtracting pk
s,i(t) on both sides, dividing by �t and letting �t → 0 give rise to the forward

Kolmogorov differential equation,

dpk
s,i(t)
dt

= β(s + 1)(i – 1)pk
s+1,i–1(t) + μ(i + 1)pk

s–1,i+1(t)

+ δ(s + 1)pk
s+1,i(t) + δ(i + 1)pk

s,i+1(t)

+ kpk
s–1,i(t)

∑

k′

∑

s′ ,i′
P
(
k′|k)dk′k

(
s′ + 1

)
pk

s′+1,i′ (t)
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+ kpk
s,i–1(t)

∑

k′

∑

s′ ,i′
P
(
k′|k)dk′k

(
i′ + 1

)
pk

s′ ,i′+1(t)

– pk
s,i(t)

{
βsi + μi + δs + δi + k

∑

k′

∑

s′ ,i′
P
(
k′|k)dk′ks′pk

s′ ,i′ (t)

+ k
∑

k′

∑

s′ ,i′
P
(
k′|k)dk′ki′pk

s′ ,i′ (t)
}

. (2.2)

Now we calculate the expectations for susceptible and infectious individuals: 〈s〉k and
〈i〉k in subpopulations with degree k.

The deterministic equations of expectations 〈s〉k , 〈i〉k Further, we apply the obtained
forward Kolmogorov differential equation (2.2) to derive the deterministic equations of
〈s〉k , 〈i〉k , i.e., the rates of changes of the expectations 〈s〉k , 〈i〉k of Sk , Ik , respectively.

Now, we give the deterministic equation of 〈s〉k . Multiplying Eq. (2.2) by s and summing
over s and i, yield

d〈s〉k(t)
dt

= β
∑

s,i

s(s + 1)(i – 1)pk
s+1,i–1(t) + μ

∑

s,i

s(i + 1)pk
s–1,i+1(t)

+ δ
∑

s,i

s(s + 1)pk
s+1,i(t) + δ

∑

s,i

s(i + 1)pk
s,i+1(t)

+ k
∑

s,i

spk
s–1,i(t)

∑

k′

∑

s′ ,i′
P
(
k′|k)dk′k

(
s′ + 1

)
pk

s′+1,i′ (t)

+ k
∑

s,i

spk
s,i–1(t)

∑

k′

∑

s′ ,i′
P
(
k′|k)dk′k

(
i′ + 1

)
pk

s′ ,i′+1(t)

–
∑

s,i

spk
s,i(t)

{
βsi + μi + δs + δi + k

∑

k′

∑

s′ ,i′
P
(
k′|k)dk′ks′pk

s′ ,i′ (t)

+ k
∑

k′

∑

s′ ,i′
P
(
k′|k)dk′ki′pk

s′ ,i′ (t)
}

. (2.3)

Simplifying Eq. (2.3), we obtain

d〈s〉k(t)
dt

= –β
∑

s,i

(s + 1)(i – 1)pk
s+1,i–1(t) + μ

∑

s,i

(i + 1)pk
s–1,i+1(t)

– δ
∑

s,i

(s + 1)pk
s+1,i(t) + k

∑

k′

∑

s′ ,i′
P
(
k′|k)dk′k

(
s′ + 1

)
pk

s′+1,i′ (t). (2.4)

Substituting 〈s〉k =
∑

s,i spk
s,i, 〈i〉k =

∑
s,i ipk

s,i and 〈si〉k =
∑

s,i sipk
s,i into Eq. (2.4), we get

d〈s〉k

dt
= –β〈si〉k + μ〈i〉k – δ〈s〉k + k

∑

k′
P
(
k′|k)dk′k〈s〉k′ , (2.5)

where 〈si〉k represents the average total number of all susceptible individuals contacting
with infectious individuals in a subpopulation with degree k.
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Applying the same approach, we give the deterministic equation about 〈i〉k as follows:

d〈i〉k

dt
= β〈si〉k – μ〈i〉k – δ〈i〉k + k

∑

k′
P
(
k′|k)dk′k〈i〉k′ . (2.6)

We therefore obtain the following deterministic model:

d〈s〉k

dt
= –β〈si〉k + μ〈i〉k – δ〈s〉k + k

∑

k′
P
(
k′|k)dk′k〈s〉k′ , (2.7a)

d〈i〉k

dt
= β〈si〉k – μ〈i〉k – δ〈i〉k + k

∑

k′
P
(
k′|k)dk′k〈i〉k′ . (2.7b)

For the sake of convenience, we call system (2.7a)–(2.7b) the general model. Obviously,
the general model (2.7a)–(2.7b) is not closed. In order to make it closed, we need to derive
the rate of changes of 〈si〉k . Multiplying Eq. (2.2) by the product si, summing over s and i
and simplifying yield

d〈si〉k

dt
=

∑

s,i

si
dpk

s,i

dt
,

= β
〈
s2i

〉
k – β

〈
si2〉

k – (β + γ + 2δ)〈si〉k + γ
〈
i2〉

k – γ 〈i〉k

+ k〈i〉k
∑

k′
P
(
k′|k)dk′k〈s〉k′ + k〈s〉k

∑

k′
P
(
k′|k)dk′k〈i〉k′ ,

here 〈s2i〉k =
∑

s,i s2ipk
s,i, and 〈si2〉k =

∑
s,i si2pk

s,i. The derivation above brings new parame-
ters into play, 〈i2〉k , the average number of all infectious individuals contacting with infec-
tious individuals in a subpopulation with degree k. In the same way, the rate of change of
〈i2〉k reads

d〈i2〉k

dt
=

∑

s,i

i2 dpk
s,i

dt
,

= 2β
〈
si2〉

k + β〈si〉k – 2(γ + δ)
〈
i2〉

k + (γ + δ)〈i〉k

+ 2k〈i〉k
∑

k′
P
(
k′|k)dk′k〈i〉k′ + k〈s〉k

∑

k′
P
(
k′|k)dk′k〈i〉k′ .

So far, the model is still not closed because of the appearance of the third-order cumulants:
〈s2i〉k and 〈si2〉k . Notice that calculation of third-order cumulants may bring new variables
into play: fourth-order cumulants, and so on. Approaching the third-order cumulants by
first- and second-order cumulants becomes necessary. It is clear that with different two-
dimensional quasi-stationary distributions of pk

s,i, the closed models vary. We will present
two main moment closure equations in Sects. 3 and 4.

2.2 Model analysis
Although the general model (2.7a)–(2.7b) is not closed, there exists a common property.
Notice that the average total number of individuals in a subpopulation with degree k sat-
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isfies

Nk = 〈s〉k + 〈i〉k .

Summing (2.7a) and (2.7b), we have

dNk

dt
= –δNk + k

∑

k′
P
(
k′|k)dk′kNk′ . (2.8)

In the paper, we overlook the degree correlations, that is to say, P(k′|k) = k′P(k′)/〈k〉. Let

N̄ =
∑

k′
P
(
k′)Nk′ .

Equation (2.8) becomes

dNk

dt
= –δNk + δ

k1+θ

〈k1+θ 〉 N̄ , (2.9)

where N̄ , which is a positive constant, represents the average number of individuals in a
subpopulation. It is obvious that Eqs. (2.9) have a unique globally asymptotically stable
equilibrium N∗

k = k1+θ

〈k1+θ 〉 N̄ , k = kmin, . . . , kmax.

3 Moment closure based on two-dimensional constant distribution
We first present a closed model based on a two-dimensional constant distribution.

3.1 Derivation of moment closure model based on two-dimensional constant
distribution

For a fixed degree k, when the quasi-stationary of pk
s,i approaches a two-dimensional con-

stant distribution, we have 〈si〉k = 〈s〉k〈i〉k , so the closed model is

d〈s〉k

dt
= –β〈s〉k〈i〉k + μ〈i〉k – δ〈s〉k + k

∑

k′
P
(
k′|k)dk′k〈s〉k′ , (3.1a)

d〈i〉k

dt
= β〈s〉k〈i〉k – μ〈i〉k – δ〈i〉k + k

∑

k′
P
(
k′|k)dk′k〈i〉k′ . (3.1b)

Remark 3.1 The assumption of two-dimensional constant distribution is equivalent to
HMF assumption. Under the supposition that mobility process and disease transmission
process occur simultaneously, our model (3.1a)–(3.1b) and the models in [11] are equiva-
lent.

In order to study the asymptotic behavior of model, we consider the limiting system of
(3.1a)–(3.1b),

d〈i〉k

dt
= β

(
N∗

k – 〈i〉k
)〈i〉k – μ〈i〉k – δ〈i〉k + k

∑

k′
P
(
k′|k)dk′k〈i〉k′ . (3.2)

For simplicity, we call (3.2) the moment closure model I.
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3.2 Model analysis
3.2.1 Global basic reproduction number
Firstly, we deduce global basic reproduction number by the approach in van den Driessche
and Watmough [28]. Note that model (3.2) admits a unique disease-free equilibrium (DFE)

E0 = (
n︷ ︸︸ ︷

0, . . . , 0), n = kmax – kmin + 1. In the DFE E0, the rate of appearance of new infections
F and the rate of transfer of individuals out of the compartments V are given by

F =

⎛

⎜⎜⎜⎜⎝

f11 f12 · · · f1n

f21 f22 · · · f2n
...

...
. . .

...
fn1 fn2 · · · fnn

⎞

⎟⎟⎟⎟⎠

and

V = (μ + δ)En,

where

fij =

⎧
⎨

⎩
βN∗

(i+kmin–1) + δ
(i+kmin–1)(1+θ )

〈k(1+θ )〉 P(i + kmin – 1), i = j,

δ
(i+kmin–1)(1+θ )

〈k(1+θ )〉 P(j + kmin – 1), i �= j,

here i, j ∈ 1, . . . , n.
Thus

FV –1 =
1

(μ + δ)
F .

Using the next-generation matrix [28], the global basic reproduction number is R0 =
ρ(FV –1), the spectral radius of the matrix FV –1.

3.2.2 Global stability of disease-free equilibrium
Since 〈i〉k ∈ [0, N∗

k ] for k = kmin, . . . , kmax, we study system (3.2) in �n =
∏kmax

k=kmin
[0, N∗

k ].

Lemma 3.1 The set �n is positively invariant for system (3.2).

Theorem 3.1 For system (3.2), if R0 < 1, DFE E0 is globally attractive in �n.

Proof To complete the proof, it is sufficient to show that

lim
t→+∞〈i〉k = 0, k = kmin, . . . , kmax.

For system (3.2) with 〈i〉k ≤ N∗
k , we can obtain the inequality group

d〈i〉k

dt
≤ βN∗

k 〈i〉k – μ〈i〉k – δ〈i〉k + k
∑

k′
P
(
k′|k)dk′k〈i〉k′ . (3.3)
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Define an auxiliary linear system

d〈i〉k

dt
= βN∗

k 〈i〉k – μ〈i〉k – δ〈i〉k + k
∑

k′
P
(
k′|k)dk′k〈i〉k′ . (3.4)

The coefficient matrix of the above system is F – V . When R0 = ρ(FV –1) < 1, all eigen-
values of F – V lie in the left half plane. Thus each non-negative solution of (3.3) satisfies

lim
t→+∞〈i〉k = 0, k = kmin, . . . , kmax.

This implies that the zero solution of (3.4) is globally asymptotically stable. By comparison,
each non-negative solution of (3.2) satisfies

lim
t→+∞〈i〉k = 0, k = kmin, . . . , kmax.

Accordingly, DFE E0 of system (3.2) is globally attractive. �

3.2.3 Global stability of endemic equilibrium
Next, we analyze the existence and global stability of endemic equilibrium.

Theorem 3.2 If R0 > 1, system (3.2) admits a unique endemic equilibrium E∗ = (〈i〉∗kmin
, . . . ,

〈i〉∗kmax
) which is globally asymptotically stable with respect to any initial value y(0) ∈ �n –

{0}:=�+
n .

Proof We will use the theory of cooperate system in Corollary 3.2 in [29] to prove the
existence and global stability of endemic equilibrium.

In fact, let f : �+
n → �n be defined by the right-hand side of (3.2), f = (fkmin , . . . , fkmax ).

Clearly f is continuously differentiable, f (0) = 0, fi(y) ≥ 0 for all y (= (〈i〉kmin , . . . , 〈i〉kmax )) ∈
�+

n with yi = 0 and ∂fi/∂yj ≥ 0, i �= j for y ∈ �+
n . So f is cooperative. Clearly Dy =

(∂fi/∂yj)kmin≤i,j≤kmax is irreducible for every y ∈ �+
n .

Note that, for ∀α ∈ (0, 1) and yi > 0,

fi(αy) = α

{
β
(
N∗

k – α〈i〉k
)〈i〉k – μ〈i〉k – δ〈i〉k + k

∑

k′
P
(
k′|k)dk′k〈i〉k′

}

≥ α

{
β
(
N∗

k – 〈i〉k
)〈i〉k – μ〈i〉k – δ〈i〉k + k

∑

k′
P
(
k′|k)dk′k〈i〉k′

}

= αfi(y).

Thus f is strong sublinear on �+
n . By Lemma 2 and Corollary 3.2 in [29], we conclude

that system (3.2) admits a unique endemic equilibrium E∗ = (〈i〉∗kmin
, . . . , 〈i〉∗kmax

) which is
globally asymptotically stable. �

4 Moment closure based on two-dimensional log-normal distribution
Following Keeling [30] we assume that the quasi-stationary distribution is approximately
two-dimensional log-normal. The calculation of all cumulants of orders greater than first
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is performed by considering all possible pairwise combinations of the elements and mul-
tiplying by the appropriate moment. In this case,

〈si〉k = 〈s〉k〈i〉kξk =
∑

s,i

sipk
s,i, (4.1)

where ξk is the multiplicative covariance between infectious and susceptible individuals
within a subpopulation with degree k. Taking derivatives by t at both ends of the second
equality at the same time, transposition, substitution and simplification, leads to

〈s〉k〈i〉k
dξk

dt
=

∑

s,i

si
dpk

s,i

dt
– 〈s〉kξk

d〈i〉k

dt
– 〈i〉kξk

d〈s〉k

dt

= β〈s〉2
k〈i〉kξ

2
k ( ˆV〈s〉k + 1) – β〈s〉k〈i〉2

kξ
2
k ( ˆV〈i〉k + 1)

– (β + 2μ + 2δ)〈s〉k〈i〉kξk – μ〈i〉k

+
(
μ ˆV〈i〉k + μ〈s〉k + δξk

)〈i〉2
k + δ〈s〉2

kξk

+ k
(〈i〉k – 〈s〉kξk

)∑

k′
P
(
k′|k)dk′k〈s〉k′

+ k
(〈s〉k – 〈i〉kξk

)∑

k′
P
(
k′|k)dk′k〈i〉k′ .

This brings in two other parameters, ˆV〈s〉k and ˆV〈i〉k , the variance in susceptibles and in-
fectious within a subpopulation with degree k. In a similar way, we obtain

〈s〉2
k

d ˆV〈s〉k

dt
=

∑

s,i

s2 dpk
s,i

dt
– 2〈s〉k ˆV〈s〉k

d〈s〉k

dt

= –2β〈s〉2
k〈i〉k ˆV〈s〉k ξk(ξk – 1) + β〈s〉k〈i〉kξk + μ〈i〉k + δ〈s〉k

+ 2μ〈s〉k〈i〉k(ξk – ˆV〈s〉k ) + 2k〈s〉k(1 – ˆV〈s〉k )
∑

k′
P
(
k′|k)dk′k〈s〉k′

+ k
∑

k′
P
(
k′|k)dk′k〈s〉k′

and

〈i〉2
k

d ˆV〈i〉k

dt
=

∑

s,i

i2 dpk
s,i

dt
– 2〈i〉k ˆV〈i〉k

d〈i〉k

dt

= 2β〈s〉k〈i〉2
k

ˆV〈i〉k ξk(ξk – 1) + β〈s〉k〈i〉kξk + (μ + δ)〈i〉k

+ 2k〈i〉k(1 – ˆV〈i〉k )
∑

k′
P
(
k′|k)dk′k〈i〉k′ + k

∑

k′
P
(
k′|k)dk′k〈i〉k′ .

From the above derivation, we obtain a moment closure model based on the log-normal
distribution

d〈s〉k

dt
= –β〈s〉k〈i〉kξk + μ〈i〉k – δ〈s〉k + k

∑

k′
P
(
k′|k)dk′k〈s〉k′ , (4.2a)
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d〈i〉k

dt
= β〈s〉k〈i〉kξk – μ〈i〉k – δ〈i〉k + k

∑

k′
P
(
k′|k)dk′k〈i〉k′ , (4.2b)

〈s〉k〈i〉k
dξk

dt
= β〈s〉2

k〈i〉kξ
2
k ( ˆV〈s〉k + 1) – β〈s〉k〈i〉2

kξ
2
k ( ˆV〈i〉k + 1)

– (β + 2μ + 2δ)〈s〉k〈i〉kξk +
(
μ ˆV〈i〉k + μ〈s〉k + δξk

)〈i〉2
k

+ δ〈s〉2
kξk – μ〈i〉k + k

(〈i〉k – 〈s〉kξk
)∑

k′
P
(
k′|k)dk′k〈s〉k′

+ k
(〈s〉k – 〈i〉kξk

)∑

k′
P
(
k′|k)dk′k〈i〉k′ , (4.2c)

〈s〉2
k

d ˆV〈s〉k

dt
= –2β〈s〉2

k〈i〉k ˆV〈s〉k ξk(ξk – 1) + β〈s〉k〈i〉kξk + μ〈i〉k + δ〈s〉k

+ 2μ〈s〉k〈i〉k(ξk – ˆV〈s〉k ) + k
∑

k′
P
(
k′|k)dk′k〈s〉k′

+ 2k〈s〉k(1 – ˆV〈s〉k )
∑

k′
P
(
k′|k)dk′k〈s〉k′ , (4.2d)

〈i〉2
k

d ˆV〈i〉k

dt
= 2β〈s〉k〈i〉2

k
ˆV〈i〉k ξk(ξk – 1) + β〈s〉k〈i〉kξk + (μ + δ)〈i〉k

+ 2k〈i〉k(1 – ˆV〈i〉k )
∑

k′
P
(
k′|k)dk′k〈i〉k′

+ k
∑

k′
P
(
k′|k)dk′k〈i〉k′ . (4.2e)

Accordingly, we have the following limiting system:

d〈i〉k

dt
= β

(
N∗

k – 〈i〉k
)〈i〉kξk – μ〈i〉k – δ〈i〉k + k

∑

k′
P
(
k′|k)dk′k〈i〉k′ , (4.3a)

(
N∗

k – 〈i〉k
)〈i〉k

dξk

dt
= β

(
N∗

k – 〈i〉k
)2〈i〉kξ

2
k ( ˆV〈s〉k + 1) + δ

(
N∗

k – 〈i〉k
)2

ξk

– β
(
N∗

k – 〈i〉k
)〈i〉2

kξ
2
k ( ˆV〈i〉k + 1) – μ〈i〉k

– (β + 2μ + 2δ)
(
N∗

k – 〈i〉k
)〈i〉kξk

+
[
μ ˆV〈i〉k + μ

(
N∗

k – 〈i〉k
)

+ δξk
]〈i〉2

k

+ k
[〈i〉k –

(
N∗

k – 〈i〉k
)
ξk

]∑

k′
P
(
k′|k)dk′k

(
N∗

k′ – 〈i〉k′
)

+ k
(
N∗

k – 〈i〉k – 〈i〉kξk
)∑

k′
P
(
k′|k)dk′k〈i〉k′ , (4.3b)

(
N∗

k – 〈i〉k
)2 d ˆV〈s〉k

dt
= –2β

(
N∗

k – 〈i〉k
)2〈i〉k ˆV〈s〉k ξk(ξk – 1) + β

(
N∗

k – 〈i〉k
)〈i〉kξk

+ μ〈i〉k + δ
(
N∗

k – 〈i〉k
)

+ 2μ
(
N∗

k – 〈i〉k
)〈i〉k(ξk – ˆV〈s〉k )

+ 2k
(
N∗

k – 〈i〉k
)
(1 – ˆV〈s〉k )

∑

k′
P
(
k′|k)dk′k

(
N∗

k′ – 〈i〉k′
)

+ k
∑

k′
P
(
k′|k)dk′k

(
N∗

k′ – 〈i〉k′
)
, (4.3c)
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〈i〉2
k

d ˆV〈i〉k

dt
= 2β

(
N∗

k – 〈i〉k
)〈i〉2

k
ˆV〈i〉k ξk(ξk – 1) + β

(
N∗

k – 〈i〉k
)〈i〉kξk

+ (μ + δ)〈i〉k + 2k〈i〉k(1 – ˆV〈i〉k )
∑

k′
P
(
k′|k)dk′k〈i〉k′

+ k
∑

k′
P
(
k′|k)dk′k〈i〉k′ . (4.3d)

For simplicity, we denote it as moment closure model II.

5 Numerical results
In this section, we conduct extensive numerical simulations, stochastic simulations, and
compare them. Numerical simulations of models are obtained by the fourth-order Runge–
Kutta algorithm on MATLAB. We report stochastic simulation results from Monte Carlo
simulations in a variety of different realizations on FORTRAN. Metapopulation networks
are generated with the uncorrelated scale-free network model [31, 32] with V ranging
from 100 to 1000 following the power-law degree distribution P(k) ∼ k–γ , 2 < γ ≤ 3 with
minimum degree kmin = 2 and maximum degree kmax ≤ V 1/2. According to Ref. [33], w0 = 1
and θ = 0.5. Simulation results are based on averaging over at least 50 realizations for initial
conditions and network structures.

5.1 Stability of closed models
First of all, focusing on stability of equilibria, we develop a series of numerical simulations
about models (3.2) and (4.3a)–(4.3d) to discuss stability of systems.

5.1.1 Stability of equilibria of moment closure model I
We present numerical integration of model (3.2) under two cases: R0 < 1 and R0 > 1 to
investigate how the spread of infectious diseases depend on the threshold R0 and whether
the system stable or not. In Fig. 2, when β = 2e–5, R0 is 0.9177 < 1 (see Fig. 2(a)), while
R0 becomes 9.1729 > 1 for β = 2e–4 (see Fig. 2(b)). We find that when R0 < 1 the number
of infectious individuals all approach zero under different initial conditions. Besides, the
fraction of infectious individuals approaches 0.394 while R0 > 1.

Figure 2 Evolution of the moment closure model I with the varying initial infectious individuals. Here we take
μ = 0.3, γ = 2.1, N̄ = 1000, V = 1000, δ = 0.01. Three lines represent different initial infectious seeds in a node
chosen randomly. (a) β = 2e–5; (b) β = 2e–4
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5.1.2 Stability of equilibrium of moment closure model II
We further study system (4.3a)–(4.3d). As a system of weighted ordinary differential equa-
tions, it is unreasonable to perform 〈i〉k = 0. For simplicity, we assume that every node
has infectious seeds at initial moments. In Fig. 3, the density of infectious individuals ap-
proaching a constant under different initial conditions, approximately 0.96, means that
there exists an endemic equilibrium for system (4.3a)–(4.3d).

5.2 Time courses of the density of infectious individuals
According to the forward Kolmogorov differential equation (2.2), we put forward model
(2.6) to address the spread of infectious diseases on metapopulation networks. Further,
to make the model (2.6) closed, we derive models (3.2) and (4.3a)–(4.3d). In Fig. 4, we
compare these models with each other based on numerical simulations, and make a com-
parison with stochastic simulations at the same time. Red line, green line and blue line are
calculated from the general model (2.6) coupling with (2.2), moment closure model I (3.2)
and moment closure model II (4.3a)–(4.3d), respectively, while dots are averaging over
100 stochastic realizations. It is showed that the steady state of moment closure model II
is higher than the others. Hence the assumption of a two-dimensional log-normal distri-
bution is inappropriate for metapopulation networks. In the steady state, general model I
fits perfectly with stochastic simulations, and moment closure model I takes the second
place. For an early stage of infectious diseases, they overestimate the spreading of diseases
on different levels. Overall, the general model extends and optimizes the HMF model.

5.3 The effects of total mobility rate on disease transmission
Finally, we discuss the impacts of total mobility rate on disease transmission and perform
five magnitudes of total mobility rate. In Fig. 5, when δ = 0.1, diseases globally spread and
rapidly achieve steady state. Then with the decrease of total mobility rate, the transmission
slows down. When δ reduces to 0.00001, diseases hardly spread in a short time. Instead,
in a long time, t = 3000 or longer, infectious diseases will spread to the entire network
as in Fig. 6. It is worth noticing that there is no impact of mobility rate on the steady of

Figure 3 Evolution of the moment closure model II with the varying initial infectious individuals. Here we
take β = 2e–4. Three lines represent different initial seeds every node. The other parameters are the same with
Fig. 2
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Figure 4 Comparison of models and stochastic simulations. In all cases, seed 10 infectious individuals in
subpopulation with the maximum degree in the initial time. Here we take β = 2e–2, μ = 0.3, γ = 2.63, δ = 0.1,
N̄ = 100, V = 100

Figure 5 The impacts of total mobility rate on disease transmission. Five magnitudes of total mobility rate are
performed. From bottom to top, increase one magnitude in turn. The left panel shows the fraction of
individual infectious evolving over time, while the right panel is the proportion of infectious subpopulations.
In detail, β = 5e–3 and other parameters are the same with Fig. 2. The values are obtained by averaging over
50 stochastic realizations

whole metapopulation network. So travel restriction in the early stage is an effective pre-
vention and control of infectious diseases, and restriction must be timely and thoroughly,
prohibiting travel over a period of time, for example.

6 Conclusions and discussion
Following CTMC, we have derived a deterministic unclosed general model to portray dis-
ease transmission on metapopulation networks in which the heterogeneity of susceptible
and infectious individuals in subpopulations with the same degree was considered. Then
we closed the general model under the assumption of a two-dimensional constant dis-
tribution and two-dimensional log-normal distribution, respectively. And the existence
and global stability of each of feasible equilibria of the system, which is based on two-
dimensional constant distribution, have been proved mathematically and illustrated by
numerical simulations. It has been shown by simulations that the general model we de-
rived generalizes and optimizes the HMF model. In the study of the effects of total mobility
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Figure 6 The density of infectious individuals for δ = 1e–5. The other parameters are the same with Fig. 5

rate on infection spread, we have seen that total mobility rate has a huge impact on disease
transmission speed, but it has no effect on the steady state of infections. It is worth noting
that even for a relatively small total mobility rate, diseases will spread globally as long as
time is long enough. Therefore, timely and comprehensive travel restrictions are critical
for disease control and prevention.

Although we have generalized and optimized the HMF model, there are still some prob-
lems in this paper to be further solved.

(1) The deterministic general model extends and optimizes the HMF model in [11],
however, numerical simulations did not fit perfectly the stochastic simulations
before the transmission was up to steady. Hence, our model needs to be further
improved.

(2) We conducted numerical simulations for the moment closure II, and we found this
system has an endemic equilibrium. It is interesting to verify the existence and
global stability of the endemic equilibrium mathematically.

(3) On the edge weights selection for metapopulation network, we supposed that
weights were only dependent on the degrees of subpopulations. However, a real
situation may be more complex, and weights may be the comprehensive outcome of
populations, degrees and distances. For the total mobility rate, it is more appropriate
to vary with the states of individuals.
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