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Abstract
We consider the multidimensional dimensional inhomogeneous
Landau–Lifshitz–Gilbert (ILLG) equation and its degenerate case, the Schrödinger
map equation. We investigate the special solutions (under large initial values) and
their energy property of the ILLG and Schrödinger map equations. Until now, we had
not seen a paper presenting an explicit dynamic solution of the multidimensional
ILLG. Using the stereographic method, an equivalent equation of ILLG is obtained.
Based on this equivalent system, we obtain some exact solutions of the ILLG equation
and present some implicit solutions of the Schrödinger map equation. Based on
these solutions, by a careful estimation we give the decay rate of energy density.
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1 Introduction
Long-wavelength spin motions in diverse ferromagnetic structures are commonly de-
scribed by the Landau–Lifshitz–Gilbert equation (or the LLG equation), which was first
derived by Landau and Lifshitz [14]. The LLG equation is a very fundamental equation in
describing the evolution for the magnetization in ferromagnetic materials such as Navier–
Stokes equations in fluid dynamics. Without the effects of anisotropy and external mag-
netic field, the LLG equation can be written as

∂

∂t
S = αS × �S – βS × (S × �S), (1)

where S = (S1, S2, S3), S ∈ S2 ↪→ R3, α2 + β2 = 1 (α ≥ 0 and β ≥ 0), and × denotes the cross
product.

The LLG equation is a mixture of two famous equations, the Schrödinger map equation
(α = 1) and the harmonic map heat flow (β = 1). The term multiplied with α represents the
exchange interaction. From a physical point of view, the exchange interaction constitutes
an indispensable part of the LLG system. However, the β-term denotes to the Gilbert
damping considered as a dissipation factor in the LLG equation.

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

https://doi.org/10.1186/s13662-018-1795-4
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-018-1795-4&domain=pdf
http://orcid.org/0000-0003-3507-9284
mailto:penghongzhong@yahoo.com


Zhong et al. Advances in Difference Equations  (2018) 2018:335 Page 2 of 25

In the setting of the LLG equation, of particular importance is to consider the effect of in-
homogeneity on the spin system. This extension is somewhat like the the inhomogeneous
Schrödinger map equation proposed by Balakrishnan [1]. If the dissipation and inhomo-
geneity are considered in LLG, (1) can be generalized into the ILLG equation. Motivated
by these considerations, in this work, we consider the n-dimensional ILLG equations

∂

∂t
S = α

[
q(t,−→x )S × �S + S × (∇q(t,−→x )∇S

)]

– βS × [
q(t,−→x )S × �S + S×(∇q(t,−→x )∇S

)]
, (2)

where the scalar function q(t,−→x ) is the inhomogeneous term.
In the setting of the LLG equation (1), we list several known results. Liu [13] proved that

the concentration set for fixed t is an Hm–2-rectifiable set for almost all t for LLG. For a
smallness initial condition on the gradient, the global well-posedness results for (1) have
been established in n ≥ 2 by Melcher [17]. Some further works about the smallness con-
dition for well-posedness of (1) were done by Lin, Lai, and Wang [15] in the Morrey space.
The smallness condition does not always mean that the global solution exists. Ding and
Wang [7] proved that the solution of (1) develops a finite time singularity in dimensions 3
or 4 under small special initial data. In the critical dimension n = 2, (1) contains a blowup
solution, and the exact blowup rate is predicted by formal analysis [26] for some special
large data. If α = 0, then LLG degenerates into a harmonic map heat flow. Similarly, com-
paring a harmonic map heat flow with some general harmonic system [22, 32–34], it is
clear that the mapping one is more difficult to deal with than a nonmapping system. The
most difficulty of a mapping system is caused by the curvature flow of the Riemannian
manifolds.

The results on the Schrödinger map equation are much more fruitful than those on the
LLG equation. There are a lot fruitful results on the existence, uniqueness, and the blowup
property and soliton solution of the nonlinear Schrödinger equation [11, 19, 24, 31]. Even
for the fractional Schrödinger equations, there are some recent fruitful results [2, 8, 18,
20]. However, very few results can be seen for the Schrödinger map equation, and some
further work still needs to be done. We refer the reader to [25] for some results about
the local existence theorem. Some progress of small initial data existence results can be
found in [4] and [3] for n ≥ 2. Especially, the classical solution with small energy is global
in time for the radial case [4]. For some special large initial data, the possibility of a finite
time blowup and the blowup rate has been proved [21, 23]. In 2008, Huh [10] constructed
infinite energy explicit blowup solutions for the modified Schrödinger map equation. Ding
[5] constructed an infinite energy blowup solution for the Schrödinger map equation on
a hyperbolic target.

In spite of these developments on the LLG equation and Schrödinger map equation, little
progress has been made in the case of ILLG equation. Comparing to many existence results
of the homogeneous case, in which q(t,−→x ) (shortly, q) is a constant, the inhomogeneous
case is not so clear (even the local solution). However, these existence (or blowup) results
of the LLG equation or Schrödinger map equation are expected to be extended to the
inhomogeneous case.
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For β = 0, Daniel et al. [6] analyzed the singularity structure of solutions of (2). More
exactly, (2) identified the integrable model under the inhomogeneity as follows:

q =
ε1

r2(n–1) +
ε2

rn–2 ,

where r is the radial spatial variable.
The Lax pair of this integrable case was found, and some soliton like solutions are also

presented in [6]. However, Li and Wang [16] proved that blowup occurs in some specific
format of the inhomogeneous term. In fact, their did not provide an exact form of the
solution of the inhomogeneous Schrödinger map equation. If q takes some decay forms,
then this equation contains some finite-time blowup solutions such as the solutions first
presented in [28, 29]. Similarly, this equation ill also develops some finite-time blowup
solution on the hyperbolic target [30]. More clearly, in [28, 29], the authors provided a
solution of the form

S(t,−→x ) =

⎛

⎜
⎜
⎝

sin(F1(−→x )) cos( F2(−→x )
G1(t) )

sin(F1(−→x )) sin( F2(−→x )
G1(t) )

cos(F1(−→x ))

⎞

⎟
⎟
⎠ , (3)

where F1(−→x ) and F2(−→x ) are functions of −→x , and G1(t) is a function of t such that G1(t) →
+∞ as t → T (T is a positive constant).

These finite-time blowup solutions indicate that some special solutions of the equation
can develop a finite-time singularity from smooth initial data with finite energy in finite (or
infinite) spatial domain. It is a natural question to ask whether the ILLG equation contains
some blowup or nonblowup solution. However, we cannot obtain any explicit or implicit
solution under the constraint of (3). Therefore, in this paper, we are devoted to solve the
ILLG equation under another type of solution,

S(t,−→x ) =

⎛

⎜
⎜
⎝

sin(F1(−→x )) cos(F2(−→x ) + G1(t)))
sin(F1(−→x )) sin(F2(−→x ) + G1(t)))

cos(F1(−→x ))

⎞

⎟
⎟
⎠ , (4)

where F1(−→x ) and F2(−→x ) are functions of −→x , and G1(t) is a function of t.
We use the variable separation ansatz (4) to construct the solution of ILLG equation in

Sect. 3. At the same time, we employ this form to construct an implicit solution of the
Schrödinger map equation in Sect. 4.

Up to now, we have never seen any paper discussing how to exactly solve the ILLG equa-
tion. As far as we know, even for the LLG equation and Schrödinger map equation, the ex-
act treatment is very scarce. The ILLG and Schrödinger map equations are nonintegrable
systems in most cases. Based on the property of the Hamiltonian systems [39–41], the
bifurcation structure of the general integrable systems and autonomous differential sys-
tems [35–38] are clear. However, the property of the nonintegrability of a system needs to
be further explored. In this paper, we present some special solutions of the ILLG equation
and Schrödinger map equation and discuss their properties to enrich the solutions of these
equations. It is well known that the main barrier to the ILLG equation and Schrödinger
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map equation is that there is no energy monotonicity inequality for them. Hence, it is dif-
ficult to determine how the solution will evolve after a long time or in the remote area. We
present some results, which may be expected to result in a better understanding of these
two systems. More exactly, we study the special solutions in the form of (4) and present
some explicit or implicit structures of it, which will be useful in studying their properties.

Based on the smallness initial condition, we can prove the global existence of weak (or
even smooth) solutions of the Schrödinger map equation (or even ILLG). However, the
question of regularity and uniqueness of weak solutions is a delicate question depending
on the initial data. In this paper, we study some special large initial data solutions. For
the ILLG, some properties of the global type solution are clearer because of their straight-
forward and exact form. We also present some implicit solution for the Schrödinger map
equation. At the same time, we analyze a type of special large initial data solution, which
indicates a global solution.

The plan of the paper is as follows. In Sect. 2, we construct the equation of motion to
represent the ILLG equation and then obtain an equivalent generalized nonlinear mod-
ification equation by the stereographic projection method. In Sect. 3, we construct the
solution of this equivalent system and deduce the solution of the ILLG equation and ana-
lyze the energy density of these two equivalent equations. We study the variable separation
solutions under the cylindrical coordinates and the normal coordinates in Sect. 4. In this
section, we also carry out the decay analysis to identify the asymptotic behavior of the
energy density.

2 Equivalent equation of ILLG equation
In this section, we deduce an equivalent system of (2), which is helpful in constructing its
solution. As we know, the Hasimoto transformation is usually employed to convert some
geometrical partial differential equation to another complex equation. However, it is al-
ways difficult to avoid the emergence of some integral term in the deduced new system.
Always, it is difficult to solve this new deduced system due to the new integral term dif-
ficult to deal with. The stereographic projection method avoids some defects such as the
appearing of integral section when we do the equivalent transformation between the two
systems. Furthermore, if we obtain a solution of the new deriving equation, then we can
usually obtain the solution of the original equation by the opposite transformation of the
stereographic projection. However, it is difficult to do this opposite process for the equiv-
alent deriving system under the Hasimoto transformation. Considering this situation, we
use the stereographic projection to deduce the equivalent system that does not contain a
nonlocal term. First, we calculate the expanded form of (2):

α�1 – β(S2�3 – S3�2) – S1t = 0, (5)

α�2 – β(–S1�3 + S3�1) – S2t = 0, (6)

α�3 – β(S1�2 – S2�1) – S3t = 0, (7)

where

�1 = q(S2�S3 – S3�S2) + ∇q(S2∇S3 – S3∇S2), (8)

�2 = q(–S1�S3 + S3�S1) + ∇q(–S1∇S3 + S3∇S1), (9)
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�3 = q(S1�S2 – S2�S1) + ∇q(S1∇S2 – S2∇S1). (10)

The couple system (5)–(10) is complicated. If we could simplify it, the resolving progress
would become much simpler. As we will see, (5)–(10) will adopt another single complex
form. We definite

W =
S1 + iS2

1 + S3
.

Furthermore, W denotes the conjugate complex numbers of W ; the real and imaginary
parts of the complex number W are �(W ) and �(W ), respectively. The spin vector S of
LLG equation (2) is laid on S

2. Hence, we can use the conversion

(S1, S2, S3) =
(

2�(W )
1 + W W

,
2�(W )

1 + W W
,

1 – W W
1 + W W

)
. (11)

The derivative of each component of S1 is

S1t = 	
[
–W 2Wt – (W )2Wt + Wt + Wt

]
, (12)

∇S1 = 	
[
–W 2∇W – (W )2∇W + ∇W + ∇W

]
, (13)

where 	 = (1 + W W )–2.
Similarly, the first-order derivative of S2 is

S2t = i	
[
W 2Wt – (W )2Wt – Wt + Wt

]
, (14)

∇S2 = i	
[
W 2∇W – (W )2∇W – ∇W + ∇W

]
, (15)

and the derivative of S3 is

S3t = –2	(WtW + W Wt), (16)

∇S3 = –2	(∇W W + W∇W ). (17)

Setting 〈A, B〉 = A · B and 〈A〉 = A · A, the derivatives of (13), (15), and (17) are

�S1 = 	
[
–W 2�W – (W )2�W + �W + �W

]

+ 2	3/2[〈∇W 〉(W )3 + 〈∇W 〉W 3 – 〈∇W 〉W
– 2〈∇W ,∇W 〉W – 2〈∇W ,∇W 〉W – 〈∇W 〉W ]

, (18)

�S2 = i	
[
�W W 2 – (W )2�W + �W – �W

]

+ 2i	3/2[–〈∇W 〉W 3 + (W )3〈∇W 〉 – 〈∇W 〉W
– 2〈∇W ,∇W 〉W + 2〈∇W ,∇W 〉W + W 〈∇W 〉], (19)

and

�S3 = –2	[W�W + �W W ] + 4	3/2[W 2〈∇W 〉 + W W 〈∇W ,∇W 〉
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+ (W )2〈∇W 〉 – 〈∇W ,∇W 〉], (20)

respectively.
Substituting (11)–(20) into (5), the complex equation of W is

WtW + W W t

= –(α – βi)iq
[

W�W – �W W + 2
〈∇W 〉(W )2

W W + 1
– 2

〈∇W 〉W 2

W W + 1

]

– (α – βi)i∇q · (W∇W – ∇W W ),

which can be simplified as

�(WtW ) = –(α – βi)i
[

–iq�(�W W ) + iq�
(

2〈∇W 〉(W )2

W W + 1

)

– i∇q · �(∇W W )
]

(21)

or

�(W tW ) = –(α – βi)i
[

iq�(�W W ) – iq�
(

2〈∇W 〉(W )2

W W + 1

)

+ i∇q · �(∇W W )
]

. (22)

Similarly to (21) or (22), (6) transforms into

Wt
(
W 2 – 1

)
+ Wt

(
W 2 – 1

)

= –(α – βi)iq
[
�W

(
W 2 – 1

)
– �W

(
W 2 – 1

)
– 2

〈∇W 〉W (W 2 – 1)
1 + W W

+ 2
〈∇W 〉W (W 2 – 1)

1 + W W

]
– (α – βi)i∇q · [∇W

(
W 2 – 1

)
– ∇W

(
W 2 – 1

)]
,

which can be rearranged as

�(
Wt

(
W 2 – 1

))

= –(α – βi)i
[

–iq�(
�W

(
W 2 – 1

))
+ qi�

(
2〈∇W 〉W (W 2 – 1)

W W + 1

)

– i∇q · �(∇W
(
W 2 – 1

))]
(23)

or

�(
W t

(
W 2 – 1

))

= –(α – βi)i
[

iq�(
�W

(
W 2 – 1

))
– iq�

(
2〈∇W 〉W (W 2 – 1)

W W + 1

)
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+ i∇q · �(∇W
(
W 2 – 1

))]
. (24)

Similarly, we obtain the equivalent equation of (7)

Wt
(
W 2 + 1

)
– Wt

(
W 2 + 1

)

= –(α – βi)iq
[
�W

(
W 2 + 1

)
+ �W

(
W 2 + 1

)
– 2

〈∇W 〉W (W 2 + 1)
1 + W W

– 2
〈∇W 〉W (W 2 + 1)

1 + W W

]
– (α – βi)i∇q · [∇W

(
W 2 + 1

)
+ ∇W

(
W 2 + 1

)]
,

which can be rewritten as

�(
Wt

(
W 2 + 1

))

= –(α – βi)i
[

–iq�(
�W

(
W 2 + 1

))
+ iq�

(
2〈∇W 〉W (W 2 + 1)

W W + 1

)

– i∇q · �(∇W
(
W 2 + 1

))
]

(25)

or

–�(
W t

(
W 2 + 1

))

= –(α – βi)i
[

–iq�(
�W

(
W 2 + 1

))
+ iq�

(
2〈∇W 〉W (W 2 + 1)

W W + 1

)

– i∇q · �(∇W
(
W 2 + 1

))
]

. (26)

According to (21), (23), and (25) (or (22), (24), and (26)), we obtain the complex equation
of W :

–(α + βi)iWt = q�W + ∇q · ∇W –
2qW

1 + |W |2 〈∇W 〉. (27)

Under the cylindrical coordinates, it is not difficult to verify that (27) satisfies

–(α + βi)iWt = q
(

Wrr +
n – 1

r
Wr

)
–

2qW 〈Wr〉
1 + |W |2 + qrWr , (28)

where r = |−→x |.
In the above deducing process, we obtain an equivalent equation of (2), which is of the

form (27). This fact indicates that we can do a transformation between S
2 and the extend

complex plane C∞ by (11), which is a relationship between W and S. If we get a solution
of (27), then we can transform it into the solution of (2) by (11). In the next section, the
complex equation (27) will be used to construct the solution of (2), which is useful to
analyze its energy property.
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Table 1 Variable separation solution, inhomogeneity terms, and decay rate of ILLG equation (2)

Solutions I–III q(r) and decay rate

Solution I:

⎛

⎝
cos(
1) sin(B)
sin(
1) sin(B)

cos(B)

⎞

⎠, – C1r
2–2n (C2r

n+C3n)
2 cos(B)β2

αC22n
2


1 = – α
cos(B)β ln(– cos(B)β(C2r

n+C3n)
αn ) + C1t and O(1)

Solution II:

⎛

⎝
cos(
2) sin(B)
sin(
2) sin(B)

cos(B)

⎞

⎠, – C1 cos(B)β
2(r+Kn+1)

2

α(
−→
K ·−→K )


2 = C1t –
α ln(r+Kn+1)

cos(B)β + Kn+2 and O(1)

Table 2 Variable separation solution, inhomogeneity terms, and decay rate of equivalent ILLG
equation (27)

Solutions I–III q(r) and decay rate

Solution I: Aexp[i

′
1],

C1r
–2n+2(C2r

n+C3n)
2β2(A2–1)

α(A2+1)C22n
2



′
1 = C1t + α(A2+1)

β(A2–1)
ln( β(A

2–1)(C2r
n+C3n)

nα(A2+1)
) and O(1)

Solution II: sin(B)
1+cos(B) exp[i
2], – C1 cos(B)β

2(r+Kn+1)
2

α(
−→
K ·−→K )


2 = C1t –
α ln(r+Kn+1)

cos(B)β + Kn+2 and O(1)

3 Solution of ILLG equation
In this section, we present some solutions of ILLG equation. These solutions are all in
explicit forms, which can be seen in theorems and corollaries of this section. For con-
venience, we list all these solutions in the Tables 1 and 2, which demonstrate the exact
solutions and their decay rates.

3.1 Solution under the cylindrical coordinates
We construct and analyze the variable separation type solution of (4) under the cylindrical
coordinates. According to (4) and (11), we use the special variable separation ansatz of the
solution as follows:

W = F(r)eiM(t,r), (29)

where the functions F(r) and M(t, r) (dependent variables in parentheses) are to be deter-
mined.

In the real physical model of the spin system, the inhomogeneous term of (2) and (28)
are usually independent of t. Hence we just consider the case q(t−→x ) = q(r). This setting
and (29) lead to the derivatives of time as follows:

–(α + βi)iWt = (α + iβ)FMteiM. (30)

The structure of qrWr is

qrWr = qreiM(iMrF + Fr). (31)

Similarly, the item associated with the Laplace and nonlinear derivatives is

q
[
�W –

2W̄ W 2
r

1 + |W |2
]
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=
1
r

qeiM(
2iFrMrr + iMrFn + iFMrrr – FM2

r r – iMrF

+ Frrr + Frn – Fr
)

– 2qFeiM(iMrF + Fr)2/
(
F2 + 1

)
. (32)

Adding (30)–(32) together and multiplying with e–iM , we separate their real and imagi-
nary parts as

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–qM2
r F3r + F3Mtαr – qFrF2n – qFrrF2r – FrF2qrr + 2qF2

r Fr

+ qM2
r Fr + qFrF2 + FMtαr – qFrn – qFrrr – Frqrr + qFr = 0,

F3Mtβr – qMrF3n – qF3Mrrr – MrF3qrr + 2qFrMrF2r + qMrF3

+ FMtβr – qMrFn – qFMrrr – MrFqrr – 2qFrMrr + qMrF = 0.

(33)

If we use M = P(r)Q(t), then we obtain a blowup solution of the case β = 0 of (2). How-
ever, if αβ �= 0, then this special ansatzs is difficult to find out the solution of (2). In fact,
we use this assumption to construct the solution of the ILLG equation, but we could not
find any nontrivial solution. Hence we use another special form to find the solution of (2).
We set M in the variable separation form

M = P(r) + Q(t).

Then (33) transforms into

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

–qP2
r F3r + F3Qtαr – qFrF2n – qFrrF2r – FrF2qrr + 2qF2

r Fr

+ qP2
r Fr + qFrF2 + FQtαr – qFrn – qFrrr – Frqrr + qFr = 0,

F3Qtβr – qPrF3n – qF3Prrr – PrF3qrr + 2qFrPrF2r + qPrF3

+ FQtβr – qPrFn – qFPrrr – PrFqrr – 2qFrPrr + qPrF = 0.

(34)

From the first and second equations of (34) we have

Q = C1t, (35)

where C1 is a constant.
Although Q is clear from (35), it is still difficult to solve (34) under the hypothesis that

F is a function of r. However, if we set F = A, where A is a constant, we can simplify (34)
as follows:

⎧
⎪⎪⎨

⎪⎪⎩

–qP2
r A3r + A3C1αr + qP2

r Ar + AC1αr = 0,

–A3C1βr – qPrA3n – qA3Prrr – PrA3qrr + qPrA3

+ AC1βr – qPrAn – qAPrrr – PrAqrr + qPrA = 0.

(36)

From the first equation of (36) we obtain

q =
αC1(A2 + 1)
P2

r (A2 – 1)
. (37)
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By (37) the second equation of (36) transforms into

–A4P2
r βr + A4nαPr – A4Prrrα – A4αPr + 2A2Prnα – 2A2Prrrα

– 2A2Prα + P2
r βr + Prnα – Prrrα – Prα = 0. (38)

Solving (38), we can find out the solution

P =
α(A2 + 1)
β(A2 – 1)

ln

(
β(A2 – 1)(C2rn + C3n)

nα(A2 + 1)

)
, (39)

where C2 and C3 are arbitrary constants.
Substituting (39) into (37), we obtain the exact expression of q.
According to the above analysis, we obtain the following:

Theorem 3.1 If the inhomogeneity term is

q =
C1r–2n+2(C2rn + C3n)2β2(A2 – 1)

α(A2 + 1)C2
2n2 , (40)

then the solution of (28) is

W = A exp

[
i
α(A2 + 1)
β(A2 – 1)

ln

(
β(A2 – 1)(C2rn + C3n)

nα(A2 + 1)

)
+ iC1t

]
, (41)

where A, C1, C2, and C3 are constants.

Based on (40) and (41), we analyze the energy of this solution in the following contents.
If q = 1 and n = 2, then the total energy of the solution of (28) is a constant due to n = 2
is the critical case for the LLG equation. However, if the inhomogeneity term q is not a
constant, then ILLG may not be in critical situation. We denote by E =

∫
�

wE dx the total
energy of the solution of a partial differential equation.

The mapping target manifold of (28) is S2. Under projection, the conformal factor is

g =
1

(1 + |W |2)2 ,

whereas the energy is

∫ ∞

0
q|Wr|2grn–1 dr.

Hence, the energy density wE of (41) is

wE(41) =
αC1A2

A4 – 1
. (42)

According to (11) and Theorem 3.1, we obtain the solution of (2):
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Corollary 3.2 If the inhomogeneity term is

q = –
C1r2–2n(C2rn + C3n)2 cos(B)β2

αC2
2n2 , (43)

then the solution of (2) is

⎧
⎪⎪⎨

⎪⎪⎩

S1 = cos(–C1t + α
cos(B)β ln(– cos(B)β(C2rn+C3n)

αn )) sin(B),

S2 = – sin(–C1t + α
cos(B)β ln(– cos(B)β(C2rn+C3n)

αn )) sin(B),

S3 = cos(B),

(44)

where B is a constant, and C1, C2, and C3 are the same constants as in Theorem 3.1.

It is clear that (44) does not tend to a trivial solution (for example, S = (0, 0, 1)) as
t → +∞. Moreover, we cannot find out a constant value of limt→+∞ S. According to Corol-
lary 3.2, (43) and (44) lead to

|Sr|2 = S2
1 + S2

2 + S2
3

= –
r2n–2((cos(B))2 – 1)α2n2C2

2
(C2rn + C3n)2(cos(B))2β2

and

wE(44) = q|Sr|2 = –
C1α(sin(B))2

cos(B)
. (45)

According to (42) and (45), the energy density of two systems (28) and (2) are constants
that are independent of time. This fact indicates that the energy of two equivalent ILLG
equations tends to +∞ in the whole spacial area.

3.2 Solution under the normal coordinates
In the last subsection, we present the exact solution under the cylindrical coordinates. We
study the solution under the noncylindrical cases. The solutions obtained in this section
may regard as the plane wave type solution, which is different from the cylindrical case of
last subsection.

First, we search the solution of (2) under n = 3. Denote by x, y, z the different directions
of space. Inspired by the last subsection, we look for the solution of (2) in the form

⎧
⎪⎪⎨

⎪⎪⎩

S1(t, x, y, z) = cos(M(t, x, y, z)) sin(B),

S2(t, x, y, z) = sin(M(t, x, y, z)) sin(B),

S3 = cos(B),

(46)

where M(t, x, y, z) is the function to be determined.
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From (46), (5)–(10) can be simplified to

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

qxMxα + qyMyα + qzMzα + qMxxα + qMyyα + qMzzα

+ M2
y q cos(B)β + M2

z q cos(B)β + M2
xq cos(B)β = 0,

–Mt – M2
z q cos(B)α – Mx

2q cos(B)α – M2
y q cos(B)α

+ qxMxβ + qyMyβ + qzMzβ + qMxxβ + qMyyβ + qMzzβ = 0.

(47)

We use the ansatz of M as follows:

M = P(x, y, z) + Q(t) and Q(t) = C1t, (48)

where C1 is a constant.
Substituting (48) into (47), we get

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

qxPxα + qyPyα + qzPzα + qPxxα + qPyyα + qPzzα

+ P2
y q cos(B)β + P2

z q cos(B)β + P2
xq cos(B)β = 0,

–C1 – P2
z q cos(B)α – Px

2q cos(B)α – P2
y q cos(B)α

+ qxPxβ + qyPyβ + qzPzβ + qPxxβ + qPyyβ + qPzzβ = 0.

(49)

Solving (49), P and q are

⎧
⎨

⎩

P = – α ln(xK1+yK2+zK3+K4)
cos(B)β + K5,

q = – C1 cos(B)β2(xK1+yK2+zK3+K4)2

α(K2
1 +K22+K2

3 ) ,
(50)

where Ki (i = 1, 2, 3, 4, 5) are arbitrary constants.
According to (46), (48), and (50), we obtain the solution of (2): If inhomogeneity term is

q = –
C1 cos(B)β2(xK1 + yK2 + zK3 + K4)2

α(K2
1 + K2

2 + K2
3 )

,

then the solution of (2) is

⎧
⎪⎪⎨

⎪⎪⎩

S1 = cos(C1t – α ln(xK1+yK2+zK3+K4)
cos(B)β + K5) sin(B),

S2 = sin(C1t – α ln(xK1+yK2+zK3+K4)
cos(B)β + K5) sin(B),

S3 = cos(B),

(51)

where Ki (i = 1, 2, 3, 4, 5), B, and C1 are constants.
Expression (51) is a solution for n = 3. Under an arbitrary integer n, we can find the

solution of (2) similarly. We search the solution of (2) in the form

⎧
⎪⎪⎨

⎪⎪⎩

S1(t,−→x ) = cos(P(−→x ) + C1t) sin(B),

S2(t,−→x ) = sin(P(−→x ) + C1t) sin(B),

S3 = cos(B),

(52)

where P(−→x ) is the function to be determined.
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Substituting (52) into (5)–(10), we obtain

⎧
⎨

⎩
α∇q · ∇P + αq�P + β cos(B)q∇P · ∇P = 0,

–C1 – αq cos(B)∇P · ∇P + β∇q · ∇P + βq�P = 0.
(53)

Solving (53), P and q are as follows:

⎧
⎨

⎩

P = – α ln(r+Kn+1)
cos(B)β + Kn+2,

q = – C1 cos(B)β2(r+Kn+1)2

α(
−→
K ·−→K )

,
(54)

where Ki (i = 1, 2, 3, . . .) are arbitrary constants,
−→
K = (K1, K2, K3, . . . , Kn), and r =

−→
K · −→x .

According to (52) and (54), we obtain the solution of (2) as follows.

Theorem 3.3 If the inhomogeneity term is

q = –
C1 cos(B)β2(r + Kn+1)2

α(
−→
K · −→K )

, (55)

then the solution of (2) is

⎧
⎪⎪⎨

⎪⎪⎩

S1 = cos(C1t – α ln(r+Kn+1)
cos(B)β + Kn+2) sin(B),

S2 = sin(C1t – α ln(r+Kn+1)
cos(B)β + Kn+2) sin(B),

S3 = cos(B).

(56)

Similarly to (44), (56) does not tend to a trivial solution as t → +∞ too. Moreover,
limt→+∞ S does not exist. It is easy to find the solution of (27). Employing (56) and (11),
we obtain the following:

Corollary 3.4 If the inhomogeneity term satisfies (55), then the solution of (27) is

W =
sin(B)

1 + cos(B)
exp

[
i
(

C1t –
α ln(r + Kn+1)

cos(B)β
+ Kn+2

)]
. (57)

The energy density of the solutions presented in Theorem 3.3 and Corollary 3.4 shows
a similar property as the solutions of the previous subsection. According to Corollary 3.4,
we obtain

|∇S|2 =
(sin(B))2α2(|−→K |)

(r + Kn+1)2(cos(B))2β2

and

wE(56) = q|∇S|2 = –
C1α(sin(B))2

cos(B)
. (58)
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Similarly to (45), the energy density (58) is constant. This situation will be the same for
(41) and (57):

wE(57) = q
|∇W |2

(1 + |W |2)2 = –
C1α(sin(B))2(cos(B) + 1)2

4 cos(B)
.

In this section, we present two solutions of (2) (or (27)). For convenience, we summarize
some information about these solutions in Tables 1 and 2, respectively. From these tables
we can see the exact form of variable separation solution, inhomogeneity terms, and decay
rates. According to the solutions of the ILLG equation in the tables, we can see that α and
β cannot be 0 since the denominator cannot be 0. Although the solutions of the ILLG
equation does not degenerate into the trivial solutions as t → +∞, their decay rates are
all independent of the spatial variable −→x . More exactly, the decay rate of the solutions for
the ILLG equation are O(1). Different from the solutions presented in our previous work
[28, 29], the solutions in Tables 1 and 2 do not develop any blowup at any time.

4 Solution of Schrödinger map equation
In this section, we study the solution of the LLG equation without damping. More clearly,
we set q = 1 and β = 0 in (2). In this setting, (2) degenerates into the simple form

∂

∂t
S = S��S. (59)

Therefore W satisfies

–iWt = �W –
2W

1 + |W |2 〈∇W 〉. (60)

Although (59) is simpler than (2), the solution is very rare as far as we see. For the details
of the exact solution of (59), we refer the reader to [9, 12, 27].

4.1 Solution under the cylindrical coordinates
In the last section, we obtain some variable separation solutions such as (44) (q as (43)) and
(56) (q as (55)). According to these solutions, we can see that the extreme case α = 0 and
β = 0 are not included since the denominator is not zero. If we settle down on the variable
separation form provided in the last section, what will be the solution like? Motivated by
this, we consider the solution

⎧
⎪⎪⎨

⎪⎪⎩

S1(t, r) = cos(N(t, r)) sin(G(r)),

S2(t, r) = sin(N(t, r)) sin(G(r)),

S3(r) = cos(G(r)),

(61)

where N(t, r) and G(r) are functions to be determined.
We consider the case where q(t−→x ) does not contain t. Then, by (61), (2) is greatly sim-

plified and transforms into

– sin(G)Nr + 2 cos(G)GrNrr + sin(G)Nrn + sin(G)Nrrr = 0 (62)
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and

sin(G) cos(G)N2
r r – Grn – Grrr + sin(G)Ntr + Gr = 0, (63)

which are nonlinear partial differential equations. To solve these equations, let us assume
that N is a variable separation function,

N = M1(r) + M2(t), (64)

where M1(r) and M2(t) depend on r and t, respectively. Substituting (64) into (62) and
(63), we obtain

M2 = C5t,

– sin(G)M1r + 2 cos(G)GrM1rr + sin(G)M1rn + sin(G)M1rrr = 0, (65)

and

sin(G) cos(G)M2
1rr – Grn – Grrr + sin(G)C5r + Gr = 0. (66)

Equations (65)–(66) are ordinary differential equations (ODEs), which are hard to solve
explicitly. However, we can find out some constraints of the solution that are useful for
analysis of the decay rate of the energy density. If we use

G = 2 arctan
(
eF)

, (67)

then (65)–(66) transform into

2M1rFre2F r – M1re2F n – M1rre2F r – 2M1rrFr

+ M1re2F – M1rn – M1rrr + M1r = 0 (68)

and

M2
1re2F r – F2

r e2F r + Frre2F r + Fre2F n – C5e2F r – M2
1rr

+ rF2
r – Fre2F + rFrr + nFr – C5r – Fr = 0. (69)

From (68) we obtain

M1 = C1 + C2

∫
r–n+1(e4F + 2e2F + 1

)
e–2F dr. (70)

Substituting (70) into (69), we have

3r–2n+3e4F C2
2 + 2r–2n+3e2F C2

2 + r–2n+3e6F C2
2 – 2r–2n+3C2

2

– 3r–2n+3e–2F C2
2 – r–2n+3e–4F C2

2 – F2
r e2F r + e2F Frrr + Fre2F n

– e2F rC5 + rF2
r + rFrr – Fre2F + nFr – C5r – Fr = 0. (71)
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We cannot find the solution of (71). However, there is some additional information
about F . If we solve (34), then we can find

M1 =
∫ C2

3r–n+1

(sin(G))2 dr + C4. (72)

If we set C4 = C1 and C2 = 1/(2C3)2, then (72) and (70) will be of the same form. Substi-
tuting (72) into (66), we obtain

Grr +
(n – 1)Gr

r
–

cos(G)C4
3r–2n+2

(sin(G))3 – sin(G)C5 = 0. (73)

Equation (73) is just an ODE, which is like a sine-Gordon equation. Because (73) is not
a standard sine-Gordon equation, its existence details are not so clear. In fact, we rewrite
(73) as

Grr = f (r, G, Gr), (74)

where

f (r, G, Gr) = –
(n – 1)Gr

r
+

cos(G)C4
3r–2n+2

(sin(G))3 + sin(G)C5.

We consider the Cauchy problem of (74): finding a solution of equation (74) satisfying
the initial conditions

G(ε) = Gε and Gr(ε) = Grε (0 < ε < +∞, 0 < Gε < π ). (75)

Obviously, f (r, G, Gr) is a continuous function of all its arguments in a neighborhood of
a point (ε, Gε , Grε). Furthermore, it is not difficult to verify that f (r, G, Gr) have bounded
partial derivatives ∂f

∂G and ∂f
∂Gr

in this neighborhood. Hence, a solution of (74) (or (73))
satisfying the initial conditions (75) exists and is unique. How to construct a reasonable
initial condition that satisfies (74)? We just need to employ the setting (67).

Due to (72), if we obtain the solution of (73), then we can find the solution of (71). Ac-
cording to the above results, we obtain the following:

Theorem 4.1 Let F be a function satisfying (71). Tthen the solution of (59) is

⎧
⎪⎪⎨

⎪⎪⎩

S1(t, r) = 2eF

1+e2F cos(C1 + C2
∫

r–n+1(e2F + 1)2e–2F dr + C5t),

S2(t, r) = 2eF

1+e2F sin(C1 + C2
∫

r–n+1(e2F + 1)2e–2F dr + C5t),

S3(r) = 1–e2F

1+e2F ,

(76)

whereas

W = eF exp

[
i
(

C1 + C2

∫
r–n+1(e2F + 1

)2e–2F dr + C5t
)]

(77)

is a solution of (60).
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Although we cannot solve (71), we can deduce some its scale as r → +∞. Substituting
F = K1 ln(Kr) (K > 0) into the left side of (71), we obtain

3r–2n+4+4K1 K4K1 C2
2 + 2r–2n+4+2K1 K2K1 C2

2 + r–2n+4+6K1 K6K1 C2
2

– 2r–2n+4C2
2 – 3r–2n+4–2K1 K–2K1 C2

2 – r–2n+4–4K1 K–4K1 C2
2

– K2
1 K2K1 r2K1 – 2K2K1 r2K1 K1 + K1K2K1 r2K1 n – K2K1 r2K1+2C5 + K2

1

– 2K1 + nK1 – C5r2 � H(r). (78)

If C5 > 0 and n ≥ 2, then the leading-order term of (78) is

r–2n+4+6K1 K6K1 C2
2 – K2K1 r2K1+2C5 � LC5>0,

and we obtain

K1 =
n
2

–
1
2

.

So, as r → +∞, we have

lim
r→+∞ H(r) = sign

[
Kn–1(K2n–2C2

2 – C5
)] · ∞. (79)

Relationship (79) means that K determines the limit to be a positive or negative value of
H(r) for sufficiently large r. In this situation, we have

(
n
2

–
1
2

)
ln(KAr) < F <

(
n
2

–
1
2

)
ln(KBr) (0 < KA < KB). (80)

Similarly, if C5 < 0 and n � 2, then the leading-order term of (78) is

–r–2n+4–4K1 K–4K1 C2
2 – C5r2 � LC5<0,

where

K1 = –
n
2

+
1
2

.

In this case, we obtain

lim
r→+∞ H(r) = –sign

(
K2n–2C2

2 + C5
) · ∞. (81)

If r is sufficiently large, then (81) indicates that

(
–

n
2

+
1
2

)
ln(KCr) < F <

(
–

n
2

+
1
2

)
ln(KDr) (0 < KC < KD). (82)

If n ≥ 2, then by (80) and (82) we have (for sufficiently large r)

(
n
2

–
1
2

)
ln(KEr) < |F| <

(
n
2

–
1
2

)
ln(KF r) (0 < KE < KF ).
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From (61), (64), (67), and (70) we have

wE(76) = S2
1r + S2

2r + S2
3r

= N2
r
(
sin(G)

)2 + G2
r

= M2
1r

(
sin(G)

)2 + G2
r

=
C4

3r–2n+2

(sin(G(r)))2 + G2
r

=
4r2–2nF2C2

2(e2F + 4)(e2F + e–2F )
(F2 + 1)2 +

24r2–2nF2C2
2 + 4F2

r
(F2 + 1)2 . (83)

Substituting

F = ±
(

n
2

–
1
2

)
ln(Kr) (84)

into (83), we obtain

wE(76) = 16K–2r–2(–1 + n)2(ln(Kr)
)2(r–4n+6K–2n+4C2

2

+ 4r–3n+5K–n+3C2
2 + 6r–2n+4C2

2K2 + 4r–n+3Kn+1C2
2

+ r2K2nC2
2 + K2)/

(
ln(Kr)

)2n2 – 2
(
ln(Kr)

)2n

+
(
ln(Kr)

)2 + 4)2. (85)

According to (85), the scale of the energy density is

wE(76) ∼ O(1) (n ≥ 2)

as r → +∞.
The energy density of (77) is

wE(77) =
|Wr|2

(1 + |W |2)2 =
e2F ((r–n+1)2(e4F + 2e2F + 1)2(e–2F )2C2

2 + F2
r )

(1 + e2F )2 . (86)

Employing (84), the right side of (86) changes into

3r–2n+4+4K1 K4K1 C2
2 + 2r–2n+4+2K1 K2K1 C2

2 + r–2n+4+6K1 K6K1 C2
2

– 2r–2n+4C2
2 – 3r–2n+4–2K1 K–2K1 C2

2 – r–2n+4–4K1 K–4K1 C2
2

– K2
1 K2K1 r2K1 – 2K2K1 r2K1 K1 + K1K2K1 r2K1 n – K2K1 r2K1+2C5 + K2

1

– 2K1 + nK1 – C5r2 � H(r). (87)

If C5 > 0 and n ≥ 2, then the leading-order term of (87) is

r–2n+4+6K1 K6K1 C2
2 – K2K1 r2K1+2C5 � LC5>0,
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and we obtain

K1 =
n
2

–
1
2

.

So, as r → +∞, we have

lim
r→+∞ H(r) = sign

[
Kn–1(K2n–2C2

2 – C5
)] · ∞

and

wE(77) = (4Kr)–1(4K–n+4r–3n+6C2
2 + 16r5–2nK3C2

2

+ 24Kn+2r–n+4C2
2 + 16K2n+1r3C2

2 + Kn+2rnn2

+ 4K3nrn+2C2
2 – 2Kn+2rnn + Kn+2rn)/

(
Knrn + Kr

)2. (88)

Relation (88) shows that the scale of the energy density is

wE(77) ∼ 1
rn–1 (n ≥ 2)

as r → +∞.
If n = 1, then F presents a different behavior as r → +∞. Exactly, F is not a K1 ln(Kr)

scale, but

F ∼ ln
(
K arctan(r)

)
(89)

as r → +∞.
Substituting n = 1 and F = K ln(arctan(r)) into the left side of (71), we obtain

r2K6(arctan(r)
)6C2

2 –
r2C2

2
K4(arctan(r))4 + 3r2K4(arctan(r)

)4C2
2 –

3r2C2
2

K2(arctan(r))2

–
2K2r2

(r2 + 1)2 + 2r2K2(arctan(r)
)2C2

2 –
2r3K2 arctan(r)

(r2 + 1)2 – r2K2(arctan(r)
)2C5

– 2r2C2
2 –

2r3

(r2 + 1)2 arctan(r)
– C5r2 � H1(r). (90)

According to (90), its leading-order term is

r2K6(arctan(r)
)6C2

2 –
r2C2

2
K4(arctan(r))4 + 3r2K4(arctan(r)

)4C2
2 –

3r2C2
2

K2(arctan(r))2

+ 2r2K2(arctan(r)
)2C2

2 – r2K2(arctan(r)
)2C5 – 2r2C2

2 – C5r2 � H2(r). (91)

As r → +∞, arctan(r) → π/2. Substituting arctan(r) = π/2 into (91), H2(r) becomes

r2K6π6C2
2

64
–

16r2C2
2

K4π4 +
3

16
r2K4π4C2

2 –
12r2C2

2
K2π2

+
1
2

r2K2π2C2
2 –

1
4

r2K2π2C5 – 2r2C2
2 – C5r2 � H3(r).
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If C5 �= 0, then, as r → +∞, we have

lim
r→+∞ H3(r) = sign

[
K8π8C2

2 + 8K6π6C2
2 – 16K4π4C5

– 128K2π2C2
2 – 256C2

2
] · ∞, (92)

where K > 0.
For sufficiently large r, (92) means that K > 0 determines the limit to be a positive or

negative value of H3(r) According to (92), we prove (89). The decay rate of energy density
is clear due to (89) under n = 1. So, we obtain (here we set Ar = arctan(r))

wE(76) ∼ 4
(

(
ln(KAr)

)2K8Ar
8C2

2 + 4
(
ln(KAr)

)2K6Ar
6C2

2

+ 6
(
ln(KAr)

)2K4Ar
4C2

2 +
AR2K4

(r2 + 1)2 + 4
(
ln(KAr)

)2K2Ar
2C2

2

+
(
ln(KAr)

)2C2
2

)/[(
1 +

(
ln(KAr)

)2)2K4Ar
4]

∼ O(1)

as r → +∞.
Similarly, the energy density of (77) under n = 1 is

wE(77) ∼
(

K6A6
r C2

2 + 4K4A4
r C2

2 +
K2

(r2 + 1)2 + 6K2A2
r C2

2

+ 4C2
2 +

C2
2

K2A2
r

)/(
K2A2

r + 1
)2 ∼ O(1)

as r → +∞.
From the above analysis, we can conclude that: if F satisfies (71), then we have

Theorem 4.2 If n ≥ 2, then the energy densities of (76) and (77) are

wE(76) ∼ O(1) and wE(77) ∼ 1
rn–1

as r → +∞, respectively, whereas

wE
(
(76) or (77)

) ∼ O(1) (n = 1).

4.2 Solution under the normal coordinates
Under the arbitrary integer n, we can similarly find the solution of (59). We search the
solution of (59) of the form

⎧
⎪⎪⎨

⎪⎪⎩

S1(t,−→x ) = cos(M2(−→x ) + C5t) sin(G2(−→x )),

S2(t,−→x ) = sin(M2(−→x ) + C5t) sin(G2(−→x )),

S3(−→x ) = cos(G2(−→x )),

(93)

where M2(−→x ) and G2(−→x ) are functions to be determined.
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Substituting (93) into (59), we obtain

⎧
⎨

⎩
2 cos(G2)∇G2 · ∇M2 + sin G2�M2 = 0,

sin(G2) cos(G2)∇M2 · ∇M2 + C5 sin(G2) – �G2 = 0.
(94)

We study the plane wave solution of (94). Here we set Li (i = 1, 2, 3, . . .) as arbitrary con-

stants,
−→
L = (L1, L2, L3, . . . , Ln), and r =

−→
L · −→x . So, (94) transforms into

⎧
⎨

⎩
2 cos(G2)G2rM2r + sin G2M2rr = 0,

|−→L |2 sin(G) cos(G)M2
2r + C5 sin(G) – |−→L |2G2rr = 0.

(95)

Equation (95) is a nonlinear ODE. Solving the first equation of (95), we obtain

M2 = C1 + C2

∫ (
sin(G2)

)–2 dr. (96)

Employing (96), the second equation of (95) transforms into

G2rr – sin(G2)C5 –
1

(sin(G2))3

(
C5

|−→L |2
– C5 + cos(G2)C2

2
)

= 0, (97)

where

LC =
C5

|−→L |2
– C5.

If G2 satisfies (97) (M2 satisfies (96)), then we have

wE(93) = |−→L |2(S2
1r + S2

2r + S2
3r

)

= |−→L |2(M2
2r

(
sin(G2)

)2 + G2
2r

)

= |−→L |2
(

G2
2r +

C2
2

(sin(G2))2

)
. (98)

Equation (98) is similar to (73), whereas (96) is similar to (70) under n = 1. We also use the
transformation like (67)

G2 = 2 arctan
(
eF2

)
,

which transforms (97) into

2eF2 C2
2 + e–3F2 C2

2 + 3e–F2 C2
2 – 2e3F2 C2

2 – 16eF2 F2
2r – 16eF2 F2rr

+ 16eF2 C5 – e7F2 C2
2 – 3e5F2 C2

2 + 16e3F2 F2
r – 16e3F2 F2rr + 16e3F2 C5

+ LC
(
e7F2 + 5e5F2 + 10e3F2 + e–3F2 + 10eF2 + 5e–F2

)
= 0. (99)
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For simplicity, we just consider the case of C2
2 > LC . Substituting F2 = ln(K arctan(r)) (K >

0) into (99) and then extracting the coefficient of the highest order of r, we obtain the
coefficient of r4 (setting Ar = arctan(r)),

(
Ar

10C2
2 – Ar

10LC
)
K10 +

(
2Ar

6C2
2 – 16Ar

6C5 – 10Ar
6LC

)
K6

+
(
3Ar

8C2
2 – 5Ar

8LC
)
K8 +

(
–2A4

r C2
2 – 16Ar

4C5 – 10Ar
4LC

)
K4

+
(
–3Ar

2C2
2 – 5Ar

2LC
)
K2 – C2

2 – LC � H4(K).

The term H4(K)r4 is the leading-order term as r → +∞. We can control the positive and
negative values of H4(K) by K . Hence, if C2

2 > LC , then we obtain

F2 ∼ ln
(
K arctan(r)

)
(K > 0) (100)

as r → +∞.
Employing (98) and (100), it is simple to check that

wE(93) =
4|−→L |2F2

2r

(F2
2 + 1)2 +

|−→L |
2
C2

2(F2
2 + 1)2

4F2
2 ∼ O(1)

as r → +∞.
Similarly to the proof of Theorem 4.2, there exists a function F satisfying (99). In this

setting, we obtain the following:

Theorem 4.3 Suppose there exists a function F2 satisfying (99). Then the solution of (59)
is

⎧
⎪⎪⎨

⎪⎪⎩

S1(t, r) = 2eF2
1+e2F2 cos(C1 + C2

∫
(e2F2 + 1)2e–2F2 dr + C5t),

S2(t, r) = 2eF2
1+e2F2 sin(C1 + C2

∫
(e2F2 + 1)2e–2F2 dr + C5t),

S3(r) = 1–e2F2
1+e2F2 ,

(101)

whereas

W = eF2 exp

[
i
(

C1 + C2

∫ (
e2F2 + 1

)2e–2F2 dr + C5t
)]

(102)

is a solution of (60).
Furthermore, if C2

2 > LC , then the decay rate of energy density is

wE
(
(101) or (102)

) ∼ O(1)

as r → +∞.

In Tables 3 and 4, we present the variable separation solution (and energy density) of (59)
and (60), respectively. Similarly to Tables 1 and 2, most of the decay rates of the solutions
are in a scale of O(1) in Tables 3 and 4. The only nonconstant decay rate of the solution is
the solution I in Table 3. Its decay rate is related to the dimension n as 1/rn–1. If n = 1, then
the decay rate degenerates to the constant scale O(1). Similarly to the solutions in Tables 1
and 2, the solutions in Tables 3 and 4 develop no any singularity.
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Table 3 Variable separation solution of the LLG equation without damping (see equation (59)). F is
the solution of (71); F2 satisfies (99)

Solutions I–II Decay rate

Solution I:

⎛

⎜
⎜
⎝

2eF
1+e2F

cos(C1 + C2
∫
r–n+1(e2F + 1)2e–2F dr + C5t)

2eF
1+e2F

sin(C1 + C2
∫
r–n+1(e2F + 1)2e–2F dr + C5t)
1–e2F
1+e2F

⎞

⎟
⎟
⎠ O(1)

Solution II:

⎛

⎜
⎜
⎜
⎝

2eF2
1+e2F2

cos(C1 + C2
∫
(e2F2 + 1)2e–2F2 dr + C5t)

2eF2
1+e2F2

sin(C1 + C2
∫
(e2F2 + 1)2e–2F2 dr + C5t)

1–e2F2
1+e2F2

⎞

⎟
⎟
⎟
⎠

O(1)

Table 4 Variable separation solution of the equivalent LLG equation without damping (see equation
(60)). F satisfies (71); F2 is the solution of (99)

Solutions I–II Decay rate

Solution I: eF exp[i(C1 + C2
∫
r–n+1(e2F + 1)2e–2F dr + C5t)] 1

rn–1
, (n ≥ 2);

O(1), (n = 1)
Solution II: eF2 exp[i(C1 + C2

∫
(e2F2 + 1)2e–2F2 dr + C5t)] O(1)

5 Conclusions
We investigate a variable separation solution of the multidimensional ILLG equation and
Schrödinger map equation. Based on the stereographic method, we deduce an equivalent
ILLG equation, which can be solved exactly. Under the different ansatzs of the solutions,
we obtain some explicit solutions of the modification system. The solution of this system
can be changed into the solution of the ILLG equation. Hence, for the ILLG equation, we
obtain two different solutions, which are all in a constant decay scale.

If q = 1 and β = 0, then the ILLG equation degenerates into the Schrödinger map equa-
tion. The situation of this equation is somewhat different from the ILLG equation: the
solutions obtained are in implicit forms, which are determined by nonlinear ODEs. This
brings some difficulties to our analysis of the decay behavior of the solutions. Using the
some heuristic method, we obtain the asymptotic scale of the functions contained in the
nonlinear system. So, the decay rate of the energy density of the solutions can be charac-
terized. Clearly, we obtain two different solutions of the Schrödinger map equation, which
adopt the same decay rate O(1). However, the situation of its equivalent system is some-
what different: the decay rate of radial type solution is in an rn–1 (n ≥ 2) and O(1) (n = 1)
scale, whereas the plane wave type solution is O(1).

All solutions obtained in this paper are periodic in time or spatial direction. The solution
of ILLG equation (or Schrödinger map equation) of type (4) just shows a periodic behavior
in the time direction. Hence, if the periodic condition is imposed in the initial condition,
then the ILLG equation and Schrödinger map equation contain some smooth solutions
for some large initial values. In this study, the properties of the variable separation type
solutions are clearer due to their straightforward and exact form. These solutions will be
useful in explaining some nonlinear dynamics of stimulation in the inhomogeneous or
homogeneous system that comes from the ferromagnet.
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