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Abstract
In this paper,we are interested in the existence and uniqueness of positive solutions
for integral boundary value problem with fractional q-derivative:

Dα
q u(t) + f (t,u(t),u(t)) + g(t,u(t)) = 0, 0 < t < 1,

u(0) = Dqu(0) = 0, u(1) =μ

∫ 1

0
u(s)dqs,

where Dα
q is the fractional q-derivative of Riemann–Liouville type, 0 < q < 1, 2 < α ≤ 3,

and μ is a parameter with 0 <μ < [α]q. By virtue of fixed point theorems for mixed
monotone operators, we obtain some results on the existence and uniqueness of
positive solutions.

Keywords: Positive solution; Mixed monotone operator; Fractional q-difference
equation; Existence and uniqueness

1 Introduction
The theory that fractional differential equations arise in the fields of science and engineer-
ing such as physics, chemistry, mechanics, economics, and biological sciences, etc.; see,
for example, [1–6]. The q-difference calculus or quantum calculus is an old subject that
was put forward by Jackson [7, 8]. The essential definitions and properties of q-difference
calculus can be found in [9, 10]. Early development for q-fractional calculus can be seen
in the papers by Al-Salam [11] and Agarwal [12] on the existence theory of fractional
q-difference. These days the fractional q-difference equation have given fire to increasing
scholars’ imaginations. Some works considered the existence of positive solutions for non-
linear q-fractional boundary value problem [13–32]. For example, Ferreira [13] studied the
existence of positive solutions to the fractional q-difference equation

⎧⎨
⎩

Dα
q u(t) + f (t, u(t)) = 0, 0 < t < 1, 1 < α ≤ 2,

u(0) = u(1) = 0.
(1.1)
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Ferreira [14] also considered the existence of positive solutions to the nonlinear q-
difference boundary value problem

⎧⎨
⎩

Dα
q u(t) + f (t, u(t)) = 0, 0 < t < 1, 1 < α ≤ 3,

u(0) = Dqu(0) = 0, Dqu(1) = β ≥ 0.
(1.2)

EI-Shahed and AI-Askar [15] studied the existence of a positive solution to the fractional
q-difference equation

⎧⎨
⎩

cDα
q u(t) + a(t)f (t) = 0, 0 ≤ t ≤ 1, 2 < α ≤ 3,

u(0) = D2
q(0) = 0, γ Dqu(1) + βD2

qu(1) = 0,
(1.3)

where γ ,β ≤ 0, and cDα
q is the fractional q-derivative of Caputo type.

Darzi and Agheli [16] studied the existence of a positive solution to the fractional q-
difference equation

⎧⎨
⎩

Dα
q u(t) + a(t)f (t) = 0, 0 ≤ t ≤ 1, 3 < α ≤ 4,

u(0) = Dqu(0) = D2
qu(0) = 0, D2

qu(1) = βD2
qu(η),

(1.4)

where 0 < η < 1 and 1 – βηα–3 > 0.
The methods used in the papers mentioned are mainly the Krasnoselskii fixed point

theorem, the Schauder fixed point theorem, the Leggett–Williams fixed point theorem,
and so on. Differently from methods used in the literature mentioned, on the basis of
the enlightenment of the works [17, 18, 26], we will use fixed point theorems for mixed
monotone operators to demonstrate the existence and uniqueness of positive solutions
for integral boundary value problems of the form

⎧⎨
⎩

Dα
q u(t) + f (t, u(t), u(t)) + g(t, u(t)) = 0, 0 < t < 1,

u(0) = Dqu(0) = 0, u(1) = μ
∫ 1

0 u(s) dqs,
(1.5)

where Dα
q is the fractional q-derivative of Riemann–Liouville type, 0 < q < 1, 2 < α ≤ 3,

0 < μ < [α]q. Our results ensure the existence of a unique positive solution. Moreover, an
iterative scheme is constructed for approximating the solution. As far as we know, there
are still very few works utilizing the fixed point results for mixed monotone operators
to study the existence and uniqueness of a positive solution for fractional q-derivative
integral boundary value problems.

The plan of the paper is as follows. In Sect. 2, we give not only basic definitions of q-
fractional integral, but also some properties of certain Green’s functions, which play a
fundamental role in the process of proofs. In Sect. 3, in light of some sufficient conditions,
we obtained some results on the existence and uniqueness of positive solutions to problem
(1.5). At the closing part, two examples are given to demonstrate the serviceability of our
main results in Sect. 4.
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2 Preliminaries
For convenience of the reader, on one hand, we recall some well-known facts on q-calculus
and, on the other hand, some notations and lemmas that will be used in the proofs of our
theorems.

A nonempty closed convex set P ⊂ E is a cone if (1) x ∈ P, r ≥ 0 ⇒ rx ∈ P and (2) x ∈
P, –x ∈ P ⇒ x = θ (θ is the zero element of E), where (E,‖ · ‖) is a real Banach space. For
all x, y ∈ E, if there exist μ,ν > 0 such that μx ≤ y ≤ νx, then we write x ∼ y. Obviously, ∼
is an equivalence relation. Let Ph = {x ∈ E|x ∼ h, h > θ}.

Let q ∈ (0, 1). Then the q-number is given by

[a]q =
1 – qa

1 – q
, a ∈ R.

The q-analogue of the power function (a – b)(n) with n ∈ N0 is

(a – b)(0) = 1, (a – b)(n) =
n–1∏
k=0

(
a – bqk), n ∈ N , a, b ∈ R.

More generally, if α ∈ R, then

(a – b)(α) = aα

∞∏
k=0

a – bqk

a – bqα+k , α 
= 0.

Note that if b = 0, then a(α) = aα . The q-gamma function is defined by

�q(x) =
(1 – q)(x–1)

1 – qx–1 , x ∈ R+,

and satisfies �q(x + 1) = [x]q�q(x).
The q-derivative of a function f is defined by

(Dqf )(x) =
f (qx) – f (x)

(q – 1)x
, (Dqf )(0) = lim

x→0
(Dqf )(x),

and q-derivatives of higher order by

(
D0

qf
)
(x) = f (x),

(
Dn

qf
)
(x) = Dq

(
Dn–1

q f
)
(x), n ∈ N .

The q-integral of a function f defined in the interval [0, b] is given by

(Iqf )(x) =
∫ x

0
f (s) dqs = x(1 – q)

∞∑
k=0

f
(
xqk)qk , x ∈ [0, b].

If a ∈ [0, b] and f is defined in the interval [0, b], then its integral from a to b is defined by

∫ b

a
f (s) dqs =

∫ b

0
f (s) dqs –

∫ a

0
f (s) dqs.
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Similarly to the derivatives, the operator In
q is given by

(
I0

q f
)
(x) = f (x),

(
In

q f
)
(x) = Iq

(
In–1

q f
)
(x), n ∈ N .

The fundamental theorem of calculus applies to the operators Iq and Dq, that is,

(DqIqf )(x) = f (x),

and if f is continuous at x = 0, then

(IqDqf )(x) = f (x) – f (0).

The following formulas will be used later (tDq denotes the derivative with respect to vari-
able t):

tDq(t – s)(α) = [α]q(t – s)(α–1),
(

xDq

∫ x

0
f (x, t) dqt

)
(x) =

∫ x

0
xDqf (x, t) dqt + f (qx, x).

Definition 2.1 (see [4]) Let α ≥ 0, and let f be a function defined on [0, 1]. The fractional
q-integral of the Riemann–Liouville type is defined by (I0

q f )(x) = f (x) and

(
Iα

q f
)
(x) =

1
�q(α)

∫ x

0
(x – qt)(α–1)f (t) dqt, α > 0, x ∈ [0, 1].

Definition 2.2 (see [10]) The fractional q-derivative of the Riemann–Liouville type is de-
fined by

(
D0

qf
)
(x) = f (x),

(
Dα

q f
)
(x) =

(
Dp

qIp–α
q f

)
(x), α > 0,

where p is the smallest integer greater than or equal to α.

Lemma 2.1 (see [10]) Let α,β ≥ 0, and let f be a function defined on [0, 1]. Then the fol-
lowing formulas hold:

(i) (Iβ
q Iα

q f )(x) = (Iβ+α
q f )(x),

(ii) (Dα
q Iα

q f )(x) = f (x).

Lemma 2.2 (see [10]) Let α > 0, and let be p be a positive integer. Then the following equal-
ity holds:

(
Iα

q Dp
qf

)
(x) =

(
Dp

qIα
q f

)
(x) –

p–1∑
k=0

xα–p+k

�q(α + k – p + 1)
(
Dk

qf
)
(0).

Lemma 2.3 (see [27]) Let 2 < α ≤ 3 and 0 < μ < [α]q. Let x ∈ C[0, 1]. Then the boundary
value problem

Dα
q u(t) + x(t) = 0, 0 < t < 1, (2.1)

u(0) = Dqu(0) = 0, u(1) = μ

∫ 1

0
u(s) dqs, (2.2)
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has a unique solution

u(t) =
∫ 1

0
G(t, qs)x(s) dqs,

where

G(t, s) =

⎧⎨
⎩

tα–1(1–s)(α–1)([α]q–μ+μqα–1s)–([α]q–μ)(t–s)α–1

([α]q–μ)�q(α) , 0 ≤ s ≤ t ≤ 1,
tα–1(1–s)(α–1)([α]q–μ+μqα–1s)

([α]q–μ)�q(α) , 0 ≤ t ≤ s ≤ 1.
(2.3)

Lemma 2.4 (see [27]) The function G(t, qs) defined by (2.3) has the following properties:
(i) G(t, qs) is a continuous function and G(t, qs) ≥ 0;

(ii) μqα tα–1(1–qs)(α–1)s
([α]q–μ)�q(α) ≤ G(t, qs) ≤ M0tα–1

([α]q–μ)�q(α) , t, s ∈ [0, 1],
where M0 = max{[α – 1]q([α]q – μ) + μqα , qα–1[α]q}.

Definition 2.3 (see [17]) An operator A : P × P → P is said to be a mixed monotone
operator if A(x, y) is increasing in x and decreasing in y, that is, xi, yi ∈ P (i = 1, 2), x1 ≤ x2,
y1 ≥ y2 imply A(x1, y1) ≤ A(x2, y2). An element x ∈ P is called a fixed point of A if A(x, x) = x.

Definition 2.4 (see [18]) An operator A : P → P is said to be subhomogeneous if

A(tx) ≥ tA(x) for any t ∈ (0, 1), x ∈ P. (2.4)

Definition 2.5 (see [18]) Let D = P, and let γ be a real number with 0 ≤ γ < 1. An operator
A : D → D is said to be γ -concave if it satisfies

A(tx) ≥ tγ A(x) for any t ∈ (0, 1), x ∈ D. (2.5)

Lemma 2.5 (see [17]) Let h > θ and γ ∈ (0, 1).
Let A : P × P → P be a mixed monotone operator satisfying

A
(
tx, t–1y

) ≥ tγ A(x, y) for any t ∈ (0, 1), x, y ∈ P, (2.6)

and let B : P → P be an increasing subhomogeneous operator. Assume that
(i) there is h0 ∈ Ph such that A(h0, h0) ∈ Ph and Bh0 ∈ Ph;

(ii) there exists a constant δ0 such that A(x, y) ≥ δ0Bx for any x, y ∈ P.
Then:

(1) A : Ph × Ph → Ph and B : Ph → Ph;
(2) there exist u0, v0 ∈ Ph and r ∈ (0, 1) such that

rv0 ≤ u0 < v0, u0 ≤ A(u0, v0) + Bu0 ≤ A(v0, u0) + Bv0 ≤ v0;

(3) the operator equation A(x, x) + Bx = x has a unique solution x∗ ∈ Ph;
(4) for any initial values x0, y0 ∈ Ph, constructing successively the sequences

xn = A(xn–1, yn–1) + Bxn–1, yn = A(yn–1, xn–1) + Byn–1, n = 1, 2, . . . ,

we have xn → x∗ and yn → x∗ as n → ∞.
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Remark 2.1 When B = θ in Lemma 2.5, then the corresponding conclusion still holds.

Lemma 2.6 (see [18]) Let h > θ and γ ∈ (0, 1).
Let A : P × P → P be a mixed monotone operator satisfying

A
(
tx, t–1y

) ≥ tA(x, y), for any t ∈ (0, 1), x, y ∈ P, (2.7)

and let B : P → P be an increasing γ -concave operator. Assume that
(i) there is h0 ∈ Ph such that A(h0, h0) ∈ Ph and Bh0 ∈ Ph;

(ii) there exists a constant δ0 such that A(x, y) ≤ δ0Bx for any x, y ∈ P.
Then:

(1) A : Ph × Ph → Ph and B : Ph → Ph;
(2) there exist u0, v0 ∈ Ph and r ∈ (0, 1) such that

rv0 ≤ u0 < v0, u0 ≤ A(u0, v0) + Bu0 ≤ A(v0, u0) + Bv0 ≤ v0;

(3) the operator equation A(x, x) + Bx = x has a unique solution x∗ ∈ Ph;
(4) for any initial values x0, y0 ∈ Ph, constructing successively the sequences

xn = A(xn–1, yn–1) + Bxn–1, yn = A(yn–1, xn–1) + Byn–1, n = 1, 2, . . . ,

we have xn → x∗ and yn → x∗ as n → ∞.

Remark 2.2 When A = θ in Lemma 2.6, then the corresponding conclusion still holds.

3 Main results
In this section, we give and prove our main results by applying Lemmas 2.5 and 2.6. We
consider the Banach space X = C[0, 1] endowed with standard norm ‖x‖ = sup{|x(t)| :
t ∈ [0, 1]}. Clearly, this space can be equipped with a partial order given by

x, y ∈ C[0, 1], x ≤ y ⇔ x(t) ≤ y(t) for t ∈ [0, 1].

We define the cone P = {x ∈ X : x(t) ≥ 0, t ∈ [0, 1]}. Notice that P is a normal cone in C[0, 1]
and the normality constant is 1.

Theorem 3.1 Suppose that
(F1) a function f (t, x, y) : [0, 1] × [0, +∞) × [0, +∞) → [0, +∞) is continuous, increasing

with respect to the second variable, and decreasing with respect to the third variable;
(F2) a function g(t, x) : [0, 1] × [0, +∞) → [0, +∞) is continuous and increasing with re-

spect to the second variable;
(F3) there exists a constant γ ∈ (0, 1) such that f (t,λx,λ–1y) ≥ λγ f (t, x, y) for any t ∈ [0, 1],

λ ∈ (0, 1), x, y ∈ [0, +∞), and g(t,λx) ≥ λg(t, x) for λ ∈ (0, 1), t ∈ [0, 1], u ∈ [0, +∞),
and g(t, 0) 
≡ 0;

(F4) there exists a constant δ0 > 0 such that f (t, x, y) ≥ δ0g(t, x), t ∈ [0, 1], x, y ≥ 0.
Then:
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(1) there exist x0, y0 ∈ Ph and r ∈ (0, 1) such that ry0 ≤ x0 < y0 and

x0 ≤
∫ 1

0
G(t, qs)

[
f
(
s, x0(s), y0(s)

)
+ g

(
s, x0(s)

)]
dqs, t ∈ [0, 1],

y0 ≥
∫ 1

0
G(t, qs)

[
f
(
s, y0(s), y0(s)

)
+ g

(
s, y0(s)

)]
dqs, t ∈ [0, 1],

where G(t, qs) is defined by (2.3), and h(t) = tα–1, t ∈ [0, 1];
(2) the boundary value problem (1.5) has a unique positive solution u∗ in Ph, and for any

x0, y0 ∈ Ph, constructing successively the sequences

xn+1 =
∫ 1

0
G(t, qs)

[
f
(
s, xn(s), yn(s)

)
+ g

(
s, xn(s)

)]
dqs, n = 0, 1, 2, . . . ,

yn+1 =
∫ 1

0
G(t, qs)

[
f
(
s, yn(s), xn(s)

)
+ g

(
s, yn(s)

)]
dqs, n = 0, 1, 2, . . . ,

we have ‖xn – u∗‖ → 0 and ‖yn – u∗‖ → 0 as n → ∞.

Proof We note that if u is a solution of boundary value problem (1.5), then

u(t) =
∫ 1

0
G(t, qs)

[
f
(
s, u(s), u(s)

)
+ g

(
s, u(s)

)]
dqs, 0 ≤ t ≤ 1. (3.1)

Define two operators T1 : P × P → E and T2 : P → E by

T1(u, v)(t) =
∫ 1

0
G(t, qs)f

(
s, u(s), v(s)

)
dqs,

(T2u)(t) =
∫ 1

0
G(t, qs)g

(
s, u(s)

)
dqs.

(3.2)

We transform the boundary value problem (1.5) into a fixed point problem u = T1(u, u) +
T2u. From (F1), (F2), and Lemma 2.4 it is easy to see that T1 : P × P → P and T2 : P → P.
Next, we want to prove that T1 and T2 satisfy the conditions of Lemma 2.5.

To begin with, we prove that T1 is a mixed monotone operator. In fact, for u1, u2, v1, v2 ∈
P with u1 ≥ u2 and v1 ≤ v2, it is easy to see that u1(t) ≥ u2(t), v1(t) ≤ v2(t), t ∈ [0, 1], and
by Lemma 2.4 and (F1),

T1(u1, v1)(t) =
∫ 1

0
G(t, qs)f

(
s, u1(s), v1(s)

)
dqs

≥
∫ 1

0
G(t, qs)f

(
s, u2(s), v2(s)

)
dqs = T1(u2, v2)(t). (3.3)

For any λ ∈ (0, 1) and u, v ∈ P, by (F3) we have

T1
(
λu,λ–1v

)
(t) =

∫ 1

0
G(t, qs)f

(
s,λu(s),λ–1v(s)

)
dqs

≥ λγ

∫ 1

0
G(t, qs)f

(
s, u(s), v(s)

)
dqs ≥ λγ T1(u, v)(t). (3.4)

So, the operator T1 satisfies (2.6).
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For any u1(t) ≥ u2(t), t ∈ [0, 1], from G(t, qs) ≥ 0 and (F2) we know that

T2u1(t) =
∫ 1

0
G(t, qs)g

(
s, u1(s)

)
dqs ≥

∫ 1

0
G(t, qs)g

(
s, u2(s)

)
dqs = T2u2(t).

So T2 is increasing. Further, for any λ ∈ (0, 1) and u ∈ P, from hypothesis (F3) we get

T2(λu)(t) =
∫ 1

0
G(t, qs)g

(
s,λu(s)

)
dqs ≥ λ

∫ 1

0
G(t, qs)g

(
s, u(s)

)
dqs = λT2u(t), (3.5)

that is, the operator T2 is subhomogeneous. By (F1) and Lemma 2.4, for any t ∈ [0, 1], we
have

T1(h, h)(t) =
∫ 1

0
G(t, qs)f

(
s, h(s), h(s)

)
dqs

=
∫ 1

0
G(t, qs)f

(
s, sα–1, sα–1)dqs

≤ M0

�q(α)([α]q – μ)
h(t)

∫ 1

0
f (s, 1, 0) dqs (3.6)

and

T1(h, h)(t) =
∫ 1

0
G(t, qs)f

(
s, h(s), h(s)

)
dqs

=
∫ 1

0
G(t, qs)f

(
s, sα–1, sα–1)dqs

≥ μqα

�q(α)([α]q – μ)
h(t)

∫ 1

0
s(1 – qs)(α–1)f (s, 0, 1) dqs. (3.7)

From (F2) and (F4) we have the inequality

f (s, 1, 0) ≥ f (s, 0, 1) ≥ δ0g(s, 0) ≥ 0.

Since g(t, 0) 
≡ 0, we also obtain

∫ 1

0
f (s, 1, 0) dqs ≥

∫ 1

0
f (s, 0, 1) dqs ≥ δ0

∫ 1

0
g(s, 0) dqs > 0. (3.8)

Let

M1 =
M0

�q(α)([α]q – μ)

∫ 1

0
f (s, 1, 0) dqs,

M2 =
μqα

�q(α)([α]q – μ)

∫ 1

0
s(1 – qs)(α–1)f (s, 0, 1) dqs,

M3 =
μqα

�q(α)([α]q – μ)

∫ 1

0
s(1 – qs)(α–1)g(s, 0) dqs,

M4 =
M0

�q(α)([α]q – μ)

∫ 1

0
g(s, 1) dqs.
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Thus we have M2h(t) ≤ T1(h, h) ≤ M1h(t), M3h(t) ≤ T2h ≤ M4h(t), t ∈ [0, 1]. So, T1(h, h) ∈
Ph. From g(t, 0) 
≡ 0 it is easy to see that T2h ∈ Ph. So, there is h(t) = tα–1 ∈ Ph such that
T1(h, h) ∈ Ph and T2h ∈ Ph.

Next, we prove that the operators T1 and T2 satisfy condition (ii) of Lemma 2.5. In fact,
for u, v ∈ P and any t ∈ [0, 1], by (F4) we have

T1(u, v)(t) =
∫ 1

0
G(t, qs)f

(
s, u(s), v(s)

)
dqs

≥ δ0

∫ 1

0
G(t, qs)g

(
s, u(s)

)
dqs = δ0(T2u)(t). (3.9)

Then we have T1(u, v) ≥ δ0T2u for u, v ∈ P. By Lemma 2.5 we can deduce: there exist
u0, v0 ∈ Ph and r ∈ (0, 1) such that rv0 ≤ u0 ≤ v0, u0 ≤ T1(u0, v0) + T2u0 ≤ T1(v0, u0) +
T2v0 ≤ v0; the operator equation T1(u, u) + T2u = u has a unique solution u∗ ∈ Ph; and
for any initial values x0, y0 ∈ Ph, constructing successively the sequences

xn = T1(xn–1, yn–1) + T2xn–1, yn = T1(yn–1, xn–1) + T2yn–1, n = 1, 2, . . . ,

we get xn → u∗ and yn → u∗ as n → ∞. We have the following two inequalities:

u0(t) ≤
∫ 1

0
G(t, qs)

[
f
(
s, u0(s), v0(s)

)
+ g

(
s, u0(s)

)]
dqs, t ∈ [0, 1],

v0(t) ≥
∫ 1

0
G(t, qs)

[
f
(
s, v0(s), u0(s)

)
+ g

(
s, v0(s)

)]
dqs, t ∈ [0, 1].

Thus problem (1.5) has a unique positive solution u∗ ∈ Ph; for any u0, v0 ∈ Ph, constructing
successively the sequences

xn+1(t) =
∫ 1

0
G(t, qs)

[
f
(
s, xn(s), yn(s)

)
+ g

(
s, xn(s)

)]
dqs, n = 0, 1, 2, . . . ,

yn+1(t) =
∫ 1

0
G(t, qs)

[
f
(
s, yn(s), xn(s)

)
+ g

(
s, yn(s)

)]
dqs, n = 0, 1, 2, . . . ,

we have ‖xn – u∗‖ → 0 and ‖yn – u∗‖ → 0 as n → ∞. �

Corollary 3.1 Suppose that f satisfies the conditions of Theorem 3.1 and g ≡ 0,
f (t, 0, 1) 
≡ 0. Then:

(i) there exist u0, v0 ∈ Ph and r ∈ (0, 1) such that rv0 ≤ u0 < v0, and

u0(t) ≤
∫ 1

0
G(t, qs)

[
f
(
s, u0(s), v0(s)

)]
dqs, t ∈ [0, 1],

v0(t) ≥
∫ 1

0
G(t, qs)

[
f
(
s, v0(s), u0(s)

)]
dqs, t ∈ [0, 1],

where G(t, qs) is defined by (2.3), and h(t) = tα–1, t ∈ [0, 1];
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(ii) the BVP

⎧⎨
⎩

Dα
q u(t) + f (t, u(t), u(t)) = 0, 0 < t < 1, 2 < α ≤ 3,

u(0) = Dqu(0) = 0, u(1) = μ
∫ 1

0 u(s) dqs,
(3.10)

has a unique positive solution u∗ in Ph;
(iii) for any x0, y0 ∈ Ph, the sequences

xn+1 =
∫ 1

0
G(t, qs)

[
f
(
s, xn(s), yn(s)

)]
dqs, n = 0, 1, 2, . . . ,

yn+1 =
∫ 1

0
G(t, qs)

[
f
(
s, yn(s), xn(s)

)]
dqs, n = 0, 1, 2, . . . ,

satisfy ‖xn – u∗‖ → 0 and ‖yn – u∗‖ → 0 as n → ∞.

Theorem 3.2 Suppose that (F1)–(F2) hold. In addition, suppose that f , g satisfy the fol-
lowing conditions:

(F5) there exists a constant γ ∈ (0, 1) such that g(t,λu) ≥ λγ g(t, u) for any t ∈ [0, 1],
λ ∈ (0, 1), u ∈ [0, +∞), and f (t,λu,λ–1v) ≥ λf (t, u, v) for λ ∈ (0, 1), t ∈ [0, 1], u, v ∈
[0, +∞);

(F6) f (t, 0, 1) 
≡ 0 for t ∈ [0, 1], and there exists a constant δ0 > 0 such that f (t, u, v) ≤
δ0g(t, u), t ∈ [0, 1], u, v ≥ 0.

Then:
(1) there exist u0, v0 ∈ Ph and r ∈ (0, 1) such that rv0 ≤ u0 < v0 and

u0 ≤
∫ 1

0
G(t, qs)

[
f
(
s, u0(s), v0(s)

)
+ g

(
s, u0(s)

)]
dqs, t ∈ [0, 1],

v0 ≥
∫ 1

0
G(t, qs)

[
f
(
s, v0(s), u0(s)

)
+ g

(
s, v0(s)

)]
dqs, t ∈ [0, 1],

where G(t, qs) is defined by (2.3), and h(t) = tα–1, t ∈ [0, 1];
(2) the boundary value problem (1.5) has a unique positive solution u∗ in Ph; and for any

x0, y0 ∈ Ph, the sequences

xn+1 =
∫ 1

0
G(t, qs)

[
f
(
s, xn(s), yn(s)

)
+ g

(
s, xn(s)

)]
dqs, n = 0, 1, 2, . . . ,

yn+1 =
∫ 1

0
G(t, qs)

[
f
(
s, yn(s), xn(s)

)
+ g

(
s, yn(s)

)]
dqs, n = 0, 1, 2, . . . ,

satisfy ‖xn – u∗‖ → 0 and ‖yn – u∗‖ → 0 as n → ∞.

Proof Similarly to the proof of Theorem 3.1, T1 and T2 are given in (3.2). From (F1) and
(F2) we know that T1 : P ×P → P is a mixed monotone operator and T2 : P → P is increas-
ing. By (F5) we obtain

T1
(
λu,λ–1v

) ≥ λT1(u, v), T2(λu) ≥ λγ T2u, for λ ∈ (0, 1), u, v ∈ P.
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According to (F2) and (F6), we have

f (s, 0, 1) ≤ δ0g(s, 0), f (s, 0, 1) ≤ f (s, 1, 0), s ∈ [0, 1].

From f (t, 0, 1) 
≡ 0 we get

0 <
∫ 1

0
f (s, 0, 1) dqs ≤

∫ 1

0
f (s, 1, 0) dqs,

0 <
1
δ0

∫ 1

0
f (s, 0, 1) dqs ≤

∫ 1

0
g(s, 0) dqs ≤

∫ 1

0
g(s, 1) dqs,

and the following inequalities hold:

0 <
μqα

�q(α)([α]q – μ)

∫ 1

0
s(1 – qs)(α–1)f (s, 0, 1) dqs

≤ M0

�q(α)([α]q – μ)

∫ 1

0
f (s, 1, 0) dqs, (3.11)

0 <
μqα

�q(α)([α]q – μ)

∫ 1

0
s(1 – qs)(α–1)g(s, 0) dqs

≤ M0

�q(α)([α]q – μ)

∫ 1

0
g(s, 1) dqs. (3.12)

Hence we can easily check that T1(h, h) ∈ P, T2h ∈ P, t ∈ [0, 1], and, by using (F6), we
have

T1(u, v)(t) =
∫ 1

0
G(t, s)f

(
s, u(s), v(s)

)
dqs

≤ δ0

∫ 1

0
G(t, s)g

(
s, u(s)

)
dqs = δ0T2u(t). (3.13)

Then we have T1(u, v) ≤ δ0T2u for u, v ∈ P. Thus, from Lemma 2.6 we get that there ex-
ist u0, v0 ∈ Ph and r ∈ (0, 1) such that rv0 ≤ u0 ≤ v0, u0 ≤ T1(u0, v0) + T2u0 ≤ T1(v0, u0) +
T2v0 ≤ v0; the operator equation T1(u, u) + T2u = u has a unique solution u∗ ∈ Ph; and for
any initial values x0, y0 ∈ Ph, the sequences

xn = T1(xn–1, yn–1) + T2xn–1, yn = T1(yn–1, xn–1) + T2yn–1, n = 1, 2, . . . ,

satisfy xn → u∗ and yn → u∗ as n → ∞. That is,

u0(t) ≤
∫ 1

0
G(t, qs)

[
f
(
s, u0(s), v0(s)

)
+ g

(
s, u0(s)

)]
dqs, t ∈ [0, 1],

v0(t) ≥
∫ 1

0
G(t, qs)

[
f
(
s, v0(s), u0(s)

)
+ g

(
s, v0(s)

)]
dqs, t ∈ [0, 1],
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The boundary value problem (1.5) has a unique positive solution u∗ ∈ Ph; for u0, v0 ∈ Ph,
the sequences

xn+1(t) =
∫ 1

0
G(t, qs)

[
f
(
s, xn(s), yn(s)

)
+ g

(
s, xn(s)

)]
dqs, n = 0, 1, 2, . . . ,

yn+1(t) =
∫ 1

0
G(t, qs)

[
f
(
s, yn(s), xn(s)

)
+ g

(
s, yn(s)

)]
dqs, n = 0, 1, 2, . . . ,

satisfy ‖xn – u∗‖ → 0 and ‖yn – u∗‖ → 0 as n → ∞. �

Corollary 3.2 Suppose that g satisfies the conditions of Theorem 3.2, f ≡ 0, and g(t, 0) 
≡ 0
for t ∈ [0, 1]. Then:

(i) there exist u0, v0 ∈ Ph and r ∈ (0, 1) such that rv0 ≤ u0 < v0, and

u0(t) ≤
∫ 1

0
G(t, qs)

[
g
(
s, u0(s)

)]
dqs,

v0(t) ≥
∫ 1

0
G(t, qs)

[
g
(
s, v0(s)

)]
dqs, t ∈ [0, 1],

where G(t, qs) is defined by (2.3), and h(t) = tα–1, t ∈ [0, 1];
(ii) the BVP

⎧⎨
⎩

Dα
q u(t) + g(t, u(t)) = 0, 0 < t < 1, 2 < α ≤ 3,

u(0) = Dqu(0) = 0, u(1) = μ
∫ 1

0 u(s) dqs,
(3.14)

has a unique positive solution u∗ in Ph; and for any x0, y0 ∈ Ph, the sequences

xn+1 =
∫ 1

0
G(t, qs)g

(
s, xn(s)

)
dqs, n = 0, 1, 2, . . . ,

yn+1 =
∫ 1

0
G(t, qs)g

(
s, yn(s)

)
dqs, n = 0, 1, 2, . . . ,

satisfy ‖xn – u∗‖ → 0 and ‖yn – u∗‖ → 0 as n → ∞.

4 Example
Now, we give two examples to illustrate our results.

Example 4.1 Consider the following boundary value problem:

⎧⎨
⎩

–D
5
2
1
2

u(t) = u(t) 1
3 + [u(t) + 1]– 1

2 + u(t)
1+u(t) t3 + t2 + 4, 0 < t < 1,

u(0) = D 1
2

u(0) = 0, u(1) = μ
∫ 1

0 u(s) d 1
2

s.
(4.1)

In this example, we let

f (t, u, v) = u
1
3 + [v + 1]– 1

2 + t2 + 2, g(t, u) =
u

1 + u
t3 + 2,

γ =
1
2

, μ =
1
2

.
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It is not difficult to find that f (t, x, y) : [0, 1]× [0, +∞)× [0, +∞) → [0, +∞) is continuous,
increasing with respect to the second variable, and decreasing with respect to the third
variable and that g(t, x) : [0, 1] × [0, +∞) → [0, +∞) is continuous with g(t, 0) = 2 > 0 and
increasing with respect to the second variable. We also have

g(t,λu) =
λu

1 + λu
t3 + 2 ≥ λu

1 + u
t3 + 2λ = λg(t, u), λ ∈ (0, 1),

f
(
t,λu,λ–1v

)
= λ

1
3 u

1
3 + λ

1
2 [v + λ]– 1

2 + t2 + 2

≥ λ
1
2
{

u
1
3 + [v + 1]– 1

2 + t2 + 2
}

= λγ f (t, u, v).

Further, if we take δ0 ∈ (0, 2
3 ], then we easily get

f (t, u, v) = u
1
3 + [v + 1]– 1

2 + t2 + 2 ≥ 2 =
2
3

· 3

≥ δ0

[
u

1 + u
t3 + 2

]
= δ0g(t, u).

So f and g satisfy the conditions of Theorem 3.1. Thus by Theorem 3.1 the boundary value
problem (4.1) has a unique positive solution in Ph, where h(t) = tα–1 = t 3

2 , t ∈ [0, 1].

Example 4.2 Consider the following boundary value problem:

⎧⎨
⎩

–D
5
2
1
2

u(t) = ( u(t)
1+u(t) )

1
4 + [u(t) + 1]– 1

3 + t3 + u(t) 1
3 + t2 + 1, 0 < t < 1,

u(0) = D 1
2

u(0) = 0, u(1) = μ
∫ 1

0 u(s) d 1
2

s.
(4.2)

We let

f (t, u, v) =
(

u
1 + u

) 1
4

+ [v + 1]– 1
3 + t3, g(t, u) = u

1
3 + t2 + 1, γ =

1
3

, μ =
1
2

.

It is not difficult to find that f (t, x, y) : [0, 1]× [0, +∞)× [0, +∞) → [0, +∞) is continuous,
increasing with respect to the second variable, and decreasing with respect to the third
variable and that g(t, x) : [0, 1] × [0, +∞) → [0, +∞) and increasing with respect to the
second variable. We also have

g(t,λu) = λ
1
3 u

1
3 + t2 + 1 ≥ λ

1
3
[
u

1
3 + t2 + 1

]
= λγ g(t, u), λ ∈ (0, 1),

f
(
t,λu,λ–1v

)
=

(
λu

1 + λu

) 1
4

+
[
λ–1v + 1

]– 1
3 + t3

≥ λ
1
3

{(
u

1 + u

) 1
4

+ [v + λ]– 1
3 + t3

}

≥ λ

{(
u

1 + u

) 1
4

+ [v + 1]– 1
3 + t3

}

= λf (t, u, v).



Guo et al. Advances in Difference Equations        (2018) 2018:379 Page 14 of 15

If we take δ0 = 1 > 0, then we have

f (t, u, v) =
(

u
1 + u

) 1
4

+ [v + 1]– 1
3 + +t3 ≤ u

1
4 + t2 + 1 ≤ u

1
3 + t2 + 1 = δ0g(u, t).

So f and g satisfy the conditions of Theorem 3.2. Thus by Theorem 3.2 the boundary value
problem (4.2) has a unique positive solution in Ph, where h(t) = tα–1 = t 3

2 , t ∈ [0, 1].
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