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Abstract
In this paper, the iterative learning control (ILC) technique is extended to multi-input
multi-output (MIMO) systems governed by parabolic partial difference equations with
time delay. Two types of ILC algorithm are presented for the system with state delay
and input delay, respectively. The sufficient conditions for tracking error convergence
are established under suitable assumptions. Detailed convergence analysis is given
based on discrete Gronwall’s inequality and discrete Green’s formula for the systems
with time-varying uncertainty coefficients. Numerical results show the effectiveness
of the proposed ILC algorithms.
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1 Introduction
The system governed by partial difference equations is a class of important dynamic sys-
tems which firstly arises as numerical solution of partial differential equations. In fact, the
state space model of partial difference system can cover many nature laws, such as logis-
tic model with spatial migration, mathematics physical processes (discrete heat equation),
engineering technology (image processing, digital signal processing, circuit systems) (see
[1, 2] and the references therein). There are many excellent results on the partial difference
equations/systems, including exist/no exist [3, 4], stability [5], oscillation [6], positivity of
solutions [7], etc. From the view point of practicality, since the first step, that is, the im-
plementation of control for distributed parameter systems modeled by partial differential
equations, requires to discretize the variable of systems, studying the control of partial
difference systems has a great value.

Iterative learning control (ILC) is an intelligent control method which imitates human
learning behavior [8]. For a repeatable system in a given finite time interval, based on
tracking objective and previous input and output information, ILC can improve the sys-
tem performance with the increase in the iteration number. ILC algorithm is simple but it
can deal with many complex systems with nonlinear and uncertain characteristics [9, 10].
As an effective control algorithm, ILC has been used to track a given target in many types
of systems, including ordinary difference/differential systems [11, 12], partial differential
systems or distributed parameter systems [13, 14], impulsive systems [15], stochastic sys-

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

https://doi.org/10.1186/s13662-018-1797-2
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-018-1797-2&domain=pdf
http://orcid.org/0000-0002-1600-8176
mailto:mathdxs@163.com


Dai et al. Advances in Difference Equations  (2018) 2018:344 Page 2 of 19

tems [16], fractional systems [17], etc. However, there are few results on ILC for partial
difference systems.

Motivated by the above, in this paper, we investigate the ILC problem of MIMO
parabolic partial difference equations with delay. Both the P-type ILC scheme and ILC
scheme with time delay parameter are proposed for systems with state delay and input
delay, respectively. Convergence conditions are given by using a discrete form inequal-
ity/formula. It is shown that selecting the learning gain parameter through the iterative
learning process can guarantee the convergence of the output tracking error between the
given desired output and the actual output.

Compared with the current literature, the main features of this work are summarized as
follows: (1) It can handle MIMO parabolic partial difference systems. Although Refs. [18,
19] studied ILC for partial difference systems, the systems are only the single-input and
single-output (SISO). Because a MIMO system often involves multi-input variables and
multi-output variables, the input and output of a SISO system only are one, respectively, so
the mathematical analysis of a MIMO system is more complex than that of a SISO system.
(2) The systems include time delay in state and input. The ILC of systems with time delay
is studied in [12, 20], but the systems are stated by ordinary difference equations, which is
different to this paper. The system in this paper is governed by partial difference equations
and simultaneously involving three different indices: time, space, and iteration; therefore
the convergence analysis is more complex. (3) We used the methods of partial difference
equations which have been applied in stability analysis from partial difference systems
[2, 4–6], instead of Lyapunov method or linear matrix inequality (for multi dimensional
dynamic systems) [21, 22].

The rest of the paper is arranged as follows. In Sect. 2, we present the formulation and
some preliminaries. Section 3 provides ILC design and rigorous convergence analysis. In
Sect. 4, the simulation results are illustrated. Finally, the conclusions of this paper are
shown in Sect. 5.

2 ILC system description
In this paper, we consider the following two classes of parabolic type partial difference
systems, which run a given task repeatedly on a finite time interval [0, J]. The first class is
the system with time delay in state as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�2Zk(x, s) = D(s)�2
1Zk(x – 1, s) + A(s)Zk(x, s)

+ Aτ (s)Zk(x, s – τ ) + B(s)Uk(x, s), (1a)

Yk(x, s) = C(s)Zk(x, s) + G(s)Uk(x, s). (1b)

The second class is the system with time delay in input, that is,

{
�2Zk(x, s) = D(s)�2

1Zk(x – 1, s) + A(s)Zk(x, s) + Bτ (s)Uk(x, s – τ ), (2a)

Yk(x, s) = C(s)Zk(x, s) + Gτ (s)Uk(x, s – τ ). (2b)

In systems (1a)–(1b) and (2a)–(2b), k is the index of iteration. Zk ∈ R
n, Uk ∈ R

m, and
Yk ∈ R

l denote the system state vector, input and output vector, respectively. x, s are spa-
tial and time discrete variables, respectively, 1 ≤ x ≤ I , 0 ≤ s ≤ J , where I, J are given inte-
gers. A(s), Aτ (s) ∈ R

n×n, B(s), Bτ (s) ∈ R
n×m, C(s) ∈ R

l×n, G(s), Gτ (s) ∈ R
l×m are uncertain
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bounded real matrices for all 0 ≤ s ≤ J , D(s) is a positive bounded diagonal matrix for all
0 ≤ s ≤ J , written as

D(s) = diag
{

d1(s), d2(s), . . . , dn(s)
}

, 0 < pi ≤ di(s) < ∞,

where pi is a known constant for i = 1, 2, . . . , n. τ is known time delay. The corresponding
boundary and initial conditions of systems (1a)–(1b) and (2a)–(2b) will be given later. In
the two systems, the partial differences are defined as usual, i.e.,

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�2Z(x, s) = Z(x, s + 1) – Z(x, s), (3a)

�1Z(x, s) = Z(x + 1, s) – Z(x, s), (3b)

�2
1Z(x – 1, s) = Z(x + 1, s) – 2Z(x, s) + Z(x – 1, s), (3c)

where (3a) is the first order difference scheme for time variable s, (3b) and (3c) are the first
order and the second order difference schemes for space variable x, respectively.

The control objective of this paper is to design an ILC controller to track the given de-
sired target Yd(x, s) based on the measurable system output Yk(x, s) so that the tracking
error ek(x, s) would vanish when the iteration time k tends to infinity, that is,

lim
k→∞

Yk(x, s) = Yd(x, s). (4)

For convenience, some notations used in this paper are defined as follows.
(1) The norm ‖ · ‖ is defined as ‖A‖ =

√
λmax(ATA), A ∈ R

n×n, where λmax denotes the
maximum eigenvalue. If A(s) : [0, 1, 2, . . . , J] → R

n×n, then ‖A‖ =
√

λmax0≤s≤J (A(s)TA(s)),
where λmax0≤s≤J indicates the maximum eigenvalue of A(s)TA(s) (0 ≤ s ≤ J). We will simply
write λ̄A as ‖A‖2.

(2) For f(x, s) ∈ R
n, 0 ≤ x ≤ I, 0 ≤ s ≤ J , the L2-norm of f(x, s) denotes ‖f(·, s)‖2

L2 =
∑I

x=1(f(x, s)Tf(x, s)). For a given constant λ > 0, the (L2,λ)-norm of f(x, s) can be defined as

‖f‖2
(L2,λ) = sup

0≤s≤J

{∥
∥f(·, s)

∥
∥2

L2λ
s} = sup

0≤s≤J

{ I∑

x=1

(
f(x, s)Tf(x, s)

)
λs

}

.

(3) For fk(x, s) ∈ R
n, ξ ≥ 1, the ‖fk‖2

(L2,λ(ξ )) norm (satisfying three basic requirements as
norm definition) is defined as follows:

‖fk‖2
(L2,λ(ξ )) = sup

0≤s≤J

{ I∑

x=1

(
f(x, s)Tf(x, s)

)
λsξ k

}

,

if ξ = 1, then ‖f‖2
(L2,λ(1)) = ‖f‖2

(L2,λ).
(4) According to the Rayleigh–Ritz theorem, for a symmetry matrix A ∈ R

n×n, we have
λ1xTx ≤ xTAx ≤ λnxTx, for x ∈ R

n, where λi (i = 1, 2, . . . , n,λ1 ≤ · · · ≤ λn) are the eigen-
values of the square matrix A. Similar results can be obtained for a time-varying ma-
trix. That is, letting A(j) ∈ R

n×n (0 ≤ j ≤ J), we can obtain λmin0≤j≤J (A(j))xTx ≤ xTA(j)x ≤
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λmax0≤j≤J (A(j))xTx, where λmin0≤j≤J (A(j)),λmax0≤j≤J (A(j)) denote the maximum and mini-
mum eigenvalues of the square matrix A(j), 0 ≤ j ≤ J , respectively.

The following lemmas will be used in later sections.

Lemma 1 (Discrete Gronwall’s inequality, [2, 5]) Let constant sequences {v(x)}, {B(x)}, and
{D(x)} be real sequences defined for x ≥ 0, which satisfy

v(x + 1) ≤ B(x)v(x) + D(x), B(x) ≥ 0, x ≥ 0.

Then

v(s) ≤
s–1∏

x=0

B(x)v(0) +
s–1∑

x=0

D(x)
s–1∏

i=x+1

B(i), s ≥ 0.

Lemma 2 (Discrete Green’s formula for vector) Under the zero boundary value condition,
i.e., Zk(0, s) = 0 = Zk(I + 1, s), for system (1a)–(1b), we have

I∑

x=1

Zk
T(x, s)�2

1Zk(x – 1, s) = –
I∑

x=0

(
�1Zk(x, s)

)T(
�1Zk(x, s)

)
.

Proof In view of the boundary condition Zk(0, s) = 0 = Zk(I + 1, s), we can obtain that

I∑

x=1

ZT
k (x, s)�2

1Zk(x – 1, s)

=
I∑

x=1

[
ZT

k (x, s)Zk(x + 1, s) – 2ZT
k (x, s)Zk(x, s) + ZT

k (x, s)Zk(x – 1, s)
]

= ZT
k (I + 1, s)�1Zk(I, s) – Zk(1, s)�1Zk(0, s) –

I∑

x=1

[
�1Zk(x, s)

)T(
�1Zk(x, s)

]

= –
I∑

x=0

(
�1Zk(x, s)

)T(
�1Zk(x, s)

)
.

This is the end of proof of Lemma 2. �

3 ILC design and convergence analysis
In this section, we propose our iterative learning control algorithms, establish a sufficient
condition for the convergence of the algorithm, and provide a rigorous proof. First, we
consider the case of the system with time delay in state (i.e., system (1a)–(1b)) in the fol-
lowing Sect. 3.1.

3.1 System with time delay in state
For system (1a)–(1b), we assume the corresponding initial and boundary conditions as
follows:

Zk(x, s) = ϕ0(x, s), 1 ≤ x ≤ I, –τ ≤ s ≤ 0, (5)
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Zk(0, s) = 0 = Zk(I + 1, s), –τ ≤ s ≤ J , (6)

for k = 1, 2, . . . .
We propose the P-type iterative learning control algorithm of looking for a control input

sequence Uk+1(x, s) in system (1a)–(1b) as follows:

Uk+1(x, s) = Uk(x, s) + �(s)ek(x, s), (7)

where ek(x, s) = Yd(x, s) – Yk(x, s) is the kth output error corresponding to the kth input
Uk(x, s), and �(s) is the gain matrix in the learning process. Thus, for system (1a)–(1b), (4)
is transformed into

lim
k→∞

ek(x, s) = 0, 1 ≤ x ≤ I, 0 ≤ s ≤ J . (8)

For simplicity of presentation, we denote

Z̄k(x, s) = Zk+1(x, s) – Zk(x, s),

Ūk(x, s) = Uk+1(x, s) – Uk(x, s),

Ȳk(x, s) = Yk+1(x, s) – Yk(x, s).

Then, based on the kth and the (k + 1)th learning system of (1a)–(1b), we have

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

�2Z̄k(x, s) = D(s)�2
1Z̄k(x – 1, s)

+ A(s)Z̄k(x, s) + Aτ (s)Z̄k(x, s – τ ) + B(s)Ūk(x, s), (9a)

Ȳk(x, s) = C(s)Z̄k(x, s) + G(s)Ūk(x, s). (9b)

In order to derive the convergence conditions of the ILC algorithm described by (7), we
give the following proposition.

Proposition 1 Under the initial and boundary conditions given in (5), (6), for Z̄k(x, s) (0 ≤
j ≤ J) of in (9a)–(9b), we have

I∑

x=1

Z̄T
k (x, s + 1)Z̄k(x, s + 1)

≤ c1

I∑

x=1

Z̄T
k (x, s)Z̄k(x, s)

+ c2

I∑

x=1

Z̄T
k (x, s – τ )Z̄k(x, s – τ ) + c3

I∑

x=1

ŪT
k (x, s)Ūk(x, s), (10)

where c1, c2, c3 are positive bounded constants that will be given later.

Proof By (9a) and the definition of partial difference (3a), we have

Z̄k(x, s + 1) = D(s)�2
1Z̄k(x – 1, s) +

(
I + A(s)

)
Z̄k(x, s)
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+ Aτ (s))Z̄k(x, s – τ ) + B(s)Ūk(x, s). (11)

Here and in later sections, I denotes a unit matrix.
Multiplying two sides of (11) by Z̄T

k (x, s) from left, we have

Z̄T
k (x, s)Z̄k(x, s + 1) = Z̄T

k (x, s)D(s)�2
1Z̄k(x – 1, s) + Z̄T

k (x, s)
(
I + A(s)

)
Z̄k(x, s)

+ Z̄T
k (x, s)Aτ (s))Z̄k(x, s – τ ) + Z̄T

k (x, s)B(s)Ūk(x, s). (12)

On the other hand, from (3a), we have

(
�2Z̄k(x, s)

)T(
�2Z̄k(x, s)

)

=
(
Z̄k(x, s + 1) – Z̄k(x, s)

)T(
Z̄k(x, s + 1) – Z̄k(x, s)

)

= Z̄T
k (x, s + 1)Z̄k(x, s + 1) – 2Z̄T

k (x, s + 1)Z̄k(x, s) + Z̄T
k (x, s)Z̄k(x, s). (13)

(13) yields

Z̄T
k (x, s + 1)Z̄k(x, s + 1)

=
(
�2Z̄k(x, s)

)T(
�2Z̄k(x, s)

)
+ 2Z̄T

k (x, s)Z̄k(x, s + 1) – Z̄T
k (x, s)Z̄k(x, s). (14)

Then, substituting (12) into (14), we have

Z̄T
k (x, s + 1)Z̄k(x, s + 1) =

(
�2Z̄k(x, s)

)T(
�2Z̄k(x, s)

)
+ 2Z̄T

k (x, s)D(s)�2
1Z̄k(x – 1, s)

+ 2Z̄T
k (x, s)

(
I + A(s)

)
Z̄k(x, s) + 2Z̄T

k (x, s)Aτ (s))Z̄k(x, s – τ )

+ 2Z̄T
k (x, s)B(s)Ūk(x, s) – Z̄T

k (x, s)Z̄k(x, s). (15)

Summing both sides on (15) from x = 1 to I , we get

I∑

x=1

Z̄T
k (x, s + 1)Z̄k(x, s + 1)

=
I∑

x=1

(
�2Z̄k(x, s)

)T(
�2Z̄k(x, s)

)
+ 2

I∑

i=1

Z̄T
k (x, s)D(s)�2

1Z̄k(x – 1, s)

+
I∑

x=1

Z̄T
k (x, s)

(
I + 2A(s)

)
Z̄k(x, s) + 2

I∑

x=1

Z̄T
k (x, s)Aτ (s))Z̄k(x, s – τ )

+ 2
I∑

x=1

Z̄T
k (x, s)B(s)Ūk(x, s)

= �1 + �2 + �3 + �4 + �5, (16)

where �i (i = 1, 2, . . . , 5) are the first term to fifth term of the right of the first equality sign
in (16), respectively. We will estimate �i separately.

For �1, by (9a) and (3c), we have

�2Z̄k(x, s) = D(s)Z̄k(x + 1, s) +
(
A(s) – 2D(s)

)
Z̄k(x, s) + DZ̄k(x – 1, s)
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+ Aτ (s)Z̄k(x, s – τ ) + B(s)Ūk(x, s).

Using the elementary inequality (
∑N

i=1 zi)2 ≤ N
∑N

i=1 z2
i , one can show that

�1 =
I∑

x=1

(
�2Z̄k(x, s)

)T(
�2Z̄k(x, s)

)

=
I∑

x=1

[(
D(s)Z̄k(x + 1, s) +

(
A(s) – 2D(s)

)
Z̄k(x, s)

+ D(s)Z̄k(x – 1, s) + Aτ (s)Z̄k(x, s – τ )

+ B(s)Ūk(x, s)
)T][(

D(s)Z̄k(x + 1, s) +
(
A(s) – 2D(s)

)
Z̄k(x, s) + D(s)Z̄k(x – 1, s)

+ Aτ (s)Z̄k(x, s – τ ) + B(s)Ūk(x, s)
)]

≤ 5λ̄D

I∑

x=1

Z̄T
k (x + 1, s)Z̄k(x + 1, s) + 5λ̄A–2D

I∑

x=1

Z̄T
k (x, s)Z̄k(x, s)

+ 5λ̄Aτ

I∑

x=1

Z̄T
k (x, s – τ )Z̄k(x, s – τ ) + 5λ̄B

I∑

x=1

ŪT
k (x, s)Ūk(x, s)

+ 5λ̄D

I∑

x=1

Z̄T
k (x – 1, s)Z̄k(x – 1, s),

where

λ̄D = λmax0≤s≤J

(
DT(s)D(s)

)
, λ̄A–2D = λmax0≤s≤J

((
A(s) – 2D(s)

)T(
A(s) – 2D(s)

))
,

λ̄B = λmax0≤s≤J

(
BT(s)B(s)

)
, λ̄Aτ = λmax0≤s≤J

(
AT

τ (s)Aτ (s)
)
.

Furthermore, as boundary condition (6) means

I∑

x=1

Z̄T
k (x + 1, s)Z̄k(x + 1, s) ≤

I∑

x=1

Z̄T
k (x, s)Z̄k(x, s),

I∑

x=1

Z̄T
k (x – 1, s)Z̄k(x – 1, s) ≤

I∑

x=1

Z̄T
k (x, s)Z̄k(x, s).

Then

�1 ≤ (5λ̄A–2D + 10λ̄D)
I∑

x=1

Z̄T
k (x, s)Z̄k(x, s) + 5λ̄Aτ

I∑

x=1

Z̄T
k (x, s – τ )Z̄k(x, s – τ )

+ 5λ̄B

I∑

x=1

ŪT
k (x, s)Ūk(x, s). (17)

By Lemma 2 and the positive definiteness of D(s), we have

�2 = 2
I∑

x=1

Z̄T
k (x, s)D�2

1Z̄k(x – 1, s) ≤ –2dmin

I∑

x=0

(
�1Z̄k(x, s)

)T(
�1Z̄k(x, s)

) ≤ 0, (18)
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where dmin = min0≤s≤J{d1(s), d2(s), . . . , dn(s)} > 0 exists because pi is known.
For �3 ∼ �5, using the inequality yTHTLz ≤ 1

2 (yTHTHy + zTLTLz) (H ∈ R
n×m, L ∈

R
n×l, y ∈R

m, z ∈R
l), we have

�3 =
I∑

x=1

Z̄T
k (x, s)

(
I + 2A(s)

)
Z̄k(x, s) ≤ g

I∑

x=1

Z̄T
k (x, s)Z̄k(x, s), (19)

�4 = 2
I∑

x=1

Z̄T
k (x, s)Aτ (s)Z̄k(x, s – τ )

≤ λ̄Aτ

I∑

x=1

Z̄T
k (x, s)Z̄k(x, s) +

I∑

x=1

Z̄T
k (x, s – τ )Z̄k(x, s – τ ), (20)

�5 = 2
I∑

x=1

Z̄T
k (x, s)B(s)Ūk(x, s) ≤ λ̄B

I∑

x=1

Z̄T
k (x, s)Z̄k(x, s) +

I∑

x=1

ŪT
k (x, s)Ūk(x, s), (21)

where constants g = λmax0≤s≤J [(I + 2A(s))T(I + 2A(s))] + 1.
Finally, substituting (17)–(21) into (16), we obtain

I∑

x=1

Z̄T
k (x, s + 1)Z̄k(x, s + 1)

≤ (5λ̄A–2D + 10λ̄D + g + λ̄A + λ̄B)
I∑

x=1

Z̄T
k (x, s)Z̄k(x, s)

+ (5λ̄Aτ + 1)
I∑

x=1

Z̄T
k (x, s – τ )Z̄k(x, s – τ ) + (5λ̄B + 1)

I∑

x=1

ŪT
k (x, s)Ūk(x, s)

≤ c1

I∑

x=1

Z̄T
k (x, s)Z̄k(x, s) + c2

I∑

x=1

Z̄T
k (x, s – τ )Z̄k(x, s – τ )

+ c3

I∑

x=1

ŪT
k (x, s)Ūk(x, s), (22)

where c1 = 5λ̄A–2D + 10λ̄D + g + λ̄A + λ̄B, c2 = 5λ̄Aτ + 1, c3 = 5λ̄B + 1.
This completes the proof of Proposition 1. �

With the help of the above technical lemmas and Proposition 1, the following theorem
establishes convergent conditions of the partial difference systems with time delay in state
described by (1a)–(1b).

Theorem 1 If the gain matrix �(s) in algorithm (7) satisfies

∥
∥
(
I – G(s)�(s)

)∥
∥2 ≤ ρ, 2ρ < 1, 0 ≤ s ≤ J . (23)

Then, under the initial and boundary conditions (5), (6), the output error of system (1a)–
(1b) converges to zero in mean L2 norm, that is,

lim
k→∞

∥
∥ek(·, s)

∥
∥2

L2
= 0, 0 ≤ s ≤ J . (24)
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Proof According to algorithm (7), we have

ek+1(x, s) = ek(x, s) + Yk(x, s) – Yk+1(x, s)

= ek(x, s) + C(s)
(
Zk(x, s) – Zk+1(x, s)

)
+ G(s)

(
Uk(x, s) – Uk+1(x, s)

)

= ek(x, s) – C(s)Z̄k(x, s) – G(s)�(s)ek(x, s)

=
(
I – G(s)�(s)

)
ek(x, s) – C(s)Z̄k(x, s)

= Ĝ(s)ek(x, s) – C(s)Z̄k(x, s), (25)

where Ĝ(s) = I – G(s)�(s).
Multiplying both sides of (25) by eT

k+1(x, s) from left, we have

eT
k+1(x, s)ek+1(x, s) =

(
Ĝ(s)ek(x, s) – C(s)Z̄T

k (x, s)
)(

Ĝ(s)ek(x, s) – C(s)Z̄k(x, s)
)

= eT
k (x, s)ĜT(s)Ĝ(s)ek(x, s) – 2eT

k (x, s)ĜT(s)C(s)Z̄k(x, s)

+ Z̄T
k (x, s)CT(s)C(s)Z̄k(x, s)

≤ 2
(
eT

k (x, s)ĜT(s)Ĝ(s)ek(x, s) + Z̄T
k (x, s)CT(s)C(x, s)Z̄k(s)

)

≤ 2
(
ρeT

k (x, s)ek(x, s) + λ̄CZ̄T
k (x, s)Z̄k(x, s)

)
, (26)

where ρ = λmax0≤s≤J (ĜT(s)Ĝ(s)) and λ̄C = λmax0≤s≤J (CT(s)C(s)).
Summing both sides of (26) from x = 1 to I , we get

I∑

x=1

eT
k+1(x, s)ek+1(x, s) ≤ 2ρ

I∑

x=1

eT
k (x, s)ek(x, s) + 2λ̄C

I∑

x=1

Z̄T
k (x, s)Z̄k(x, s). (27)

Multiplying λs (0 < λ < 1) to both sides of (27) and using the definition of ‖ · ‖2
L2 , we have

∥
∥ek+1(·, s)

∥
∥2

L2λ
s ≤ 2ρ

∥
∥ek(·, s)

∥
∥2

L2λ
s + 2λ̄C

∥
∥Z̄k(·, s)

∥
∥2

L2λ
s

≤ 2ρ‖ek‖2
(L2,λ) + 2λ̄C‖Z̄k‖2

(L2,λ), (28)

thus

‖ek+1‖2
(L2,λ) ≤ 2ρ‖ek‖2

(L2,λ) + 2λ̄C‖Z̄k‖2
(L2,λ). (29)

We rewrite the conclusion of Proposition 1 as follows:

∥
∥Z̄k(·, s + 1)

∥
∥2

L2 ≤ c1
∥
∥Z̄k(·, s)

∥
∥2

L2 + c2
∥
∥Z̄k(·, s – τ )

∥
∥2

L2 + c3
∥
∥Ūk(·, s)

∥
∥2

L2 . (30)

Then, by Lemma 1, we obtain

∥
∥Z̄k(·, s)

∥
∥2

L2

≤ cs
1
∥
∥Z̄k(·, 0)

∥
∥2

L2 +
s–1∑

t=0

(
c2

∥
∥Z̄k(·, t – τ )

∥
∥2

L2 + c3
∥
∥Ūk(·, t)

∥
∥2

L2
)
cs–t–1

1 . (31)
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According to (5), the initial setting is the same for every iterative process, we have

∥
∥Z̄k(·, s)

∥
∥2

L2

≤
s–1∑

t=0

c2
∥
∥Z̄k(·, t – τ )

∥
∥2

L2 cs–t–1
1 +

s–1∑

t=0

c3
∥
∥Ūk(·, t)

∥
∥2

L2 cs–t–1
1 . (32)

We consider
∑s–1

t=0 c2‖Z̄k(·, t – τ )‖2
L2 cs

1 as follows:
If s < τ , then t – τ < 0,

s–1∑

t=0

c2
∥
∥Z̄k(·, t – τ )

∥
∥2

L2 cs–t–1
1 = 0, s < τ ;

If s > τ , then

s–1∑

t=0

c2
∥
∥Z̄k(·, t – τ )

∥
∥2

L2 cs–t–1
1

=
τ∑

t=0

c2
∥
∥Z̄k(·, t – τ )

∥
∥2

L2 cs–t–1
1 +

s–1∑

t=τ+1

c2
∥
∥Z̄k(·, t – τ )

∥
∥2

L2 cs–t–1
1

=
s–1∑

t=τ+1

c2
∥
∥Z̄k(·, t – τ )

∥
∥2

L2 cs–t–1
1 ≤

s–1∑

t=0

c2
∥
∥Z̄k(·, t)

∥
∥2

L2 cs–t–1
1 . (33)

Thus, from (32) and (33), we obtain

∥
∥Z̄k(·, s)

∥
∥2

L2 ≤
s–1∑

t=0

c2
∥
∥Z̄k(·, t)

∥
∥2

L2 cs–t–1
1 +

s–1∑

t=0

c3
∥
∥Ūk(·, t)

∥
∥2

L2 cs–t–1
1 . (34)

On the other hand, by iterative learning control scheme (7) again, we have

Ūk(x, t) = Uk+1(x, t) – Uk(x, t) = �(s)ek(x, t), (35)

which yields

ŪT
k (x, s)Ūk(x, s) =

(
�(s)eT

k (x, s)
)(

�(s)ek(x, s)
) ≤ λ̄�eT

k (x, s)ek(x, s),

where λ̄� = λmax0≤s≤J (�T(s)�(s)). Hence

∥
∥Ūk(·, s)

∥
∥2

L2 ≤ λ̄�

∥
∥ek(·, s)

∥
∥2

L2 . (36)

Then, by (34) and (36), we obtain

∥
∥Z̄k(·, s)

∥
∥2

L2 ≤
s–1∑

t=0

c2
∥
∥Z̄k(·, t)

∥
∥2

L2 cs–t–1
1 +

s–1∑

t=0

c3λ̄�

∥
∥ek(·, t)

∥
∥2

L2 cs–t–1
1 . (37)
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Multiplying λs (0 < λ < 1) to both sides of (37), meanwhile taking λ small enough, such
that λ(c1 + c2) < 1, we get

∥
∥Z̄k(·, s)

∥
∥2

L2λ
s

≤
s–1∑

t=0

c2
∥
∥Z̄k(·, t)

∥
∥2

L2 cs–t–1
1 λs +

s–1∑

t=0

c3λ̄�

∥
∥ek(·, t)

∥
∥2

L2 cs–t–1
1 λs

≤
s–1∑

t=0

c2
∥
∥Z̄k(·, t)

∥
∥2

L2λ
tcs–t–1

1 λj–t +
s–1∑

t=0

c3λ̄�

∥
∥ek(·, t)

∥
∥2

L2λ
tcs–t–1

1 λs–t

≤
s–1∑

t=0

c2cs–t–1
1 λs–t‖Z̄k‖2

(L2,λ) +
s–1∑

t=0

c3λ̄�cs–t–1
1 λs–t‖ek‖2

(L2,λ)

≤ c2λ

s–1∑

t=0

(c1λ)s–t–1‖Z̄k‖2
(L2,λ) + c3λ̄�λ

s–1∑

t=0

(c1λ)s–t–1‖ek‖2
(L2,λ)

≤ c2λ
1 – (c1λ)s

1 – c1λ
‖Z̄k‖2

L2,λ + c3λ̄�λ
1 – (c1λ)s

1 – c1λ
‖ek‖2

(L2,λ)

≤ c2λ

1 – c1λ
‖Z̄k‖2

(L2,λ) +
c3λ̄�λ

1 – c1λ
‖ek‖2

(L2,λ), (38)

then we have

(

1 –
c2λ

1 – c1λ

)

‖Z̄k‖2
(L2,λ) ≤ c3λλ̄�

1 – c1λ
‖ek‖2

(L2,λ),

namely

‖Z̄k‖2
(L2,λ) ≤ c3λλ̄�

1 – λ(c1 + c2)
‖ek‖2

(L2,λ). (39)

Therefore, substituting (39) into (29), we have

‖ek+1‖2
(L2,λ) ≤ 2ρ‖ek‖2

(L2,λ) + 2λC‖Z̄k‖2
(L2,λ)

≤ 2ρ‖ek‖2
(L2,λ) + λ

2c3λ̄C λ̄�

1 – λ(c1 + c2)
‖ek‖2

(L2,λ)

≤
[

2ρ + λ
2c3λ̄C λ̄�

1 – λ(c1 + c2)

]

‖ek‖2
(L2,λ). (40)

Let δ = [2ρ + λ
2c3λ̄C λ̄�

1–(c1+c2) ], because 2ρ < 1, by the continuity of real number, we can take λ

small enough such that δ < 1. Rewrite (40) as

‖ek+1‖2
(L2,λ) ≤ δ‖ek‖2

(L2,λ). (41)

Then, from (41), we have

‖ek+1‖2
(L2,λ) ≤ δk‖e1‖2

(L2,λ). (42)
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Selecting a suitable ξ , such that ξ > 1 and δξ < 1, multiplying both sides of (42) by ξ k , we
obtain

‖ek+1‖2
(L2,λ(ξ )) ≤ (δξ )k‖e1‖2

(L2,λ) ≤ ‖e1‖2
(L2,λ). (43)

Therefore,

∥
∥ek+1(·, s)

∥
∥2

L2 =

( I∑

x=1

ek+1
T(x, s)ek+1(x, s)λsξ k

)

λ–sξ–k

≤ ‖ek+1‖2
(L2,λ(ξ ))ξ

–kλ–s

≤ ‖e1‖2
(L2,λ)ξ

–kλ–J

≤ ξ–kλ–J sup
0≤s≤J

I∑

x=1

e1
T(x, s)e1(x, s). (44)

Noting ξ > 1 and I, J ,λ are bounded in (44), thus we obtain

lim
k→∞

∥
∥ek(·, s)

∥
∥2

L2
= 0, 0 ≤ s ≤ J . (45)

This completes the proof of Theorem 1. �

Next, we will consider system (2a)–(2b) in the following Sect. 3.2.

3.2 System with time delay in input
We assume the corresponding boundary value and initial value conditions of system (2a)–
(2b) to be

Zk(x, 0) = ϕ(x, 0), 1 ≤ x ≤ I, (46)

Zk(0, s) = 0 = Zk(I + 1, s), 0 ≤ s ≤ J , (47)

for k = 1, 2, . . . .
For system (2a)–(2b), we propose that the iterative learning control scheme is

Uk+1(x, s) = Uk(x, s) + �τ (s)ek(x, s + τ ), (48)

where –τ ≤ s ≤ J – τ .

Theorem 2 If the gain matrix �τ (s) in algorithm (48) satisfies

∥
∥
(
I – Gτ (s)�τ (s)

)∥
∥2 ≤ ρ, 2ρ < 1,∀s ∈ [0, J]. (49)

Then, under the initial setting (46) and boundary value (47), the output error of system
(2a)–(2b) converges to zero in mean L2 norm, that is,

lim
k→∞

∥
∥ek(·, s)

∥
∥2

L2 = 0, 0 ≤ s ≤ J . (50)
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Proof According to algorithm (48) with –τ ≤ s ≤ J – τ , we have

ek+1(x, s + τ )

= ek(x, s + τ ) + Yk(x, s + τ ) – Yk+1(x, s + τ )

= ek(x, s + τ ) + C(s + τ )
(
Zk(x, s + τ ) – Zk+1(x, s + τ )

)
+ Gτ (s + τ )Ūk(x, s)

= ek(x, s + τ ) – C(s + τ )Z̄k(x, s + τ ) – Gτ (s + τ )�τ (s + τ )ek(x, s + τ )

=
[
I – Gτ (s + τ )�(s + τ )

]
ek(x, s + τ ) – C(s + τ )Z̄k(x, s + τ )

� Ĝτ (s + τ )ek(x, s + τ ) – C(s + τ )Z̄k(x, s + τ ), (51)

that is,

ek+1(x, s) = Ĝτ (s)ek(x, s) – C(s)Z̄k(x, s), 0 ≤ s ≤ J . (52)

Furthermore,

‖ek+1‖2
(L2,λ) ≤ 2λ̄Ĝτ

‖ek‖2
(L2,λ) + 2λ̄C‖Z̄k‖2

(L2,λ), (53)

where ρτ = λmax0≤s≤J (ĜT
τ (s)Ĝτ (s)).

On the other hand, similar to Proposition 1, we can obtain

I∑

x=1

Z̄T
k (x, s + 1)Z̄k(x, s + 1)

≤ c4

I∑

x=1

Z̄T
k (x, s)Z̄k(x, s) + c5

I∑

x=1

ŪT
k (x, s – τ )Ūk(x, s – τ ), (54)

where c4, c5 are positive bounded constants.
Using Lemma 1 again for (54) and noting (47), we conclude

∥
∥Z̄k(·, s)

∥
∥2

L2 ≤ cs
4

s–1∑

t=0

∥
∥Z̄k(·, 0)

∥
∥2

L2 + c5

s–1∑

t=0

∥
∥Ūk(·, t – τ )

∥
∥2

L2 cs–t–1
4

≤ cs
4

s–1∑

t=0

∥
∥Z̄k(·, 0)

∥
∥2

L2 + c5λ̄�τ

s–1∑

t=0

∥
∥ek(·, t)

∥
∥2

L2 cs–t–1
4

≤ c5λ̄�τ

s–1∑

t=0

∥
∥ek(·, t)

∥
∥2

L2 cs–t–1
4 . (55)

Multiplying λj to both sides of (55), we get

∥
∥Z̄k(·, s)

∥
∥2

L2λ
s ≤ c5λ̄�τ

s–1∑

t=0

∥
∥ek(·, t)

∥
∥2

L2 ]cs–t–1
4 λs

≤ c5λ̄�τ

s–1∑

t=0

(∥
∥ek(·, t)

∥
∥2

L2λ
t)cs–t–1

4 λs–t
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≤ c5λ̄�τ

∥
∥ek(·, t)

∥
∥2

(L2,λ)

s–1∑

t=0

cs–t–1
4 λs–t

≤ c5λλ̄�τ

1 – c4λ

∥
∥ek(·, t)

∥
∥2

(L2,λ). (56)

Substituting (56) into (53), we have

‖ek+1‖2
(L2,λ) ≤ 2ρτ‖ek‖2

(L2,λ) +
2λλCc5λ�τ

1 – c4λ

∥
∥ek(·, t)

∥
∥2

(L2,λ). (57)

By the condition of Theorem 2: 2ρτ < 1, we can find λ such that

δ1 = 2ρτ +
2λλCc5λ�τ

1 – c4λ
< 1.

Then, similar to Theorem 1, we can obtain that

‖ek+1‖2
(L2,λ) ≤ δ1‖ek‖2

(L2,λ). (58)

In the end, we have

lim
k→∞

∥
∥ek(·, s)

∥
∥2

L2 = 0, 0 ≤ s ≤ J . (59)

This is the conclusion of Theorem 2. �

Remark 1 For discrete time and spatial variables x = 0, 1, . . . , I, s = 0, 1, 2, . . . , J , I, J are
bounded, one can easily show that (4) holds by the conclusions of Theorems 1 and 2. That
is, the actual output (iterative output) can completely track the desired output as iteration
number tends to infinity for system (1a)–(1b) and system (2a)–(2b).

4 Numerical simulations
To illustrate the effectiveness of the algorithm, we give two examples for systems (1a)–(1b)
and (2a)–(2b), respectively. First, giving consideration to system (1a)–(1b), let the system
state, the control input, and the output be

Z(x, s) =

[
Z1(x, s)
Z2(x, s)

]

, U(x, s) =

[
U1(x, s)
U2(x, s)

]

, Y(x, s) =

[
Y1(x, s)
Y2(x, s)

]

.

The space and time variables (x, s) ∈ [0, 10] × [0, 200], time delay τ = 5. And the coefficient
matrices, the gain matrices are as follows:

D =

[
0.3 0
0 0.1

]

, A =

[
0.3 – 0.2e–4s 0.1

0 0.3 – 1
8+s

]

, Aτ =

[
0.2 0
0.1 0.15

]

,

B =

[
0.25 0
0.12 –0.4 – 1

2+s

]

, C =

[
–0.2 –0.12
0.01 0.3

]

,

G =

[
0.8 + 0.2e–4s 0

0 0.7 + 0.4e–4s

]

, � =

[
1.1 + 0.2e–8s 0.02

0 1.2 + 0.1e–8s

]

.
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Figure 1 Desired surface yd1(x, s)

Figure 2 Output surface yk1(x, s)

Figure 3 Desired surface yd2(x, s)

The desired trajectory is

Yd(x, s) =
(
Yd1(x, s), Yd2(x, s)

)
=

(

0.02s sin

(
x

11
π

)

, 2 cos

(
(10 – x)

2
π

)
(
1 – e

–0.01xs
2

)
)

.

From Ĝ(s) = I – G(s)�(s), we can easily calculate ρ < 0.5 and find it meets the conditions
of Theorem 1.

Figures 1 and 3 are the desired surfaces, Figs. 2 and 4 are output surfaces of the 20th it-
eration. Figures 5 and 6 are the corresponding error surface of the 20th iteration. Figure 9
is L2 error convergence history with iterations, the maximum values of the twentieth iter-
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Figure 4 Output surface yk2(x, s) (k = 20)

Figure 5 Error ek1(x, s) for state delay

Figure 6 Error ek2(x, s) for state delay

ation errors are 2.0615×10–7,1.9855×10–6, respectively. Therefore, the iterative learning
algorithm (7) is effective for system (1a)–(1b).

Secondly, we consider systems described by (2a)–(2b) with input time delay. Let

Bτ =

[
0.2 0
0.1 0.15

]

, C =

[
0.3 –0.1
0.1 0.4

]

, �τ =

[
1 + 0.4e–5s 0.01

0 1.15 + 0.1e–4s

]

,

and select time delay τ = 8, Gτ = G, the rest are the same as those in system (1a)–(1b).
Figures 7 and 8 describe the two error surfaces in the twenty times iteration. According
to Figs. 7 and 8, we observe that the maximum values of the twentieth iteration errors are
0.8856 × 10–15, 0.8913 × 10–15, respectively. At the same time, the data from Figs. 9 and
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Figure 7 Error ek1(x, s) for input delay

Figure 8 Error ek2(x, s) for input delay

Figure 9 Iterations-error for state delay

10 denote that the tracking errors are already acceptable at the 10th iteration. The two
error curves in Figs. 9 and 10 also demonstrate the efficacy of the proposed algorithms (7)
and (48).

5 Conclusions
In this paper, a study of the ILC problem for parabolic partial difference systems with time
delay is performed. Convergence results are proved for two different time delay cases.
Simulation studies are used to illustrate the applicability of the theoretical results.
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Figure 10 Iterations-error for input delay
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