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Abstract
This paper discusses the existence and uniqueness of positive solutions for a periodic
boundary value problem of a fractional differential equation in an ordered Banach
space E. The existence and uniqueness results of solutions for the associated linear
periodic boundary value problem of the fractional differential equation are
established, and the norm estimation of resolvent operator is accurately obtained.
With the aid of this estimation, the existence and uniqueness results of positive
solutions are obtained by using a monotone iterative technique.
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1 Introduction
Fractional derivatives and integrals are generalizations of traditional integer-order differ-
ential and integral calculus. The history of fractional calculus reaches back to the end of
17th century, this idea has been a subject of interest not only among mathematicians but
also among physicists and engineers; see [1–17] and the references therein for more com-
ments and citations. Since fractional-order models are more accurate than integer-order
models, there is a higher degree of freedom in the fractional-order models. Furthermore,
fractional derivatives provide an excellent instrument for the description of memory and
hereditary properties of various materials and processes due to the existence of a memory
term in the model. This memory term ensures the history and its impact to the present and
future. Hence, fractional differential equations have been frequently used in economics,
bioscience [18], system control theory [19], electrochemistry [20], diffusion process [21],
signal and image processing, and so on. Recently, the monotone iterative technique in the
presence of upper and lower solutions has appeared to be an important method for seek-
ing solutions of nonlinear differential equations.

In [22], by means of the method of upper and lower solutions and the associated mono-
tone iterative, the author proved the existence and uniqueness of the solution for the initial
value problem

⎧
⎨

⎩

Dαu(t) = f (t, u(t)), t ∈ (0, T],

t1–αu(t)|t=0 = u0,
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where 0 < T < +∞, 0 < α ≤ 1 is a real number, Dα is the Riemann–Liouville fractional
derivative. In 2010, Wei, Dong and Che [23], using the method of upper and lower solu-
tions and its associated monotone iterative technique, proved the existence and unique-
ness of the solution to the periodic boundary value problem for a class of fractional differ-
ential equations in real space R.

Motivated by the aforementioned work, in this paper, we consider the existence and
uniqueness of positive solutions for the following periodic boundary value problem
(PBVP) of a nonlinear fractional differential equation in Banach space E:

⎧
⎨

⎩

Dαu(t) = f (t, u(t)), t ∈ (0,ω],

t1–αu(t)|t=0 = t1–αu(t)|t=ω,
(1.1)

where 0 < α ≤ 1 is a real number, Dα is the Riemann–Liouville fractional derivative, and
f : [0,ω] × E → E is a continuous function.

In the general case, the authors always established the upper and lower solution criteria
under the assumption that for the studied problem there exist a couple of ordered lower
and upper solutions, which is a strong assumption. The main purpose of this paper is to
obtain the existence of positive solutions for the periodic boundary value problem of a
nonlinear fractional differential equation directly from the characteristics of the nonlin-
ear term f (t, u), without assuming the existence of the upper and lower solutions. In this
paper, we first of all derive the corresponding fractional Green’s function. Then the cor-
responding linear periodic boundary value problem is reduced to an equivalent integral
equation by using the Green’s function. Finally, we derive the sufficient conditions for non-
linear function f under which for the periodic boundary value problem (1.1) there exists
a unique positive solution by using a monotone iterative technique.

2 Preliminaries
For the convenience of the reader, first we present the necessary definitions and some basic
results.

Definition 2.1 ([24]) The Riemann–Liouville fractional integral of order δ > 0 of a func-
tion u(t) is defined by

Iδ
au(t) =

1
�(δ)

∫ t

a
(t – s)δ–1u(s) ds, t > a,

provided that the right-hand side is defined pointwise, where �(·) is the gamma function.

Definition 2.2 ([24]) The Riemann–Liouville fractional derivative of order δ > 0 of a func-
tion u(t) is defined by

Dδ
au(t) =

1
�(n – δ)

(
d
dt

)n ∫ t

a
(t – s)n–δ–1u(s) ds, t > a,

where n is the smallest integer greater than or equal to δ, provided that the right-hand side
is defined pointwise. In particular, if δ = n, then Dn

au(t) = u(n)(t).
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The Mittag-Leffler function plays a similar role in fractional calculus to the exponen-
tial function in the theory of integer-order differential equation. Thus, the Mittag-Leffler
function in two parameters is defined as [25]

Eα,β (z) =
∞∑

k=0

zk

�(αk + β)
, z ∈R,α,β > 0.

Note that the series converges uniformly in R.

Lemma 2.3 ([26]) Let 0 < α ≤ 1, β ,γ > 0, M ∈R and a ∈R. Then:
(i) Eα,2α(Mtα) = M–1t–α(Eα,α(Mtα) – 1/�(α));

(ii) Iγ
a (t – a)β–1Eα,β(M(t – a)α) = (t – a)β+γ –1Eα,β+γ (M(t – a)α) for t > a;

(iii) Eα,α(Mtα) is decreasing in t for M < 0 and increasing for M > 0 for all t > 0.

Let I = [0,ω], we use C(I, E) to denote the Banach space of all continuous function on
interval I with the norm ‖u‖C = maxt∈I ‖u(t)‖. In our further consideration we utilize its
generalization, namely, C1–α(I, E) = {u ∈ C(I, E)|t1–αu(t) ∈ C(I, E), t ∈ I} equipped with the
norm ‖u‖C1–α

= ‖t1–αu(t)‖C . It is easy to verify that C1–α(I, E) is a Banach space.
Obviously, the periodic boundary value problem (1.1) is equivalent to the following:

⎧
⎨

⎩

Dαu(t) + Mu(t) = f (t, u(t)) + Mu(t), t ∈ I,

t1–αu(t)|t=0 = t1–αu(t)|t=ω,
(2.1)

where M > 0 is real number.
To prove our main results, for any h ∈ C1–α(I, E), we consider the periodic boundary

value problem (PBVP) of the linear equation in E,

⎧
⎨

⎩

Dαu(t) + Mu(t) = h(t), t ∈ I,

t1–αu(t)|t=0 = t1–αu(t)|t=ω.
(2.2)

Lemma 2.4 For any h ∈ C1–α(I, E), the linear periodic boundary value problem (2.2) has
a unique solution u ∈ C1–α(I, E) given by

u(t) =
∫ ω

0
Gα,M(s, t)h(s) ds := Ph(t), (2.3)

where the Green’s function is given by

Gα,M(s, t) =

⎧
⎨

⎩

ω1–α�(α)Eα,α (–Mtα )Eα,α (–M(ω–s)α )
(1–�(α)Eα,α (–Mωα ))(ω–s)1–α t1–α + Eα,α (–M(t–s)α )

(t–s)1–α , 0 ≤ s < t ≤ ω,
ω1–α�(α)Eα,α (–Mtα )Eα,α (–M(ω–s)α )

(1–�(α)Eα,α (–Mωα ))(ω–s)1–α t1–α , 0 < t ≤ s < ω.
(2.4)

Moreover, the operator P : C1–α(I, E) → C1–α(I, E) is a linear bounded operator.

Proof We can verify directly that the function u ∈ C1–α(I, E) defined by Eq. (2.3) is a solu-
tion of the linear periodic boundary value problem (2.2). Next, we prove that u is unique as
a solution. Assume that u1, u2 ∈ C1–α(I, E) are two solutions of the linear periodic bound-
ary value problem (2.2). From (2.3) one can easily see that u1(t) = u2(t) on I . Hence, the
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linear periodic boundary value problem (2.2) has a unique solution u(t) given by (2.3).
Obviously, P : C1–α(I, E) → C1–α(I, E) is a linear bounded operator. �

Remark 2.5 In Lemma 2.4, for all t ∈ (0,ω], s ∈ [0,ω), and for M > 0, we have Gα,M(s, t) > 0.
Hence, for any h ∈ C+

1–α(I, E), periodic resolvent operator P : C1–α(I, E) → C1–α(I, E) is pos-
itive linear operator.

Lemma 2.6 Let 0 < α ≤ 1 and M > 0, then the Green’s function (2.4) satisfies

t1–α

∫ ω

0
Gα,M(s, t)sα–1 ds =

1
M

, t, s ∈ [0,ω].

Proof Employing the results of Lemma 2.3, we have

t1–α

∫ ω

0
Gα,M(s, t)sα–1 ds =

∫ ω

0

ω1–α�(α)Eα,α(–Mtα)Eα,α(–M(ω – s)α)
(1 – �(α)Eα,α(–Mωα))(ω – s)1–α

sα–1 ds

+ t1–α

∫ t

0

Eα,α(–M(t – s)α)
(t – s)1–α

sα–1 ds

=
ω1–α�(α)Eα,α(–Mtα)
1 – �(α)Eα,α(–Mωα)

∫ ω

0

Eα,α(–M(ω – s)α)
(ω – s)1–α

sα–1 ds

+ t1–α

∫ t

0

Eα,α(–M(t – s)α)
(t – s)1–α

sα–1 ds

=
ω1–α�(α)2Eα,α(–Mtα)
1 – �(α)Eα,α(–Mωα)

(
Iα

0 tα–1Eα,α
(
–Mtα

))|t=ω

+ �(α)t1–α
(
Iα

0 tα–1Eα,α
(
–Mtα

))

=
–�(α)2Eα,α(–Mtα)

M(1 – �(α)Eα,α(–Mωα))

(

Eα,α
(
–Mωα

)
–

1
�(α)

)

–
�(α)(Eα,α(–Mtα) – 1

�(α) )
M

=
1
M

.

This concludes the proof. �

Lemma 2.7 For any h ∈ C1–α(I, E), the norm of the solution operator P satisfies

‖P‖C1–α
≤ 1

M
. (2.5)

Proof For any h ∈ C1–α(I, E), due to the definition of the operator P and Lemma 2.6, we
get

∥
∥t1–αPh(t)

∥
∥ =

∥
∥
∥
∥t1–α

∫ ω

0
Gα,M(s, t)h(s) ds

∥
∥
∥
∥

=
∥
∥
∥
∥t1–α

∫ ω

0
Gα,M(s, t)sα–1s1–αh(s) ds

∥
∥
∥
∥

≤ t1–α

∫ ω

0
Gα,M(s, t)sα–1∥∥s1–αh(s)

∥
∥ds
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≤ t1–α

∫ ω

0
Gα,M(s, t)sα–1 ds‖h‖C1–α

=
1
M

‖h‖C1–α
,

which means that ‖Ph‖C1–α
≤ 1

M ‖h‖C1–α
. Hence ‖P‖C1–α

≤ 1
M , namely (2.5) holds. �

3 Main results
Theorem 3.1 Let E be an ordered Banach space, whose positive cone K is normal, let f : I ×
E → E be a continuous mapping which is ω-periodic in t, and for any t ∈ I , and f (t, θ ) ≥ θ .
Suppose that the following conditions are satisfied:

(H1) There exists a constant M > 0, such that θ ≤ x1 ≤ x2, we have

f (t, x2) – f (t, x1) ≥ –M(x2 – x1), t ∈ I.

(H2) There exists a constant 0 < L < M, such that θ ≤ x1 ≤ x2, we have

f (t, x2) – f (t, x1) ≤ –L(x2 – x1), t ∈ I.

Then the periodic boundary value problem (1.1) has a unique positive solution.

Proof Let the positive cone K be a normal with normal constant N in E; evidently, the
closed convex of cone KC in C1–α(I, E) is deduced by cone K , namely

KC =
{

u ∈ C1–α(I, E) : u(t) ∈ K , t ∈ I
}

,

then KC is also normal with the same normal constant N . Hence, C1–α(I, E) is an order
Banach space with the semi-order reduced by the normal cone KC . In the following, E
comes with partial order ≤.

Denote h0(t) = f (t, θ ), then h0 ≥ θ and h0 ∈ C1–α(I, E), we consider the existence of solu-
tion for the linear periodic boundary value problem

⎧
⎨

⎩

Dαu(t) + Lu(t) = h0(t), t ∈ I,

t1–αu(t)|t=0 = t1–αu(t)|t=ω.
(3.1)

By Lemma 2.4, for h0 ∈ C1–α(I, E), we find that the linear periodic boundary value problem
(3.1) has a unique solution ω0 ∈ C1–α(I, E) with ω0 ≥ θ .

We reconsider the linear periodic boundary value problem (2.2). By Lemma 2.4, for
h ∈ C1–α(I, E), we see that the linear periodic boundary value problem (2.2) has a unique
solution u = Ph, and P : C1–α(I, E) → C1–α(I, E) is a positive linear boundary operator with
‖P‖ ≤ 1

M .
Set F(u) = f (t, u) + Mu, then F : C1–α(I, E) → C1–α(I, E) is a continuous mapping, and

F(θ ) = h0 ≥ θ . We defined an order interval [θ ,ω0] in C1–α(I, E), by condition (H1), we
see that F is restricted: it is an increasing operator on [θ ,ω0]. Setting υ0 = θ , we make the
iterative scheme

υn = P ◦ F(υn–1), ωn = P ◦ F(ωn–1), n = 1, 2, . . . . (3.2)
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Since ω0 is a solution of problem (3.1), we add Mω0 – Lω0 on both sides of Eq. (3.1), thus,
we see that ω0 is also the corresponding solution of (2.2), when h = h0 +Mω0 –Lω0, namely

ω0 = P(h0 – Lω0 + Mω0). (3.3)

In condition (H2), setting x1 = θ , x2 = ω0(t), we have

f
(
t,ω0(t)

) ≤ h0(t) – Lω0(t),

adding both sides of this inequality by Mω0, we can obtain

θ ≤ F(θ ) ≤ F(ω0) ≤ h0 – Lω0 + Mω0. (3.4)

Acting on (3.4) by P, combining this with the positivity of P and (3.3), we have

θ = υ0 ≤ υ1 ≤ ω1 ≤ ω0.

Since P ◦ F is an increasing operator on [θ ,ω0], repeated acting to this inequality by P ◦ F
means that

θ ≤ υ1 ≤ υ2 ≤ · · · ≤ υn ≤ · · · ≤ ωn ≤ · · · ≤ ω2 ≤ ω1 ≤ ω0, (3.5)

so we have

θ ≤ ωn – υn = P
(
F(ωn–1) – F(υn–1)

)

= P
(
f (·,ωn–1) – f (·,υn–1) + M(ωn–1 – υn–1)

)

≤ P
(
(M – L)(ωn–1 – υn–1)

)

= (M – L)P(ωn–1 – υn–1).

Using the recursive approach, it follows that

θ ≤ ωn – υn ≤ (M – L)nPn(ω0 – υ0) = (M – L)nPn(ω0),

by this and the normality of the cone KC , we conclude that

‖ωn – υn‖C1–α
≤ N

∥
∥(M – L)nPn(ω0)

∥
∥

C1–α

≤ N(M – L)n∥∥Pn∥∥
C1–α

‖ω0‖C1–α
. (3.6)

On the other hand, since 0 < M – L < M, choose ε > 0, such that M – L + ε < M. By (2.5),
there exists N0 ∈N, such that, for n ≥ N0,

‖P‖n
C1–α

≤
(

1
M – L + ε

)n

.
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Hence, for n ≥ N0, from (3.6) it follows that

‖ωn – υn‖C1–α
≤ N(M – L)n‖P‖n

C1–α
‖ω0‖C1–α

= N‖ω0‖C1–α

(
(M – L)‖P‖C1–α

)n

≤ N‖ω0‖C1–α

(
M – L

M – L + ε

)n

→ 0 as n → ∞. (3.7)

By (3.5) and the above inequality, combining this with the principle of nested intervals, we
can obtain the existence of a unique solution, u∗ ∈ ⋂∞

n=0[υn,ωn], such that

lim
n→∞υn = lim

n→∞ωn = u∗,

consequently, letting n → ∞ in (3.2), we see that u∗ = P ◦ F(u∗). By the definition of P, it
is easy to see that u∗ is the corresponding solution of the linear periodic boundary value
problem (2.2), when h(t) = f (t, u∗(t)) + Mu∗(t), and therefore, it is a positive solution of the
periodic boundary value problem (1.1).

Next, we prove the uniqueness. Let u1, u2 be two arbitrary positive solutions of the
PBVPs (1.1). Let P and F is the operator of the M corresponding in the above existence
argumentation, then the operator F is order increasing on [θ , ui] (i = 1, 2) of the order inter-
val. In the iterative scheme of (3.2), the initial element ω0 is replaced by ui, and we repeat
the above argumentation process. Since P ◦ F(ui) = ui, we have ui = ωn. By (3.7), letting
n → ∞, we obtain ‖ui – υn‖C1–α

→ 0, which means that u1 = u2 = limn→∞ υn. Therefore,
PBVP (1.1) has a unique positive solution. �
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