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Abstract
In this paper, we discuss a stochastic Holling II predator–prey model with n-predator
competing for one prey. The existence of a positive solution is established by using
the comparison theorem. We get the stochastic break-even concentration R̃i of each
predator which determines the competition outcomes. When the noise intensity of
the prey is small, the predator with the lowest stochastic break-even concentration
will survive and other predators will go extinct. When the noise intensity of the prey is
large enough, all species go to extinction. Moreover, if two predators have the same
lowest stochastic break-even concentration in some conditions, the two predators
can coexist. Finally, numerical simulations to illustrate the analytical results are given.

Highlights:
• The article studies the dynamics of a stochastic predator–prey system with
Holling II functional response and n-predator.

• The sufficient conditions for the competitive exclusion and coexistence are
established.

• The results show that noises can affect the competition.
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1 Introduction
Since the pioneering work of Lotka and Volterra, predator–prey models play an impor-
tant role in both theory and practice, they help us to understand the relationship of biolo-
gies and environment, and have been studied by many scholars, see [1–13]. Most of them
consider one predator, but there are multiple species inhabiting the same environment
and competing for one prey. In Ref. [14], authors considered three-dimensional Lotka–
Volterra models with two predators competing for one prey within a deterministic envi-
ronment. Many authors studied predator–prey models with various function responses,
and the interaction between predators and their prey is nonlinear in the natural world.
Classical functional response is known as Holling II functional response [4, 13, 15]. Com-
petition is a common interaction among predators for the same prey, and it plays an im-
portant role in the real world. Pure and simple competition between two predator species
with no interference between rivals has been studied by some authors [14, 16, 17]. They
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discussed the principle of competition problem with nonlinear functional response that
two predators compete for a single prey species in [14]. In [17], the authors studied the
global dynamics of the predator–prey models with two predators competing for one prey
in a uniform and determined environment. Here it is assumed that multiple predators
compete for one prey and there is no interference between rivals, and it takes Holling
II functional response of the growth rate of the predators. The model can be written as
follows:

⎧
⎨

⎩

dS
dt = Sr(1 – S

K ) –
∑n

i=1
aiS
1+S Xi,

dXi
dt = –riXi + biS

1+S Xi, i = 1, 2, . . . , n,
(1.1)

where S(t), Xi(t) represent the population densities of the prey and the ith predator at time
t, respectively. r is the intrinsic birth rate of the prey, and ai and birepresent the capturing
rate of the ith predator and the rate of nutrients into the reproduction for the ith predator.
ri is the natural death rate of the ith predator. K measures the environmental carrying
capacity for the prey. All parameters are positive constants, and it is obvious that ai > bi.

But epidemic models are inevitably affected by environmental white noise which is an
important component in reality. However, it is more difficult to prove the competitive
exclusion principle when considering environmental white noise. In this paper, we present
a stochastic Holling II system with logistic diffusion term of the form and want to discuss
whether the competitive exclusion principle still holds. To the best of our knowledge, few
authors researched the competitive exclusion principle about the model.

We assume that the environment fluctuations mainly affect the intrinsic rate r and the
death rate ri, like

r → r + σ0Ḃ(t), –ri → –ri + σiḂ(t) for i = 1, 2, . . . , n,

where B(t) is an independent Brownian motion, σi(t) are the intensities of environmental
white noise. Corresponding to system (1.1), the stochastic Holling II system with logistic
diffusion term of the form can be presented as follows:

⎧
⎨

⎩

dS = [Sr(1 – S
K ) –

∑n
i=1

aiS
1+S Xi] dt + σ0S dB,

dXi = (–riXi + biS
1+S Xi) dt + σiXi dB, i = 1, 2, . . . , n.

(1.2)

Throughout this paper, unless otherwise specified, let (�,F , {Ft}t≥0, P) be a complete
probability space with a filtration {Ft}t≥0 satisfying the usual conditions (i.e., it is right
continuous and {Ft}t≥0 contains all P-null sets), and let B(t) be the Brownian motion de-
fined on the probability space.

Now, we introduce Itô’s formula for general stochastic differential equations, which will
be used throughout this paper. Consider the following n-dimensional stochastic differen-
tial equation:

dx = f (x, t) dt + g(x, t) dw(t) (1.3)

which is defined on R × Rn with the initial value x(t0) = x0, where f (x, t) = (f1(x, t), f2(x, t),
. . . , fn(x, t)) is an n-dimensional vector function, g(x, t) = (gij(x, t))n×l is a matrix function,
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and ω(x, t) = (ω1(x, t),ω2(x, t), . . . ,ωn(x, t)) is an l-dimensional standard Brownian motion
defined on the above probability space.

Define the differential operator L associated with Eq. (1.3) as follows:

L =
∂

∂t
+

n∑

i=1

fi(x, t)
∂

∂xi
+

1
2

n∑

i,j=1

l∑

k=1

gik(x, t)gjk(x, t)
∂2

∂xi ∂xj
.

If L acts on a function V (x, t) ∈ C2,1(R × Rn; R), then we have

LV (x, t) =
∂V
∂t

+
n∑

i=1

fi(x, t)
∂V
∂xi

+
1
2

n∑

i,j=1

l∑

k=1

gik(x, t)gjk(x, t)
∂2V

∂xi ∂xj
,

where Vt = ∂V
∂t , Vx = ( ∂V

∂x1
, . . . , ∂V

∂xd
), Vxx = ( ∂2V

∂xi ∂xj
)d×d . By Itô’s formula, if x(t) ∈ Rd , then

dV
(
x(t), t

)
= L

(
x(t), t

)
dt + Vx

(
x(t), t

)
g
(
x(t), t

)
dB(t).

Lemma 1.1 (Strong law of large numbers) Let M = {Mt}t≥0 be real-value continuous local
martingale vanishing at t = 0. Then

lim
t→+∞〈M, M〉t = ∞ a.s. ⇒ lim

t→+∞
Mt

〈M, M〉t
= 0 a.s.

and also

lim
t→+∞ sup

〈M, M〉t

t
< ∞ a.s. ⇒ lim

t→+∞
Mt

t
= 0 a.s.

This paper is organized as follows. In Sect. 2, we show that there is a unique nonnegative
solution of system (1.2) for any positive initial value. In Sect. 3, sufficient conditions for
the principle of competitive exclusion are guaranteed. In Sect. 4, we obtain the coexistence
of two survival predators. In Sect. 5, we give some simulations to illustrate our analytical
results.

2 Existence and uniqueness of a nonnegative solution
Theorem 2.1 For any initial value (S(0), X1(0), X2(0), . . . , Xn(0)) ∈ Rn+1

+ , there is a unique
solution (S(t), X1(t), X2(t), . . . , Xn(t)) of system (1.2) on t ≥ 0, and the solution will remain
in Rn+1

+ with probability one.

Proof Consider the system

⎧
⎨

⎩

du(t) = [r(1 – 1
K eu(t)) –

∑n
i=1

aievi(t)

1+eu(t) – σ 2
0
2 ] dt + σ0 dB,

dvi(t) = (–ri + bieu(t)

1+eu(t) – σ 2
i
2 ) dt + σi dB, i = 1, 2, . . . , n,

(2.1)

with the initial value (u(0), v1(0), v2(0), . . . , vn(0)) = (ln S(0), ln X1(0), ln X2(0), . . . , ln Xn(0)).
Since the coefficients of system (2.1) are Lipschitz continuous, then there is a unique local
solution (u(t), v1(t), v2(t), . . . , vn(t)) on t ∈ [0, τe), where τe denotes the explosion time. It
is easy to see that (S(t), X1(t), X2(t), . . . , Xn(t)) = (eu(t), ev1(t), . . . , evn(t)) is the unique positive
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local solution of system (1.2) with the initial value (S(0), Xi(0)) on [0, τe). Next, we will use
the comparison theorem to show that the positive solution is global, i.e., τe = ∞.

Since the solution is positive for t ∈ [0, τe), we have

dS ≤ Sr
(

1 –
S
K

)

dt + σ0S dB.

Let

� =
e(r–

σ2
0
2 )t+σ0B(t)

1
S(0) + r

K
∫ t

0 e(r–
σ2

0
2 )s+σ0B(s) ds

,

then �(t) is the unique solution of the following stochastic differential equation:

⎧
⎨

⎩

d�(t) = �r(1 – �
K ) dt + σ0�dB,

�(0) = S(0).
(2.2)

By the comparison theorem for stochastic equation, this yields

S(t) ≤ �(t), t ∈ [0, τe), a.s.

Besides, we have

dXi ≤ (–riXi + bi�) dt + σiXi dB, i = 1, 2, . . . , n.

Let

�i(t) = e–(ri+
σ2

i
2 )t+σiB(t)[Xi(0) + bi

∫ t

0
�(s)e(ri+

σ2
i
2 )s–σiB(s) ds,

then �i(t) is the unique solution of the following stochastic differential equation:

⎧
⎨

⎩

d�i(t) = (–ri + bi�i) dt + σi�i dB, i = 1, 2, . . . , n,

�(0) = Xi(0).
(2.3)

By the comparison theorem for stochastic equation, it follows

Xi(t) ≤ �i(t), t ∈ [0, τe), a.s.

Similarly, we get

dS ≥ S
(

1 –
S
K

)

[r dt + σ0 dB] –
n∑

i=1

ai�i dt

and

dXi ≥ –riXi dt + σiXi dB, i = 1, 2, . . . , n.



Zhu and Li Advances in Difference Equations  (2018) 2018:343 Page 5 of 24

Denote by φ(t) the following stochastic differential equations:

⎧
⎨

⎩

dφ(t) = [rφ(1 – φ

K ) –
∑n

i=1 ai�i] dt + σ0 dB, i = 1, 2, . . . , n,

φ(0) = S(0).
(2.4)

And ϕi(t), i = 1, 2, . . . , n, is the solution of the equation

⎧
⎨

⎩

dϕi(t) = –riϕi dt + σiϕi dB, i = 1, 2, . . . , n,

φ(0) = Xi(0).
(2.5)

It follows that

S(t) ≥ φ(t), Xi(t) ≥ ϕi(t), t ∈ [0, τe), a.s.

In summary, we have

�(t) ≥ S(t) ≥ φ(t), �i(t) ≥ Xi(t) ≥ ϕi(t), t ∈ [0, τe), a.s.

This completes the proof of the theorem. �

Remark 2.1 Since there is a unique solution (S(t), X1(t), X2(t), . . . , Xn(t)) ∈ Rn+1
+ of system

(1.2) for any given initial value (S(0), X1(0), X2(0), . . . , Xn(0)) ∈ Rn+1
+ , and � = {(S(t), X1(t),

X2(t), . . . , Xn(t)) ∈ Rn+1
+ : 0 ≤ S ≤ K , Xi ≥ 0, i = 1, 2, . . . , n, t ≥ 0, a.s.} is an invariant set [18],

then we always assume the initial value (S(0), X1(0), X2(0), . . . , Xn(0)) ∈ Rn+1
+ ∈ �.

3 Competitive exclusion principle in model (1.2)
Define the stochastic break-even concentration

R̃i =
ri + σ 2

i
2

Kbi
, i = 1, 2, . . . , n.

Theorem 3.1 Let (S(t), X1(t), X2(t), . . . , Xn(t)) be the solution of system (1.2) with any ini-
tial value (S(0), X1(0), X2(0), . . . , Xn(0)) ∈ Rn+1

+ , then for arbitrary i = 1, 2, . . . , n, we get some
results as follows:

(i) If R̃i > 1, then

lim
t→+∞ sup

ln Xi

t
≤ bi(1 – R̃i) < 0, a.s.,

i.e., the ith predator goes extinct with probability one.
(ii) If R̃i < R̃j, then

lim
t→+∞ sup

ln Xj

t
≤ bi(R̃i – R̃j) < 0, a.s.,

i.e., the predatorXjgoes extinct with probability one.
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(iii) If r – σ 2
0
2 > 0, R̃i = min1≤j≤n{R̃j}, and R̃i < mini
=j{R̃j, 1

r(1+K ) (r – σ 2
0
2 ), 1}, then

lim
t→+∞ inf

1
t

∫ t

0
Xi(u) du ≥ r(1 + K)[ 1

r(1+K ) (r – σ 2
0
2 ) – R̃i]

ai
> 0,

lim
t→+∞ Xj = 0, i 
= j,

i.e., only the predator Xi is persistent in mean and all other predators will go extinct
with probability one.

Moreover, if r – σ 2
0
2 > raiK

ri
and ri > Krai, then

lim
t→+∞ inf

1
t

∫ t

0
S(t) du ≥ r – σ 2

0
2 – raiK

ri

r(ri – Kai)
> 0, a.s.,

i.e., the prey is persistent in mean.

(iv) If r – σ 2
0
2 < 0, then

lim
t→+∞ inf S(t) = 0, lim

t→+∞ inf Xi(t) = 0, a.s.,

i.e., the prey and the predators all go extinct.

Proof

dS +
n∑

i=1

dXi =

[

Sr
(

1 –
S
K

)

–
n∑

i=1

(ai – bi)S
1 + S

Xi –
n∑

i=1

riXi

]

dt

+

(

σ0S +
n∑

i=1

σiXi

)

dB.

Integrating this from 0 to t and dividing by t on both sides, we have

1
t

(

S +
n∑

i=1

Xi

)

–
1
t

(

S(0) +
n∑

i=1

Xi(0)

)

=
1
t

∫ t

0
Sr

(

1 –
S
K

)

du –
1
t

∫ t

0

n∑

i=1

(ai – bi)S
1 + S

Xi du –
∫ t

0

ri

t

n∑

i=1

Xi du

+
σ0

t

∫ t

0
S dB +

n∑

i=1

σi

t

∫ t

0
Xi dB

≤ rK –
r
t

∫ t

0
S du –

n∑

i=1

ri

t

∫ t

0
Xi du +

σ0

t

∫ t

0
S dB +

n∑

i=1

σi

t

∫ t

0
Xi dB.

Simple computation shows that

1
t

∫ t

0
S du +

ri

r

n∑

i=1

1
t

∫ t

0
Xi du ≤ K +

α(t)
r

, (3.1)
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where

α(t) =
σ0

t

∫ t

0
S dB +

n∑

i=1

σi

t

∫ t

0
Xi dB –

1
t

(

S +
n∑

i=1

Xi

)

+
1
t

(

S(0) +
n∑

i=1

Xi(0)

)

.

By using Itô’s formula to the first equation of system (1.2), we get

d ln S =

[

r
(

1 –
S
K

)

–
n∑

i=1

ai

1 + S
Xi –

σ 2
0

2

]

dt + σ0 dB.

Integrating this from 0 to t and dividing by t on both sides, we have

r
K

1
t

∫ t

0
S du +

n∑

i=1

ai

t

∫ t

0

Xi

1 + S i
du = –

ln S(t) – ln S(t0)
t

+ r –
σ 2

0
2

+
σ0B

t
. (3.2)

By using Itô’s formula, we have

d ln Xi =
(

–ri +
biS

1 + S
Xi –

σ 2
i

2

)

dt + σi dB.

Integrating this from 0 to t and dividing by t on both sides, we have

ln Xi

t
=

1
t

∫ t

0

biS
1 + S i

du – ri –
σ 2

i
2

+
σiBi

t
+

ln Xi(0)
t

. (3.3)

(i) If R̃i > 1, then together with (3.1) and (3.3)

ln Xi

t
≤ bi

t

∫ t

0
S du – ri –

σ 2
i

2
+

σiBi

t
+

ln Xi(0)
t

≤ biK – ri –
σ 2

i
2

+ βi –
ri

r

n∑

i=1

1
t

∫ t

0
Xi du, (3.4)

where

βi(t) ≤ biα(t)
r

+
σiBi

t
+

ln Xi(0)
t

.

By the strong law of large numbers [19], we have

lim
t→+∞βi(t) = 0, a.s., (3.5)

then from (3.5) that

lim
t→+∞ sup

ln Xi

t
≤ Kbi(1 – R̃i), a.s.,

which implies

lim
t→+∞ Xi(t) = 0, a.s.
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(ii) From (3.3), we know that for arbitrary j,

ln Xj

t
≤ 1

t

∫ t

0

bjS
1 + S

du – rj –
σ 2

j

2
+

σjBj

t
+

ln Xj(0)
t

. (3.6)

Computing (3.6) × bi – (3.3) × bj gives

bi
ln Xj(t)

t
– bj

ln Xi(t)
t

= bibj(R̃i – R̃j) + bi

(
σjBj

t
+

ln Xj(0)
t

)

– bj

(
σiBi

t
+

ln Xi(0)
t

)

then

ln Xj

t
= bj(R̃i – R̃j) + Hij(t), (3.7)

where

Hij(t) =
bj

bi

ln Xi(t)
t

+
(

σjBj

t
+

ln Xj(0)
t

)

–
bj

bi

(
σiBi

t
+

ln Xi(0)
t

)

.

By the strong law of large numbers, we obtain that

lim
t→+∞ Hij(t) = 0, a.s.

From (3.7), if R̃i < R̃j, then

lim
t→+∞ sup

ln Xj

t
≤ bj(R̃i – R̃j) < 0, a.s.

Then

lim
t→+∞ Xj(t) = 0, a.s.

(iii) Without loss of generality, assume that R̃1 = min1≤i≤n{R̃i} and R̃1 < min1 
=i{R̃i,
1

r(1+K ) (r – σ 2
0
2 ), 1}. According to Theorem 3.1(ii), we know that for arbitrary i = 1, 2, . . . , n,

lim
t→+∞ Xi(t) = 0, a.s.

Then from (3.3), we have

ln X1(t)
t

=
1
t

∫ t

0

b1S
1 + S

du – r1 –
σ 2

1
2

+
σ1B1

t
+

ln X1(0)
t

≥ b1

1 + K
1
t

∫ t

0
S du – r1 –

σ 2
1

2
+

σ1B1

t
+

ln X1(0)
t

. (3.8)
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From (3.2),

ln X1(t)
t

≥ b1K
r(1 + K)

[

–
a1

t

∫ t

0

X1

1 + S
du –

n∑

i=2

ai

t

∫ t

0

Xi

1 + S
du

–
ln S(t) – ln S(0)

t
+

(

r –
σ 2

0
2

)

+
σ0B

t

]

– r1 –
σ 2

1
2

+
σ1B1

t
+

ln X1(0)
t

≥ b1K
r(1 + K)

[

–
a1

t

∫ t

0
X1 du –

ln S(t) – ln S(0)
t

+
(

r –
σ 2

0
2

)

+
σ0B

t

]

– r1 –
σ 2

1
2

+
σ1B1

t
+

ln X1(0)
t

.

From (3.3), r – σ 2
0
2 > 0, R̃1 < min1 
=i{R̃i, 1

r(1+K ) (r – σ 2
0
2 ), 1}, Lemma 4 in Ref. [20], and the strong

law of large numbers, it is obtained that

lim
t→+∞ inf

∫ t

0
X1 du ≥

b1K
r(1+K ) (r – σ 2

0
2 ) – (r1 + σ 2

1
2 )

a1b1K
r(1+K )

=
r(1 + K)[ 1

r(1+K ) (r – σ 2
0
2 ) – R̃1]

a1
> 0, a.s.

On the other hand, from (3.2) and the assumption we know that

r
K

1
t

∫ t

0
S du ≥ –

ln S(t) – ln S(0)
t

+ r –
σ 2

0
2

–
n∑

i=1

ai

t

∫ t

0
Xi du +

σ0B
t

= –
ln S(t) – ln S(0)

t
+ r –

σ 2
0

2
–

a1

t

∫ t

0
X1 du +

σ0B
t

. (3.9)

According (3.1), it is obtained

(
r
K

–
ra1

r1

)
1
t

∫ t

0
S du ≥ –

ln S(t) – ln S(0)
t

+ r –
σ 2

0
2

–
ra1

r1
K –

a1

r1
α(t). (3.10)

Taking limits on both sides of (3.10) and by the large number theorem for martingales, we
have

lim
t→+∞ inf

∫ t

0
S du ≥ ka1(r – σ 2

0
2 – ra1K

r1
)

r(r1 – ka1)
> 0 a.s.

(iv) From (2.2), by the comparison theorem for stochastic equation, it follows that

S(t) ≤ �(t), t ∈ [0, τe), a.s.

By using Itô’s formula to (2.2), we have

d�(t) =
[

r
(

1 –
�

K

)

–
σ 2

0
2

]

dt + σ0 dB

≤
(

r –
σ 2

0
2

)

dt + σ0 dB.



Zhu and Li Advances in Difference Equations  (2018) 2018:343 Page 10 of 24

Integrating both sides and since r – σ 2
0
2 < 0, then

�(t) ≤ �(0)e(r–
σ2

0
2 )t+σ0B0(t) → 0

as t → ∞ since limt→+∞ B0(t)
t → 0 a.s. So we get that limt→+∞ B0(t)

t → 0 a.s.
From (3.3) and (3.6), if the prey S goes extinct, then

lim
t→+∞ sup

ln Xi

t
≤ –ri –

σ 2
i

2
< 0, a.s.

So

lim
t→+∞ Xi(t) = 0, a.s. �

Remark 3.1 In Theorem 3.1(iii), it is an open problem whether the prey is persistent in
mean or goes extinct if 0 < r – σ 2

0
2 ≤ Kair

ri
.

4 The principle of coexistence in model (1.2)
In this section, we discuss the coexistence of the predators.

From Theorem 3.1(iii), we know that if R̃i = min1≤i≤n{R̃j} and R̃i < mini
=j{R̃j, 1
r(1+K ) (r –

σ 2
0
2 ), 1}, only the predator Xi is persistent in mean. Suppose that two predators have the

same lowest stochastic break-even concentration, and without loss of generality, we let

R̃1 = R̃2 < min
i
=1,2

{

R̃i,
1

r(1 + K)

(

r –
σ 2

0
2

)

, 1
}

.

From Theorem 3.1(ii), we know that for arbitrary i = 3, . . . , n,

lim
t→+∞ Xi(t) = 0, a.s.

So system (2.1) becomes

⎧
⎪⎪⎨

⎪⎪⎩

du(t) = [r(1 – 1
K eu(t)) –

∑2
i=1

aievi(t)

1+eu(t) – σ 2
0
2 ] dt + σ0 dB,

dv1(t) = (–r1 + b1eu(t)

1+eu(t) – σ 2
1
2 ) dt + σ1 dB,

dv2(t) = (–r2 + b2eu(t)

1+eu(t) – σ 2
2
2 ) dt + σ2 dB.

(4.1)

Assume b1
b2

= σ1
σ2

, and since R̃1 = R̃2, then it follows that

d(b2v1 – b1v2) =
[

–b2

(

r1 +
σ 2

1
2

)

+ b1

(

r2 +
σ 2

2
2

)]

dt + (b2σ1 – b1σ2) dB(t) = 0.

Then we have v2(t) = cv1(t)
b2
b1 , where c is a positive constant. We get the following system:

⎧
⎪⎨

⎪⎩

du(t) = [r(1 – 1
K eu(t)) – a1ev1(t)

1+eu(t) – a2(ev1(t))
b2
b1

1+eu(t) – σ 2
0
2 ] dt + σ0 dB,

v1(t) = (–r1 + b1eu(t)

1+eu(t) – σ 2
1
2 ) dt + σ1 dB.

(4.2)

Now we research the coexistence of the equivalent system (4.2) of (1.2).
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Theorem 4.1 Let (u(t), v1(t)) be the solution of system (4.2). For every t > 0, the distribution
of (u(t), v1(t)) has a density U(t, x, y). If b1

b2
= σ1

σ2
, R̃1 = R̃2 < mini
=1,2{R̃i, 1

r(1+K ) (r – σ 2
0
2 ), 1}, σ0 <

σ1 < σ2, and b1K
r (r – σ 2

0
2 )–(r1 + σ 2

1
2 )(1+K) > 0 hold, then there exists a unique density U∗(x, y)

such that

lim
t→+∞

∫∫

R2

∣
∣U(t, x, y) – U∗(x, y)

∣
∣dx dy = 0.

The strategy of the proof is as follows.
• We show that the transition function of the process (u(t), v1(t)) is absolutely

continuous by using the Hörmander theorem [21];
• According to support theorems [22–24], we find that the density of the transition

function is positive on R
2;

• We show that the Markov semigroup satisfies the “Foguel alternative”;
• We exclude sweeping by showing that there exists a Khasminskĭı function.
In the following, we give the proof of Theorem 4.1 through Lemmas 4.1–4.4 by realizing

this strategy.

Lemma 4.1 For each point (x0, y0) ∈ R2
+ and t > 0, the transition probability function

p(t, x0, y0, A) has a continuous density k(t, x, y, x0, y0) with respect to the Lebesgue mea-
sure.

Proof The Hörmander theorem [21] for the existence of smooth density of the transition
probability for degenerate diffusion processes is used in the proof of this lemma. Let a(x)
and b(x) be vector fields on Rd , then the Lie bracket [a, b] is a vector field given by

[a, b]j(X) =
d∑

k=1

(

ak
∂bj

∂xk
(X) – bk

∂aj

∂xk
(X)

)

.

Let

a(ξ ,η) =
(

r
(

1 –
1
K

eξ

)

–
a1eη

1 + eξ
–

a2(eη)
b2
b1

1 + eξ
–

σ 2
0

2
, –r1 +

b1eη

1 + eξ
–

σ 2
1

2

)T

and

b(ξ ,η) = (σ0,σ1)T .

Then calculate directly

[a, b] =

⎛

⎜
⎝

rσ0eξ

K – (1 – 1
K eξ ) σ0eξ (a1eη+ca2(eη)

b2
b1 )

(1+eξ )2 +
σ1(a1eη+ca2

b2
b1

(eη)
b2
b1 )

1+eξ

– σ0b1eξ

(1+eξ )2

⎞

⎟
⎠ .
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It follows that
∣
∣
∣
∣
∣
∣
∣

σ0
rσ0eξ

K – (1 – 1
K eξ ) σ0eξ (a1eη+ca2(eη)

b2
b1 )

(1+eξ )2 +
σ1(a1eη+ca2

b2
b1

(eη)
b2
b1 )

1+eξ

σ1 – σ0b1eξ

(1+eξ )2

∣
∣
∣
∣
∣
∣
∣

= –
(

σ 2
0 b1eξ

(1 + eξ )2 –
(

1 –
1
K

eξ

)
σ0σ1eξ (a1eη + ca2(eη)

b2
b1 )

(1 + eξ )2

+
σ 2

1 (a1eη + ca2
b2
b1

(eη)
b2
b1 )

1 + eξ
+

rσ0σ1eξ

K

)

≤ –
(

σ 2
0 b1eξ

(1 + eξ )2 +
rσ0σ1eξ

K
+

1
K

eξ σ0σ1eξ (a1eη + ca2(eη)
b2
b1 )

(1 + eξ )2

–
σ0σ1eξ (a1eη + ca2(eη)

b2
b1 )

(1 + eξ )eξ
+

σ1(a1eη + ca2
b2
b1

(eη)
b2
b1 )

1 + eξ

)

< 0

according to b1
b2

= σ1
σ2

, σ0 < σ1 < σ2. Therefore, b, [a, b] are linearly independent on Rd .
So, for every (ξ ,η) ∈ R2, vectors b(ξ ,η) and [a, b](ξ ,η) span the space R2. In view of the

Hörmander theorem [21], the transition probability function p(t, x0, y0, A) has a contin-
uous density k(t, x, y, x0, y0) and k ∈ C∞((0,∞) × R2 × R2). This completes the proof of
Lemma 4.1. �

Lemma 4.2 For each (x0, y0) ∈ R2 and (x, y) ∈ R2, there exists T > 0 such that k(t, x, y,
x0, y0) > 0.

Proof Now we check the positivity of the kernel k by using support theorems (see [22–
24]). For a point (x0, y0) ∈ R2 and a function ϕ ∈ L2([0, T]; R), consider the following system
of integral equations:

⎧
⎨

⎩

xφ(t) = x0 +
∫ t

0 [f1(xφ(s), yφ(s)) + σ0φ] ds,

yφ(t) = y0 +
∫ t

0 [f2(xφ(s), yφ(s)) + σ1φ] ds,
(4.3)

where f1(x, y) = r(1 – 1
K ex) – a1ey

1+ex – a2c(ey)
b2
b1

1+ex – σ 2
0
2 and f2(x, y) = –r1 + b1ex

1+ex – σ 2
1
2 .

We denote X = (x, y)T , X = (x0, y0)T and let Dx,y,φ be the Frechét derivative of the function
h → Xφ+h(T) from L2((0, T]; R) to R2 with Xφ+h = [xφ+h,yφ+h]T . If for some φ the derivative
Dx,y,φ has rank two, then k(t, x, y, x0, y0) > 0 for x = xφ(T) and y = yφ(T). The derivative Dx,y,φ

can be found by means of the perturbation method for ordinary differential equations.
Namely, let �(t) = f ′(xφ(t), yφ(t)), where f ′ is the Jacobians of f = [f1(x, y), f2(x, y)]T . Let
Q(t, t0) for 0 ≤ t0 ≤ t ≤ T be a matrix function such that Q(t, t0) = Id, ∂Q(t,t0)

∂t = �(t)Q(t, t0),
and v = [σ0,σ1]T . Then

Dx,y,φh =
∫ t

0
Q(T , s)vh(s) ds.

We check that the rank of Dx,y,φ is two. Let ε ∈ (0, T) and h = 1[T–ε,T](t), where t ∈
(0, T] and 1[T–ε,T] is the characteristic function of interval [T – ε, T]. Since Q(T , s) =
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Id + �(T)(T – s) + o(T – s), we obtain

Dx,y,φh = εv +
1
2
ε2�(T)v + o

(
ε2).

Compute

�(T)v =

⎛

⎜
⎝– rex

K + ex(a1ey+ca2(ey)
b2
b1 )

(1+ex)2 –
a1ey+ca2

b2
b1

(ey)
b2
b1

1+ex

b1ex

(1+ex)2 0

⎞

⎟
⎠

(
σ0

σ1

)

=

⎛

⎜
⎝–[[ rex

K – ex(a1ey+ca2(ey)
b2
b1 )

(1+ex)2 ]σ0 +
[a1ey+ca2

b2
b1

(ey)
b2
b1 ]σ1

1+ex ]
b1ex

(1+ex)2 σ0

⎞

⎟
⎠ .

Hence, vectors v and �(T)v are linearly independent. Thus Dx,y,φ has rank two.
Next, we prove that for any two points X0 ∈ R and X ∈ R, there exist a control function

φ and T > 0 such that Xφ(0) ∈ X0, Xφ(T) ∈ X. Taking derivatives of system (4.3) yields

⎧
⎨

⎩

x′
φ(t) = f1(xφ , yφ) + σ0φ,

y′
φ(t) = f2(xφ , yφ) + σ1φ.

(4.4)

Let zφ = yφ – σ1
σ0

xφ , system (4.3) becomes

⎧
⎨

⎩

x′
φ(t) = g1(x, z) + σ1φ,

z′
φ(t) = g2(x, z),

(4.5)

where

⎧
⎪⎨

⎪⎩

g1(x, z) = r(1 – 1
K ex) – a1eze

σ2
σ1 x+ca2(eze

σ2
σ1 x)

b2
b1

1+ex – σ 2
0
2 ,

g2(x, z) = –r1 + b1ex

1+ex – σ 2
1
2 – σ1

σ0

σ 2
0
2 – σ2

σ1
r + rσ2

σ1
1
K ex – σ1

σ0
a1eze

σ2
σ1 x+ca2(eze

σ2
σ1 x)

b2
b1

1+ex .
(4.6)

Now it can be said that for any X0 ∈ R and X ∈ R, there exist a control function φ and
T > 0 such that (xφ(0), zφ(0)) = (x0, z0), (xφ(T), zφ(T)) = (xT , zT ).

We construct the function φ in the following way. First, we find a positive constant
T and a differentiable function zφ : [0, T] → R+ such that zφ(0) = z0, zφ(T) = zT , z′

φ(0) =
g2(x0, z0) = zd

0 , z′
φ(T) = g2(xT , zT ) = zd

T , and

z′
φ(t) + r1 +

σ 2
1

2
+

σ1

σ0

σ 2
0

2
+

σ2

σ1
r > 0 for t ∈ [0, T]. (4.7)

We split the construction of function zφon three intervals [0, ε], [ε, T –ε], and [T –ε, T],
where 0 < ε < T/2. Hence, it follows that we can construct a C2 function zφ : [0, ε] → R
such that

zφ(0) = z0, z′
φ = zd

0 , z′
φ(ε) = 0
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and zφ satisfies (4.7) for t ∈ [0, ε]. Similarly, we construct a C2 function zφ : [T – ε, T] → R
such that

zφ(T) = zT , z′
φ(T) = zd

T , z′
φ(T – ε) = 0.

Taking T be large enough, we can extend the function

zφ : [0, ε] ∪ [T – ε, T] → R

to a C2 function zφ defined on the whole interval [0, T] such that zφ satisfies (4.7). There-
fore, we can find one C1-function xφ which satisfies the second equation of (4.5), and
finally we can determine a continuous function φ from the first equation (4.5). The proof
of Lemma 4.2 is completed. �

Lemma 4.3 The semigroup {P(t)}t≥0 is asymptotically stable or is sweeping with respect to
compact sets.

Proof By virtue of Lemma 4.1, it follows that {P(t)}t≥0 is an integral Markov semigroup
with a continuous kernel k(t, x, y) for t > 0. From Lemma 4.2, for every f ∈ D, we have

∫ ∞

0
P(t)f dt > 0 a.e. on R

2,

where D is defined in the Appendix. From Lemma A.1, it follows that the semigroup
{P(t)}t≥0 is asymptotically stable or is sweeping with respect to compact sets. �

Lemma 4.4 If b1
b2

= σ1
σ2

, R̃1 = R̃2 < mini
=1,2{R̃i, 1
r(1+K ) (r – σ 2

0
2 ), 1}, σ0 < σ1 < σ2, and b1K

r (r –
σ 2

0
2 ) – (r1 + σ 2

1
2 )(1 + K) > 0 hold, then the semigroup {P(t)}t≥0 is asymptotically stable.

Proof In order to exclude sweeping, it is sufficient to construct a non-negative C2-function
V and a closed set O ∈ � such that

sup
(u,v)∈R2\O

A∗V (u, v) < 0,

where A∗ is the adjoint operator of the infinitesimal generator A of the semigroup
{P(t)}t≥0, which is of the form

A∗V =
1
2
σ 2

1
∂2V
∂x2 + σ1σ2

∂2V
∂x ∂y

+
1
2
σ 2

2
∂2V
∂y2 + f1

∂V
∂x

+ f2
∂V
∂y

,

where f1(x, y), f2(x, y) are defined in (4.3), and such a function is called a Khasminskĭı func-
tion [16].

Define a C2-function

V (u, v1) = M
[

–
b1K

r
u – (1 + K)v1 +

a1b1Kev1

rr1
+

b1(r2 + σ 2
2
2 – σ 2

1
2 )c(ev1 )

b2
b1

b2

]

+
[eu + a1ev1

b1(1+K ) + ca2(ev1 )
b2
b1

b2(1+K ) ]1+θ

1 + θ
= V1(u, v1) + V2(u, v1),
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where

M =
2
λ

max

{

2, sup
(u,v1)∈R2

{

–
r

4K
e2(1+θ )u –

m2

2(1 + K)1+θ

[
a1ev1

b1
+

a2c(ev1 )
b2
b1

b2

]1+θ

+ m1

[

eu +
a1ev1

b1(1 + K)
+

ca2(ev1 )
b2
b1

b2(1 + K)

]θ}}

,

λ =
(

r –
σ 2

0
2

)
b1K

r
–

(

r1 +
σ 2

1
2

)

(1 + K) > 0,

m1 = sup
u∈R

{

eu(r + r1

(

1 ∧ σ2

σ1

)

–
r

2K
eu

}

,

m2 = r1

(

1 ∧ σ2

σ1

)

–
θ

2
(σ0 ∨ σ1 ∨ σ2)2, 0 < θ <

2r1(1 ∧ σ2
σ1

)
(σ0 ∨ σ1 ∨ σ2)2 ,

A∗V1 = M
[

–
b1K

r
(r –

r
K

eu –
a1ev1

1 + eu –
ca2(ev1 )

b2
b1

1 + eu –
σ 2

0
2

(

1 –
1
K

eu
)2

– (1 + K)
(

–r1 +
b1eu

1 + eu –
σ 2

1
2

)

+
a1b1Kev1

rr1

(

–r1 +
b1eu

1 + eu

)

+
(

r2 +
σ 2

2
2

–
σ 2

1
2

)

c
(
ev1

) b2
b1

(

–r1 +
b1eu

1 + eu –
σ 2

1
2

+
b2

b1

σ 2
1

2

)]

≤ M
[

–
b1K

r

(

r –
r
K

eu – a1ev1 – ca2
(
ev1

) b2
b1 –

σ 2
0

2

)

– (1 + K)
(

–r1 +
b1eu

1 + eu –
σ 2

1
2

)

+
a1b1Kev1

rr1

(
–r1 + b1eu)

+
(

r2 +
σ 2

2
2

–
σ 2

1
2

)

c
(
ev1

) b2
b1

(

–r1 + b1eu –
σ 2

1
2

+
b2

b1

σ 2
1

2

)]

≤ M
[

–λ + eu
(

a1b1Kev1

rr1
+ b1

(

r2 +
σ 2

2
2

)

c
(
ev1

) b2
b1

)]

,

and

A∗V2 ≤
[

eu +
a1ev1

b1(1 + K)
+

ca2(ev1 )
b2
b1

b2(1 + K)

]θ

×
[

eu
(

r –
r
K

eu
)

–
(

r1a1ev1

b1(1 + K)
+

σ2

σ1

ca2(ev1 )
b2
b1

b2(1 + K)

)]

+
θ

2

[

eu +
a1ev1

b1(1 + K)
+

ca2(ev1 )
b2
b1

b2(1 + K)

]θ–1(

σ0eu +
a1σ1ev1

b1(1 + K)
+

ca2(ev1 )
b2
b1

b2(1 + K)

)2

≤
[

eu +
a1ev1

b1(1 + K)
+

ca2(ev1 )
b2
b1

b2(1 + K)

]θ[

eu
(

r + r1

(

1 ∧ σ2

σ1

)

–
r
K

eu
)

– r1

(

1 ∧ σ2

σ1

)(

eu +
a1ev1

b1(1 + K)
+

ca2(ev1 )
b2
b1

b2(1 + K)

)]

+
θ

2
(σ0 ∨ σ1 ∨ σ2)2

[

eu +
a1ev1

b1(1 + K)
+

ca2(ev1 )
b2
b1

b2(1 + K)

]θ+1
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≤ –
[

r1

(

1 ∧ σ2

σ1

)

–
θ

2
(σ0 ∨ σ1 ∨ σ2)2

][

eu +
a1ev1

b1(1 + K)
+

ca2(ev1 )
b2
b1

b2(1 + K)

]θ+1

+
[

eu +
a1ev1

b1(1 + K)
+

ca2(ev1 )
b2
b1

b2(1 + K)

]θ[

m1 –
r

2K
e2u

]

≤ –m2

[
a1ev1

b1(1 + K)
+

ca2(ev1 )
b2
b1

b2(1 + K)

]θ+1

+ m1

[

eu +
a1ev1

b1(1 + K)
+

ca2(ev1 )
b2
b1

b2(1 + K)

]θ

–
r

2K
e(2+θ )u,

where m2:=r1(1 ∧ σ2
σ1

) – θ
2 (σ0 ∨ σ1 ∨ σ2)2 > 0 according to the definition of θ .

Define a closed set

Uε =
{

(u, v1) ∈R
2 : |u| ≤ log

1
ε

, |v1| ≤ log
1
ε

}

,

where ε > 0 is a sufficiently small number such that

0 < ε <
λ

4( a1b2
1K

rr1
+ b1(r2 + σ 2

2
2 )c)

, (4.8)

0 < ε <
m2

2(1 + K)θ+1M( b3
1K

rr1
∨ b1b2(r2+

σ2
2
2 )

a2
)
, (4.9)

a1b2
1Kε

rr1
+ b1

(

r2 +
σ 2

2
2

)

cε
b2
b1 < min

{
λ

4
,

r
4KM

}

, (4.10)

–Mλ –
r

4KM
ε–(2+θ ) + K1 ≤ –1, (4.11)

–Mλ –
m2

2(1 + K)

[
b2

b1ε
+

a2cε– b2
b1

b2

]θ+1

+ K2 ≤ –1. (4.12)

Denote

D1
ε =

{
(u, v1) ∈R

2 : –∞ < u < log ε
}

, D2
ε =

{
(u, v1) ∈ R

2 : –∞ < v1 < log ε
}

,

D3
ε =

{

(u, v1) ∈R
2 : u ≥ log

1
ε

}

, D4
ε =

{

(u, v1) ∈R
2 : v1 ≥ log

1
ε

}

,

then R
2 \ Uε = D1

ε ∪ D2
ε ∪ D3

ε ∪ D4
ε . Hence we consider four cases as follows.

Case 1. On D1
ε , using the inequality ev1 ≤ 1 + (ev1 )θ+1, one can derive that

A∗V ≤ –
Mλ

4
+ M

[

–
λ

4
+ ε

(
a1b2

1K
rr1

+ b1

(

r2 +
σ 2

2
2

)

c
)]

–
r

4K
e(2+θ )u

+
[

M
(

b3
1K

rr1
∨ b1b2(r2 + σ 2

2
2 )

a2

)

ε –
m2

2(1 + K)1+θ

][
a1ev1

b1
+

ca2(ev1 )
b2
b1

b2

]θ+1
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+
[

–
Mλ

2
+ sup

(u,v1)∈R2

{

–
r

4K
e(2+θ )u –

m2

2(1 + K)1+θ

[
a1ev1

b1
+

a2c(ev1 )
b2
b1

b2

]1+θ

+ m1

[

eu +
a1ev1

b1(1 + K)
+

ca2(ev1 )
b2
b1

b2(1 + K)

]θ}]

.

By the definition of M, (4.3), and (4.4), we have

A∗V ≤ –
Mλ

4
–

r
4K

e(2+θ )u ≤ –
Mλ

4
≤ –1.

Case 2. On D2
ε , using the inequality eu ≤ 1 + e(θ+2)u, one can derive that

A∗V ≤ –
Mλ

4
+ M

[

–
λ

4
+

(
a1b2

1K
rr1

ε + b1

(

r2 +
σ 2

2
2

)

cε
b2
b1

)]

+
[

–
r

4K
+ M

(
a1b2

1K
rr1

ε + b1

(

r2 +
σ 2

2
2

)

cε
b2
b1

)]

e(2+θ )u

–
m2

2(1 + K)1+θ

[
a1ev1

b1
+

ca2(ev1 )
b2
b1

b2

]θ+1

+
[

–
Mλ

2
+ sup

(u,v1)∈R2

{

–
r

4K
e2(1+θ ) –

m2

2(1 + K)1+θ

[
a1ev1

b1
+

a2c(ev1 )
b2
b1

b2

]1+θ

+ m1

[

eu +
a1ev1

b1(1 + K)
+

ca2(ev1 )
b2
b1

b2(1 + K)

]θ}]

.

By the definition of M and (4.5), we have

A∗V ≤ –
Mλ

4
–

m2

2(1 + K)1+θ

[
a1ev1

b1
+

a2c(ev1 )
b2
b1

b2

]1+θ

≤ –
Mλ

4
≤ –1.

Case 3. On D3
ε ,

A∗V ≤ –Mλ –
r

4K
e2(1+θ )u +

{

–
r

4K
e2(1+θ ) + Meu

(
a1b2

1K
rr1

ε + b1

(

r2 +
σ 2

2
2

)

cε
b2
b1

)

– m2

[
a1ev1

b1(1 + K)
+

a2c(ev1 )
b2
b1

b2(1 + K)

]1+θ

+ m1

[

eu +
a1ev1

b1(1 + K)
+

ca2(ev1 )
b2
b1

b2(1 + K)

]θ}

≤ –Mλ –
r

4K
e2(1+θ ) + K1,

where

K1 = sup
(u,v1)∈R2

{

–
r

4K
e2(1+θ ) + Meu

(
a1b2

1K
rr1

ε + b1

(

r2 +
σ 2

2
2

)

cε
b2
b1

)

– m2

[
a1ev1

b1(1 + K)
+

a2c(ev1 )
b2
b1

b2(1 + K)

]1+θ

+ m1

[

eu +
a1ev1

b1(1 + K)
+

ca2(ev1 )
b2
b1

b2(1 + K)

]θ}

.
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In view of (4.6), we get

A∗V ≤ –1.

Case 4. On D4
ε ,

A∗V ≤ –Mλ –
m2

2

[
a1ev1

b1(1 + K)
+

a2c(ev1 )
b2
b1

b2(1 + K)

]1+θ

+
{

–
m2

2

[
a1ev1

b1(1 + K)
+

a2c(ev1 )
b2
b1

b2(1 + K)

]1+θ

+ Meu
(

a1b2
1K

rr1
ε + b1

(

r2 +
σ 2

2
2

)

cε
b2
b1

)

+ m1

[

eu +
a1ev1

b1(1 + K)
+

ca2(ev1 )
b2
b1

b2(1 + K)

]θ

–
r

2K
e2(1+θ )u

}

≤ –Mλ –
m2

2(1 + K)

[
a1

b1ε
+

a2cε
b2
b1

b2

]1+θ

+ K2,

where

K2 = sup
(u,v1)∈R2

{

–
m2

2

[
a1ev1

b1(1 + K)
+

a2c(ev1 )
b2
b1

b2(1 + K)

]1+θ

+ Meu
(

a1b2
1K

rr1
ε + b1

(

r2 +
σ 2

2
2

)

cε
b2
b1

)

+ m1

[

eu +
a1ev1

b1(1 + K)
+

ca2(ev1 )
b2
b1

b2(1 + K)

]θ

–
r

2K
e2(1+θ )u

}

.

According to (4.7), we have

A∗V ≤ –1.

In summary, we can deduce that

sup
(u,v1)∈R2\Uε

≤ –1.

This completes the proof. �

Remark 4.1 If more than two predators have the same lowest stochastic break-even con-
centration, and without loss of generality, we can assume that the first k (k ≥ 3) predators
have the same lowest value R̃i, that is,

R̃1 = R̃2 = · · · = R̃k < min
i
=1,2,...,k

{

R̃i,
1

r(1 + K)

(

r –
σ 2

0
2

)

, 1
}

.

We cannot prove whether they will coexist or not, and leave it as an open problem.
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5 Simulation and discussion
In this article, we analyzed the principle of the competitive exclusion and coexistence of
a stochastic Holling II n-predator one-prey model. The stochastic break-even concentra-
tion of each predator determines the competition outcome. We get that the predator with
lower noise may win the competition. We also obtain that the two predators with the same
lowest stochastic break-even concentration will coexist under some condition.

We consider numerical simulations to illustrate the main theoretical results by using the
famous Milstein higher order method [21]. Assume that there are two predators compet-
ing for one prey in the stochastic model (1.2) and its corresponding deterministic model
(1.1).

Set

r = 0.5, r1 = 0.15, r2 = 0.1, a1 = 0.15, a2 = 0.16,

K = 0.8, b1 = 0.5, b2 = 0.3,

and with the initial value (S(0), X1(0), X2(0)) = (0.6, 0.4, 0.4).
In Fig. 1, we find that the predator X1 survives and the predator X2 will go to extinction

in the deterministic model.
In Fig. 2, we let σ0 = 0.21, σ1 = 0.8, σ2 = 0.6. We can compute that R̃1 ≈ 1.175 > 1 and R̃2 ≈

1.06 > 1. According to Theorem 3.1(i), the two predators will go to extinction eventually.
The result is supported in Fig. 2.

In Fig. 3, we choose σ0 = 0.21, σ1 = 0.2, σ2 = 0.5. We can compute that 1
r(1+K ) (r – σ 2

0
2 ) ≈

0.5065, R̃1 ≈ 0.425 < 0.5065 < R̃2 ≈ 0.703 < 1. According to Theorem 3.1(ii) and (iii), the
predator X1 will survive and the predator X2 goes to extinction eventually. The result is
supported in Fig. 3.

In Fig. 4, we choose σ0 = 0.21, σ1 = 0.5, σ2 = 0.2, 1
r(1+K ) (r – σ 2

0
2 ) ≈ 0.5065, R̃2 ≈ 0.375 <

0.5065 < R̃1 ≈ 0.6875 < 1. According to Theorem 3.1(ii) and (iii), the predator X2 will sur-
vive and the predator X1 goes to extinction eventually. The result is supported in Fig. 4.

Compared with Fig. 2, Fig. 3, and Fig. 4, we find that density of the prey may alter the
destiny of the competing predators.

Figure 1 Simulations of the path S(t), X(t), Y(t) for the corresponding deterministic system (1.1) with the initial
value (S(0),X(0),Y(0)) = (0.6, 0.4, 0.4)
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Figure 2 System (1.2) with σ0 = 0.21, σ1 = 0.8, σ2 = 0.6

Figure 3 System (1.2) with σ0 = 0.21, σ1 = 0.2, σ2 = 0.5

Figure 4 System (1.2) with σ0 = 0.21, σ1 = 0.5, σ2 = 0.2
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Figure 5 System (1.2) with σ0 = 0.5, σ1 = 0.4, σ2 = 0.5

Figure 6 System (1.2) with σ0 = 0.02, σ1 = 0.1, σ2 = 0.5

In Fig. 5, we choose σ0 = 0.5, σ1 = 0.4, σ2 = 0.5, and change r to be r = 0.1. We can com-
pute that r – σ 2

0
2 < 0. According to Theorem 3.1(iv), the prey and the two predators all will

go to extinction eventually. That is, if the noise intensity of the prey is large enough, all
species will go to extinction. The result is supported in Fig. 5.

In Fig. 6, we choose σ0 = 0.02, σ1 = 0.1, σ2 = 0.2, and change b1 to be b1 = 0.3875, b2 to
be b2 = 0.775. We can compute that bK

r (r – σ 2
0
2 ) – (r1 + σ 2

1
2 )(1 + K) ≈ 0.2018 > 0. According

to Theorem 4.1, the two predators can coexist. Figure 6 confirms it.

Appendix
Let the triple (X,�, m) be a σ -finite measure space. Denote by D the subset of the space
L1 which contains all densities, i.e.,

D =
{

f ∈ L1 : f ≥ 0,‖f ‖ = 1
}

.
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A linear mapping P : L1 → L1 is called a Markov operator if P(D) ⊂ D. The Markov
operator P is called an integral or kernel operator if there exists a measurable function
k : X × X → [0,∞) such that

∫

X
k(x, y)m(dx) = 1 (A.1)

for all y ∈ X and

Pf (x) =
∫

X
k(x, y)f (y)m(dy)

for every density f .
A family {P(t)}t≥0 of Markov operators which satisfies conditions:

(i) P(0) = Id;
(ii) P(t + s) = P(t)P(s) for s, t ≥ 0;

(iii) For each f ∈ L1, the function t → P(t)f is continuous with respect to the L1 norm,
is called a Markov semigroup. A Markov semigroup {P(t)}t≥0 is called integral if,
for each t > 0, the operator P(t) is an integral Markov operator.

A density f∗ is called invariant for each t > 0. The Markov semigroup {P(t)}t≥0 is called
asymptotically stable if there is an invariant density f∗ such that

lim
t→∞

∥
∥P(t)f – f∗

∥
∥ = 0 for f ∈ D.

A Markov semigroup {P(t)}t≥0 is called sweeping with respect to a set A ∈ � if, for every
f ∈ D,

lim
t→∞

∫

X
P(t)f (x)m(dx) = 0 for f ∈ D.

We need some result concerning asymptotic stability and sweeping which can be found
in [25].

Lemma A.1 Let X be a metric space and � be the σ -algebra of Borel sets. Let {P(t)}t≥0 be
an integral Markov semigroup with a continuous kernel k(t, x, y) for t > 0, which satisfies
(A.1) for all y ∈ X. We assume that for every f ∈ D we have

∫ ∞

0
P(t)f dt > 0 a.e.

Then this semigroup is asymptotically stable or is sweeping with respect to compact sets.

The property that a Markov semigroup {P(t)}t≥0 is asymptotically stable or sweeping for
a sufficiently large family of sets (e.g., for all compact sets) is called the Foguel alternative.
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