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Abstract
In this paper, we discuss the dissipativity and stabilization problems via matrix
measure strategy. First, we propose a way to construct complex-valued set-valued
maps and give the basic framework of complex-valued differential inclusions. In
addition, based on matrix measure strategy and the generalized Halanay inequality,
we analyze the dissipativity of the addressed discontinuous complex-valued neural
networks by using two different ways. Furthermore, we design a set of controllers to
guarantee the exponential stability of the studied networks. The main contribution of
this paper is an extension of the dissipativity results of traditional neural networks to
discontinuous ones. Finally, we give numerical examples to substantiate the merits of
the obtained results.
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1 Introduction
During the past ten years, numerous papers were published to present some results on
dynamics of complex-valued systems due to their wide applications in imaging process-
ing, speech synthesis, data fusion, and dynamical programming [1–5]. Many advantages
of complex-valued networks, such as powerful new capabilities and computing, have been
shown in [6]. The first advantage is that complex-valued neural networks can significantly
improve the generalization capabilities. For example, the authors proposed a simple struc-
ture of complex-valued neural networks, which can efficiently deal with several nonlinear
data separation problems at a high symbol rate. In fact, a complex-valued neural network
can learn and estimate the rotation and scaling in the two-dimensional space. There-
fore there exist several storage models for complex-valued neural networks at the same
time [7]. Though there are many good properties of complex-valued neural networks, it
is difficult to design the activation functions. As we know, we usually choose a differential
and the bounded function as an activation function in a traditional neural network. How-
ever, every analytic and bounded function in the complex plane is constant [8]. Therefore,
as a weaker choice, plenty of continuous nonanalytic functions and discontinuous func-
tions become important candidates in designing complex-valued neural networks.
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In the past five years, many results on dynamics, including the existence and stability
of equilibria and bifurcation analysis, of continuous complex-valued networks have been
obtained [9–23]. However, all these mentioned results were obtained under the hypothe-
sis of Lipschitz continuity. In fact, as shown by Hopfield [24, 25], the discontinuity is very
common in mathematical models in many applied fields. In the following years, some dy-
namical behaviors, such as stability and periodic solutions, of discontinuous real-valued
systems were extensively studied [26–34] via differential inclusion theory. In recent years,
a small quantity of dynamical results, including multi-stability and μ-stability, have been
obtained for piecewise continuous complex-valued neural networks (CVNNs) [35–38].
However, all these results did not consider the problem that the equilibria happen to fall
on the boundaries of the discontinuous functions. Based on our knowledge, there is almost
no result on dynamics of complex-valued networks with general discontinuous right-side
functions. Since differential inclusion theory is an efficient way to deal with discontinuous
problems, to discuss discontinuous complex-valued differential problems, we need to pro-
pose a framework of complex-valued differential inclusion theory correspondingly. This
is the first motivation of this paper.

It is known that an important issue of dynamics of a neural network is dissipativity be-
cause of its wide applications in stability theory and control theory [39–45]. Compared
with the definition of Lyapunov stability, the notion of dissipativity is more general be-
cause the dissipativity analysis is aimed at an attractive set. As we know, we only need to
analyze the dynamics of attractive set since it contains an equilibrium point, periodic solu-
tion, or chaos attractor [46–52]. Dissipativity theory also provides a fundamental frame-
work to study control problems of neural networks. The notion of stabilization is that
controllers can be added to neural networks to guarantee the stability of equilibria even
though the original neural network has no equilibrium point or unstable one. During the
past decades, numerous results on dissipativity analysis of real-valued systems, such as
switching systems, fuzzy neural networks, digital filters, and discontinuous neural net-
works, have been obtained [33, 47–52]. For example, the dissipativity of switching systems
and fuzzy neural networks are obtained by Shi [51], respectively. Moreover, the authors
of [51] extend the dissipativity results to digital filters systems. Recently, the dissipativ-
ity analysis of complex-valued networks of fractional order was studied in [53]. However,
according to what we know, the issue of dissipativity analysis and stabilization of discon-
tinuous delayed complex-valued networks are not yet considered.

To study the dynamic behavior of CVNNs, many methods were proposed, such as the
complex-valued Lyapunov function method and the synthesis method [11, 16, 17, 54, 55].
In [54] and [55], the author studied the stability of CVNNs via synthesis method. How-
ever, this method usually is used to analyze discrete models. Later, the direct Lyapunov
function method is used to study the stability of CVNNs [11, 16, 17]. However, all these
methods are difficult to deal with discontinuous CVNNs since no proper theoretical tools
can be used to deal with complex-valued Lyapunov functions. In recent years, the matrix
measure method is widely used to study the stability of neural networks in [33, 56–58].
Since a matrix measure can be negative definite, which leads to less restrictive than matrix
norm in handling matrix inequalities. Moreover, as we know, it is difficult to give a candi-
date function of discontinuous neural networks with multi-variable activation functions.
The Lyapunov function is not necessary to construct by using a matrix measure strategy.
For example, in [57], the authors studied the exponential stability of complex-valued net-
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works with continuous function. In [58], the exponential stability of nonlinear continuous
complex-valued differential equations is studied via the matrix measure method. How-
ever, as far as we know, there are no dynamical results on discontinuous CVNNs via the
matrix measure method. Moreover, separating a CVNN into real ones and direct analysis
are two different strategies to deal with complex-valued problems. For example, these two
methods are used to study the stability of complex-valued delayed neural networks in [9]
and [11], respectively. Thus, what is the difference of the obtained results if we study the
same dynamical behavior of CVNNs by these two strategies? This is the second motivation
of this paper.

Based on the matrix measure theory, we discuss the dissipativity and stabilization of dis-
continuous delayed CVNNs by using the mentioned different strategies. Compared with
the existing results, the most great improvement is removing the hypothesis of Lipschitz
continuity of the activation function. We list the main contributions of this paper:

(1) We give an appropriate solution definition for a delayed complex-valued differential
equation with discontinuous right-side by extending the real-valued functional
differential inclusion theory.

(2) We propose a sufficient condition to ensure the global dissipativity of discontinuous
complex-valued networks by using a complex-valued matrix measure.

(3) By separating the real and imaginary parts of discontinuous neural networks, we
present a sufficient condition to realize global dissipativity by using the matrix
measure method. This result is more general than the existing dissipativity results
on real-valued neural networks.

(4) We design state-dependent controllers with switching term to guarantee the
exponential stability of the equilibria of the studied network model.

2 Neural network model and some preliminaries
The discontinuous delayed complex-valued network model is given as follows:

ẇ(t) = –Dw(t) + Ah
(
w(t)

)
+ Bh

(
w(t – τ )

)
+ J , (2.1)

where w(t) = [w1(t), w2(t), . . . , wn(t)]T ∈C
n denotes the state vector, D = diag{d1, d2, . . . , dn}

is a self-inhibition matrix with di > 0, A ∈C
n×n and B ∈C

n×n show the connection weight
matrices at times t and t – τ , respectively, h(w(t)) = [h1(w1(t)), h2(w2(t)), . . . , hn(wn(t))]T ∈
C

n denotes the complex-valued vector activation function, and J = [J1, J2, . . . , Jn]T ∈ C
n is

an input vector.
To further study the dynamics, we make the following two hypotheses on the function

hi(wi).
A(1) For k = 1, 2, . . . , s, hi(wi) is continuous in finitely many open domains Ei

k and discon-
tinuous at ∂Ei

k ; Ei
k satisfies

⋃s
k=1(Ei

k ∪ ∂Ei
k) = C and Ei

l ∩ Ei
k = ∅ for 1 ≤ l �= k ≤ s. Moreover,

the limit hik(w0) = limw→w0,w∈Ei
k

hi(w) exists for all w0 ∈ ∂Ei
k .

A(2) There are two constants αi ≥ 0 and βi ≥ 0 such that

sup
γi∈K [hi(wi)]

‖γi‖ ≤ αi‖wi‖ + βi, (2.2)

where K[hi(wi)] = {∑s
k=1 αkhik(wi)|αk ≥ 0,

∑s
k=1 αk = 1} for wi ∈ ∂Ei and K[hi(wi(t))] =

hi(wi) for wi ∈ Ei, where ∂Ei =
⋃s

k=1 ∂Ei
k and Ei =

⋃s
k=1 Ei

k .
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Remark 1 Frankly speaking, A(2) is an extension of the Lipschitz continuity condition,
which is required in many papers [9, 15, 58]. In general, the constant βi �= 0 in A(2) because
of the discontinuity of the functions hi. Here, we extend the neuron activation functions
of system (2.1) to be discontinuous.

Since system (2.1) is a discontinuous network model, the classic theory of differential
equations is out of work. Therefore one of the most important problems is giving an ap-
propriate definition of a solution for a discontinuous system.

Consider the complex-valued differential equation

ẇ(t) = h
(
t, wt(θ )

)
(2.3)

with the historical state wt(θ ) = w(t +θ ), where τ is a given positive number, h : R×C �→C
n

is essentially locally bounded and measurable, where C is the space of continuous func-
tions from [–τ , 0] to C

n. Of course, h(t, wt(θ )) may be discontinuous with respect to wt(θ ).
Since h(t, wt(θ )) is a discontinuous function, we explain the definition of a solution for

discontinuous differential equation (2.3). To give a definition of a solution for system (2.3),
we introduce the following set-valued mapping definition.

Definition 2.1 For any w ∈ E ⊆C
n, if there exists a nonempty set H(w) ∈C

n correspond-
ing to w, then w �→ H(w) is called a set-valued map. Furthermore, if for any v0 ∈ E and any
open set N containing H(w0), there exists a neighborhood M of w0 such that H(M) ⊂ N ,
where H(M) =

⋃
y∈M H(y), then the set-valued map H with nonempty values is upper

semicontinuous at w0.

Definition 2.2 For discontinuous system (2.3), we define

H(t, wt) =
⋂

δ>0

⋂

μ(N)=0

K
[
h
(
t, B(wt , δ)\N)]

,

where K(·) denotes the convex closure, B(wt , δ) = {w∗
t ∈ C|‖w∗

t – wt‖ ≤ δ}, and μ is the
Lebesgue measure.

Definition 2.3 A complex-valued function w(t) : I �→ C
n is a solution of system (2.3) if it

is absolutely continuous on [t1, t2] ⊆ I and satisfies ẇ(t) ∈ H(t, wt(θ )) for almost all t ∈ I .

In the following, by taking advantage of the above definitions of differential inclusion, we
introduce the following definitions of a solution to a discontinuous complex-valued neural
network of system (2.1). Before doing this, we first introduce the definition of absolute
continuity and measurability of set-valued map.

Definition 2.4 A function w(t) : [a, b] �→ C is absolutely continuous if for any positive
number ε > 0, there exists δ > 0 such that

∑n
i=1 ‖w(bi) – w(ai)‖ < ε for any (ai, bi) ⊆ [a, b]

satisfying
∑n

i=1(bi – ai) < δ.

Definition 2.5 A complex set-valued map H : [a, b] → C
n is measurable if the nonnega-

tive function t �→ dist(w, H(t)) = inf{‖w – u‖, u ∈ H(t)} is measurable for any w ∈ C
n.
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Definition 2.6 A complex-valued function w(t) defined on [–τ , T) is a solution of system
(2.1) on [–τ , T) if

(i) w(t) is continuous on [–τ , T) and absolutely continuous on any compact subinterval
of [0, T), and

(ii) for almost all t ∈ [0, T), w(t) satisfies

ẇ(t) ∈ –Dw(t) + AK
[
h
(
w(t)

)]
+ BK

[
h
(
w(t – τ )

)]
+ J � H(t, wt). (2.4)

It is easy to verify that the differential inclusion H(t, wt) is nonempty and compact con-
vex. Moreover, H(t, wt) is upper semicontinuous and measurable in the sense of Defini-
tion 2.5. According to the measurable selection theorem in [59], there is a bounded mea-
surable function γ = [γ1,γ2, . . . ,γn]T satisfying

ẇ = –Dw + Aγ + Bγτ + J (2.5)

for a.e. t ≥ 0, where γi ∈ K[hi(wi] and γτ = γ (t – τ ). By Definition 2.6, w is a solution of
system (2.1), and γ is an output solution corresponding to w.

In the following, we mainly consider the global dissipativity of discontinuous complex-
valued networks (2.1) via the matrix measure method. Before doing so, let us give the
definition of global dissipativity and matrix measure.

Definition 2.7 The network model (2.1) is globally dissipative if for any initial val-
ued (t0, w0), we can find a compact set S ∈ C

n and T(w0) such that the state solution
w(t, t0, w0) ∈ S for t > t0 + T(w0). Furthermore, if w(t, t0, w0) ∈ S for all w0 ∈ S and t > T ,
then the set S is a forward invariant.

Definition 2.8 ([33, 58]) The matrix measure corresponding to a given matrix norm
‖A‖P is defined as

μP (A) = lim
�t→0+

‖I + �tA‖P – 1
�t

, (2.6)

where I is the identity matrix.

We now introduce an important lemma named generalized Halanay inequalities, which
will be used later.

Lemma 2.9 ([60]) For any nonnegative function W (t) defined on (–∞, +∞), if there exist
three continuous functions r(t) ≥ 0, q(t) ≥ 0, p(t) ≤ 0 and a positive number σ such that

D+W (t) ≤ r(t) + p(t)W (t) + q(t) sup
t–τ≤s≤t

W (s), t ≥ t0.

and

q(t) + p(t) ≤ –σ
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for t ≥ t0, then we have

W (t) ≤ r∗

σ
+

(
sup

–∞≤s≤t0
W (s) –

r∗

σ

)
e–μ∗(t–t0),

where r∗ = supt0≤s≤+∞ r(t), μ∗ = inft≥t0{μ(t) + p(t) + q(t)eμ(t)τ } and D+W (t) =
lim�t→0+ W (t+�t)–W (t)

�t .

3 Global dissipativity analysis
Theorem 3.1 If the discontinuous functions of system (2.1) satisfy hypotheses A(1)–A(2),
then for any initial values, there exists at least one solution w(t) defined on [0, +∞).

Proof According to our discussion, the complex-valued map w(t) �→ H(t, wt) is upper
semicontinuous, and H(t, wt) is nonempty compact convex. By analysis similar to that in
[61, Thm. 1, p. 77] the local solution w(t) of (2.4) can be guaranteed.

From formula (2.2) we obtain that there exist two nonnegative constants ᾱ and β̄ such
that

∥∥K
[
h
(
w(t)

)]‖∥∥ ≤ ᾱ
∥∥w(t)

∥∥ + β̄ . (3.1)

It follows that

∥∥H(t, wt)
∥∥ =

∥∥–Dw(t) + AK
[
h
(
w(t)

)]
+ BK

[
h
(
w(t – τ )

)]
+ J

∥∥

≤ ‖D‖∥∥w(t)
∥∥ + ‖A‖(ᾱ∥∥w(t)

∥∥ + β̄
)

+ ‖B‖(ᾱ∥∥w(t – τ )
∥∥ + β̄

)
+ ‖J‖

=
(‖D‖ + ᾱ‖A‖)∥∥w(t)

∥
∥ + ᾱ‖B‖∥∥w(t – τ )

∥
∥ +

(
β̄
(‖A‖ + ‖B‖) + ‖J‖)

= ¯̄α∥
∥w(t)

∥
∥ + ¯̄β∥

∥w(t – τ )
∥
∥ + ¯̄η,

where ¯̄α = ‖D‖ + ᾱ‖A‖, ¯̄β = ᾱ‖B‖, and ¯̄η = β̄(‖A‖ + ‖B‖) + ‖J‖.
According to (2.4), for fixed t, we obtain

w(t) ∈ w(0) +
∫ t

0
H(s, ws) ds.

It follows that

∥
∥w(t)

∥
∥ ≤ sup

s∈[–τ ,0]

∥
∥w(s)

∥
∥ +

∫ t

0

∥
∥H(s, ws)

∥
∥ds

≤
(

sup
s∈[–τ ,0]

∥∥w(s)
∥∥ + ¯̄ηt

)
+ ¯̄h

∫ t

0

(∥∥w(s)
∥∥ +

∥∥w(s – τ )
∥∥)

ds,

where ¯̄h = max{ ¯̄α, ¯̄β}. Since

w(t – τ ) ∈ w(0) +
∫ t–τ

0
H(s, ws) ds,

we obtain

∥∥w(t – τ )
∥∥ ≤

(
sup

s∈[–τ ,0]

∥∥w(s)
∥∥ + ¯̄ηt

)
+ ¯̄h

∫ t

0

(∥∥w(s)
∥∥ +

∥∥w(s – τ )
∥∥)

ds.
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From our analysis and the Gronwall inequality we have

∥
∥w(t)

∥
∥ ≤ ∥

∥w(t)
∥
∥ +

∥
∥w(t – τ )

∥
∥ ≤

(
2 sup

s∈[–τ ,0]

∥
∥w(s)

∥
∥ + 2 ¯̄ηt

)
e2 ¯̄ht .

According to the continuation theorem [61], w(t) is defined on [0, +∞) and satisfies

ẇ(t) ∈ –Dw(t) + AK
[
h
(
w(s)

)]
+ BK

[
h
(
w(t – τ )

)]
+ J .

In the following, we consider the global dissipativity of discontinuous CVNNs (2.1) via
the matrix measure method. �

Theorem 3.2 If the discontinuous functions of system (2.1) satisfy hypotheses A(1)–A(2)
and there exists μP (·) satisfying

μP (–D) + ‖A‖P‖α‖P + ‖B‖P‖α‖P ≤ –σ < 0, (3.2)

where α = diag(α1,α2, . . . ,αn), then system (2.1) is globally dissipative. Moreover, for any
sufficiently small number ε > 0,

S =
{

v ∈ C
n : ‖z‖P ≤ r

σ
+ ε

}

is a globally positive attractive invariant set, where r = (‖A‖P + ‖B‖P )‖β‖P + ‖J‖P and
β = diag(β1,β2, . . . ,βn).

Proof We choose the positive radially unbounded function W (t) in Lemma 2.9 to be
‖w‖P . Calculating D+W (t) along the trajectory of (2.5), we have

D+W (t) = lim
�t→0+

‖w(t + �t)‖P – ‖w(t)‖P
�t

= lim
�t→0+

‖w + �tẇ + o(�t)‖P – ‖w‖P
�t

= lim
�t→0+

‖w + �t[–Dw + Aγ + Bγτ + J] + o(�t)‖P – ‖w‖P
�t

≤ lim
h→0+

‖w + �t(–D)w‖P – ‖w‖P
�t

+ ‖Aγ ‖P + ‖Bγτ‖P + ‖J‖P

≤ lim
h→0+

‖I + �t(–D)‖P – 1
�t

‖w‖P + ‖Aγ ‖P + ‖Bγτ‖P + ‖J‖P

≤ μP (–D)‖w‖P + ‖A‖P
(‖α‖P‖w‖P + ‖β‖P

)

+ ‖B‖P
(‖α‖P‖wτ‖P + ‖β‖P

)
+ ‖J‖P

≤ (
μP (–D) + ‖A‖P‖α‖P

)‖w‖P + ‖B‖P‖α‖P‖wτ‖P
+

(‖A‖P + ‖B‖P
)‖β‖P + ‖J‖P .
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Let p = μP (–D) + ‖A‖P‖α‖P , q = ‖B‖P‖α‖P , and r = (‖A‖P + ‖B‖P )‖β‖P + ‖J‖P . Then
by Lemma 2.9 and inequality (3.2) we obtain

‖w‖P = W (t) ≤ r
σ

+
(

sup
–∞≤s≤0

W (s) –
r
σ

)
e–μ∗t ,

where μ∗ is the solution of the equation μ + p + qeμτ = 0. Thus, for any sufficiently small
ε > 0, there exists T > 0 such that

‖w‖P ≤ r
σ

+ ε, ∀t > T . (3.3)
�

Remark 2 In [58], the exponential stability on continuous complex-valued differential
equations is studied by using the matrix measure method. However, there are almost no
results on the dynamics of a discontinuous complex-valued network model via matrix
measure method.

Suppose w∗ is an equilibrium of system (2.1) with continuous function, that is, βi = 0
in formula (2.2). We obtain the following corollary, which is an extensional result of [57]
and [58].

Corollary 3.3 The continuous complex-valued system (2.1) is globally exponentially stable
if there is μP (·) such that

μP (–D) + ‖A‖P‖α‖P + ‖B‖P‖α‖P ≤ –σ < 0, (3.4)

where α = diag(α1,α2, . . . ,αn).

In the following, we study the global dissipativity of system (2.1) by transforming it into
the corresponding real-valued system. Let w = u + iv, A = AR + iAI , B = BR + iBI , h(w) =
hR(u, v) + ihI(u, v), γ (t) = γ R + iγ I , and J = JR + iJI . Then system (2.1) and system (2.5) can
be transformed to

⎧
⎨

⎩
u̇ = –Du + ARhR(u, v) – AIhI(u, v) + BRhR(uτ , vτ ) – BIhI(uτ , vτ ) + JR,

v̇ = –Dv + AIhR(u, v) + ARhI(u, v) + BIhR(uτ , vτ ) + ARhI(uτ , vτ ) + JI ,
(3.5)

and

⎧
⎨

⎩
u̇ = –Du + ARγ R – AIγ I + BRγ R

τ – BIγ I
τ + JR,

v̇ = –Dv + AIγ R + ARγ I + BIγ R
τ + BRγ I

τ + JI ,
(3.6)

respectively, where the functions hR(u, v) and hI(u, v) are discontinuous in R2n.
From assumption A(1) we obtain that hR

i (u, v) and hI
i (u, v) are continuous at Ek and dis-

continuous at ∂Ek ; Ek ∩ El = ∅ for k �= l, and
⋃s

k=1(Ek ∪ ∂Ek) = R
2. Furthermore, the lim-

its lim(u,v)→(u0,v0) hR
i (u, v) = hkR

i (u0, v0) and lim(u,v)→(u0,v0) hI
i (u, v) = hkI

i (u0, v0) exist, where
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(u, v) ∈ Ek and (u0, v0) ∈ ∂Ek . According to A(2), there exist αR
i ,βR

i ,ηR
i , αI

i ,β I
i , and ηI

i such
that

∣
∣γ R

i
∣
∣ ≤ αR

i |ui| + βR
i |vi| + ηR

i ,
∣
∣γ I

i
∣
∣ ≤ αI

i |ui| + β I
i |vi| + ηI

i . (3.7)

Remark 3 By our analysis, assumption A(2) is more general than assumptions in many
papers; see, for example, [9, 14]. In fact, a discontinuous activation function becomes a
possible choice in mathematical model of describing complex-valued network problems
because of Liouville’s theorem [8]. Differently from many papers, such as [11, 13, 15, 17,
19], since hR

i and hI
i are discontinuous activation functions, it is obvious that ∂hR(u, v)/∂u,

∂hR(u, v)/∂v, ∂hI(u, v)/∂u and ∂hI(u, v)/∂v, may not exist.

Remark 4 It is obvious that gR
i and gI

i are bivariate functions and the definitions of differ-
ential inclusions in the previous literature are not valid; see [30–34, 60, 62]. Fortunately,
the defined differential inclusions with bivariate functions under assumptions A(1)–A(2)
is an extension of the case of single-variable functions.

Remark 5 According our analysis, we know that the bivariate functions hR
i and hI

i are non-
monotone in variables x and y, which are allowed to be unbounded. Therefore, the neuron
activation functions hR

i and hI
i are more general than the functions in the existing results,

such as [28, 30, 33, 34, 60, 62].

Theorem 3.4 If the discontinuous functions satisfy hypotheses A(1) and A(2) and there is
a matrix measure μP (·) satisfying

μP (–D) + ‖Ā‖P max
{‖α‖P ,‖β‖P

}
+ ‖B̄‖P max

{‖α‖P ,‖β‖P
} ≤ –σ < 0, (3.8)

where r = (‖Ā‖P + ‖B̄‖P )‖η‖P + ‖J̄‖P , ‖Ā‖P = ‖AR‖P + ‖AI‖P , ‖B̄‖P = ‖BR‖P + ‖BI‖P ,
and ‖J̄‖P = ‖JR‖P + ‖JI‖P , then the network model (2.1) is globally dissipative. Further-
more, for any sufficient small positive number ε,

S =
{

w ∈C
n :

∥∥Re(w)
∥∥
P +

∥∥Im(w)
∥∥
P ≤ r

σ
+ ε

}

is a globally attractive positive invariant set.

Proof We consider the auxiliary function W (t) = ‖u‖P + ‖u‖P . Calculating D+W (t) along
the trajectory of system (3.6), we have

D+W (t) = lim
�t→0+

‖u(t + �t)‖P – ‖u(t)‖P
�t

+ lim
�t→0+

‖v(t + �t)‖P – ‖v(t)‖P
�t

≤ lim
�t→0+

‖u + �t(–D)u‖P – ‖u‖P
�t

+
∥∥ARγ R∥∥

P +
∥∥AIγ I∥∥

P

+
∥
∥BRγ R

τ

∥
∥
P +

∥
∥BIγ I

τ

∥
∥
P +

∥
∥JR∥

∥
P + lim

�t→0+

‖v + �t(–D)v‖P – ‖v‖P
�t

+
∥∥AIγ R∥∥

P +
∥∥ARγ I∥∥

P +
∥∥BIγ R

τ

∥∥
P +

∥∥BRγ I
τ

∥∥
P +

∥∥JI∥∥
P
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≤ lim
�t→0+

‖I + �t(–D)‖P – 1
�t

‖u‖P +
∥∥ARγ R∥∥

P +
∥∥AIγ I∥∥

P

+
∥
∥BRγ R

τ

∥
∥
P +

∥
∥BIγ I

τ

∥
∥
P +

∥
∥JR∥

∥
P

+ lim
�t→0+

‖I + �t(–D)‖P – 1
�t

‖v‖P +
∥
∥AIγ R∥

∥
P +

∥
∥ARγ I∥∥

P +
∥
∥BIγ R

τ

∥
∥
P

+
∥
∥BRγ I

τ

∥
∥
P +

∥
∥JI∥∥

P

≤ μP (–D)‖u‖P +
∥
∥AR∥

∥
P

(∥∥αR∥
∥
P‖u‖P +

∥
∥βR∥

∥
P‖v‖P +

∥
∥ηR∥

∥
P

)

+
∥∥AI∥∥

P
(∥∥αI∥∥

P‖u‖P +
∥∥β I∥∥

P‖v‖P +
∥∥ηI∥∥

P
)

+
∥
∥BR∥

∥
P

(∥∥αR∥
∥
P‖uτ‖P +

∥
∥βR∥

∥
P‖vτ‖P +

∥
∥ηR∥

∥
P

)

+
∥∥BI∥∥

P
(∥∥αI∥∥

P‖uτ‖P +
∥∥β I∥∥

P‖vτ‖P +
∥∥ηI∥∥

P
)

+
∥∥JR∥∥

P + μP (–D)‖v‖P
+

∥
∥AI∥∥

P
(∥∥αR∥

∥
P‖u‖P +

∥
∥βR∥

∥
P‖v‖P +

∥
∥ηR∥

∥
P

)

+
∥∥AR∥∥

P
(∥∥αI∥∥

P‖u‖P +
∥∥β I∥∥

P‖v‖P +
∥∥ηI∥∥

P
)

+
∥
∥BI∥∥

P
(∥∥αR∥

∥
P‖uτ‖P +

∥
∥βR∥

∥
P‖vτ‖P +

∥
∥ηR∥

∥
P

)

+
∥∥BR∥∥

P
(∥∥αI∥∥

P‖uτ‖P +
∥∥β I∥∥

P‖vτ‖P +
∥∥ηR∥∥

P
)

+
∥∥JI∥∥

P

≤ μP (–D)
(‖u‖P + ‖v‖P

)
+

(∥∥AR∥
∥
P +

∥
∥AI∥∥

P
)(∥∥αR∥

∥
P +

∥
∥αI∥∥

P
)∥∥x(t)

∥
∥
P

+
(∥∥AR∥∥

P +
∥∥AI∥∥

P
)(∥∥βR∥∥

P +
∥∥β I∥∥

P
)‖v‖P +

(∥∥BR∥∥
P

+
∥
∥BI∥∥

P
)(∥∥αR∥

∥
P +

∥
∥αI∥∥

P
)‖uτ‖P

+
(∥∥BR∥∥

P +
∥∥BI∥∥

P
)(∥∥βR∥∥

P +
∥∥β I∥∥

P
)‖vτ‖P

+
(∥∥AR∥∥

P +
∥∥AI∥∥

P +
∥∥BR∥∥

P +
∥∥BI∥∥

P
)(∥∥ηR∥∥

P +
∥∥ηI∥∥

P
)

+
∥∥JR∥∥

P +
∥∥JI∥∥

P

≤ {
μP (–D) + ‖Ā‖P max

{‖α‖P ,‖β‖P
}}(‖u‖P + ‖v‖P

)

+ ‖B̄‖P max
{‖α‖P ,‖β‖P

}
max

t–τ≤s≤t

(∥∥u(s)
∥∥
P +

∥∥v(s)
∥∥
P

)

+
(‖Ā‖P + ‖B̄‖P

)‖η‖P + ‖J‖P .

Let p = μP (–D) + ‖Ā‖P max{‖α‖P ,‖β‖P }, q = ‖B̄‖P max{‖α‖P ,‖β‖P }, and r = (‖Ā‖P +
‖B̄‖P )‖η‖P + ‖J̄‖P . By Lemma 2.9 and inequality (3.8) we obtain

‖u‖P + ‖v‖P = W (t) ≤ r
σ

+
(

sup
–∞≤s≤0

W (s) –
r
σ

)
e–μ∗t ,

where μ∗ is the solution of the equation μ+ p + qeμτ = 0. Therefore, for any sufficient small
ε > 0, there exists T > 0 such that

∥
∥Re(w)

∥
∥
P +

∥
∥Im(w)

∥
∥
P ≤ r

σ
+ ε, ∀t > T . (3.9)

�

Remark 6 In [57], the authors present some sufficient conditions to ensure the stability of
a continuous complex-valued network, where h(w) = hR(Re(w)) + ihI(Im(w)). Here, we as-
sume that the activation function has the form h(w) = hR(Re(w), Im(w))+ ihI(Re(w), Im(w)),
which is more general than that in [57]. Furthermore, the function h(w) may be non-
Lipschitz continuous or even discontinuous.
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Remark 7 Compared with the existing results, we extend global dissipativity results to
real-valued discontinuous networks with bivariate function. If all imaginary parts of sys-
tem (2.1) equal zero, then the results of Theorem 3.4 degenerate into Theorem 2 in [33],
which presents sufficient conditions for the global dissipativity of a discontinuous network
with univariate function.

Suppose w∗ = u∗ + iv∗ is an equilibrium of (2.1) and γ ∗ = γ R∗ + iγ I∗ is the output solution
corresponding to w∗. Furthermore, we suppose that the nonlinear function is continuous,
that is, ηR

i = ηI
i = 0 in formula (3.7). We obtain the following corollary, which is an exten-

sional result of [57].

Corollary 3.5 The continuous complex-valued network (2.1) is globally exponentially sta-
ble to w∗ if

μP (–D) + ‖Ā‖P max
{‖α‖P ,‖β‖P

}
+ ‖B̄‖P max

{‖α‖P ,‖β‖P
} ≤ –σ < 0.

4 Stabilization result
In this section, we design a set of state feedback controllers mi to make the solution of
system (2.1) stable. Suppose w∗ is an equilibrium of (2.1) and γ ∗ is the output solution
corresponding to w∗. Then letting w̃ = w – w∗ and γ̃ = γ – γ ∗, the control problem can be
transformed into the following form:

˙̃w = –Dw̃ + Aγ̃ + Bγ̃τ + m, (4.1)

where γ̃ = γ – γ ∗, γ ∈ K[h(w∗ + w̃)], and m = [m1, m2, . . . , mn] are feedback controllers.

Theorem 4.1 Assume that the discontinuous functions in (2.1) satisfy hypotheses A(1) and
A(2). Then the complex-valued network model is exponentially stable under the state feed-
back controllers mi = mR

i + mI
i , where

mR
i = –κũi – ρi sgn ũi, mI

i = –κ ṽi – ρi sgn ṽi, (4.2)

with

κ > –d + ξ̄ + ς̄ and ρi > πi, (4.3)

where ξi = max{∑n
j=1 ‖aji‖1‖αj‖1,

∑n
j=1 ‖aji‖1‖βj‖1}, ςi = max{∑n

j=1 ‖bji‖1‖αj‖1,
∑n

j=1 ‖b‖1 ×
‖βj‖}, ξ̄ = max1≤i≤n ξi, ς̄ = max1≤i≤n ςi, πi = max{∑n

j=1 ‖aij‖1‖αj‖1,
∑n

j=1 ‖bij‖1)‖ηj‖1}, and
d = min1≤i≤n{di}.

Proof By separating all the parameters of system and the control inputs into their corre-
sponding real and imaginary parts, system (4.1) can be expressed as follows:

⎧
⎨

⎩

˙̃u = –(D + K)ũ + ARγ̃ R – AI γ̃ I + BRγ̃τ – BI γ̃ I
τ – ρ sgn(ũ),

˙̃v = –(D + K)ṽ + AI γ̃ R + ARγ̃ I + BIγ R
τ + BRγ̃ I

τ – ρ sgn(ṽ),
(4.4)

where K = diag{κ ,κ , . . . ,κ}, ρ = diag{ρ1,ρ2, . . . ,ρn}, sgn(ũ) = [sgn(ũ1), sgn(ũ2), . . . ,
sgn(ũn)]T, and sgn(ṽ) = [sgn(ṽ1), sgn(ṽ2), . . . , sgn(ṽn)]T.
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We choose a C-regular auxiliary function Wi = |ũi| + |ṽi|. Based on the definitions of
generalized gradient, for any υi ∈ ∂(|ũi|), we have υi = sgn(ũi) if ũi �= 0 and υi can be arbi-
trarily chosen in [–1, 1] if ũi = 0. Especially, we choose υi = sgn(ũi), and it can be seen that
υiũi = |ũi|. By similar analysis we obtain ϑiṽi = |ṽi|. Calculating Ẇi along the trajectories
of error system (4.4), we obtain

Ẇi = υi ˙̃ui + ϑi ˙̃vi

≤ – (di + κ)|ũi| +
n∑

j=1

∣∣aR
ij
∣∣∣∣γ̃ R

j
∣∣ +

n∑

j=1

∣∣aI
ij
∣∣∣∣γ̃ I

j
∣∣ +

n∑

j=1

∣∣bR
ij
∣∣∣∣γ̃ R

j,τ
∣∣

+
n∑

j=1

∣
∣bI

ij
∣
∣
∣
∣γ̃ I

j,τ
∣
∣ – ρ

∣
∣sgn(ũi)

∣
∣

– (di + κ)|ṽi| +
n∑

j=1

∣∣aI
ij
∣∣∣∣γ̃ R

j
∣∣ +

n∑

j=1

∣∣aR
ij
∣∣∣∣γ̃ I

j
∣∣ +

n∑

j=1

∣∣bR
ij
∣∣∣∣γ̃ I

j,τ
∣∣

+
n∑

j=1

∣∣bI
ij
∣∣∣∣γ̃ R

j,τ
∣∣ – ρ

∣∣sgn(ṽi)
∣∣

≤ –(di + κ)|ũi| +
n∑

j=1

∣
∣aR

ij
∣
∣(αR

j |ũj| + βR
j
∣
∣ṽj(t)

∣
∣ + ηR

j
)

+
n∑

j=1

∣
∣aI

ij
∣
∣(αI

j |ũj| + β I
j |ṽj| + ηI

j
)

+
n∑

j=1

∣∣bR
ij
∣∣(αR

j |ũj,τ | + βR
j |ṽj,τ | + ηR

j
)

+
n∑

j=1

∣∣bI
ij
∣∣(αI

j |ũj,τ | + β I
j |ṽj,τ | + ηI

j
)

– ρi
∣∣sgn(ũi)

∣∣

– (di + κ)|ṽi| +
n∑

j=1

|aI
ij
∣
∣(αR

j |ũj| + βR
j |ṽj| + ηR

j
)∣∣ +

n∑

j=1

∣
∣aR

ij
∣
∣(αI

j |ũj| + β I
j |ṽj| + ηI

j
)

+
n∑

j=1

∣∣bR
ij
∣∣(αI

j |ũj,τ | + β I
j |ṽj,τ | + ηI

j
)

+
n∑

j=1

∣∣bI
ij
∣∣(αR

j |ũj,τ | + βR
j |ṽj,τ | + ηR

j
)

– ρi
∣∣sgn(ṽi)

∣∣

≤ –(d + κ)
(|ũi| + |ṽi|

)
+ ξi

(|ũi| + |ṽi|
)

+ ςj
(|ũi,τ | + |ṽi,τ |

)
– (ρi – πi)

≤ – (d + κ)Wi + ξiWi + ςjWi,τ .

Letting W =
∑n

i=1 Wi, we obtain

Ẇ ≤ –(d + κ)
n∑

i=1

Wi + ξ̄

n∑

i=1

Wi + ς̄

n∑

i=1

Wi,τ

= –(d + κ)W + ξ̄W (t) + ς̄Wτ .

Then by Lemma 2.9 and inequality (4.3) we obtain

|ũi| ≤ W ≤ sup
–∞≤s≤0

W (s)e–μ∗t , |ṽi| ≤ W ≤ sup
–∞≤s≤0

W (s)e–μ∗t ,

where μ∗ is the solution of the equation μ–d –κ + ξ̄ + ς̄eμτ = 0. Therefore, complex-valued
network (2.1) is exponentially stable under the designed controllers (4.2). �
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Figure 1 Time responses of the real part and imaginary part of h(w) in Example 1

Remark 8 The inequality of κ > –d + ξ̄ + ς̄ in (4.3) is equivalent to formula (3.8) in The-
orem 3.4 for P = 1. Therefore, the result of Theorem 4.1 is a direct application of Theo-
rem 3.4 in the control filed.

5 Numerical example
We give two examples to demonstrate the correction of the obtained results.

Example 1 Consider the one-dimensional neural network model (2.1) with D = 2 + 2
√

3,
A = 1+ i

√
2, B =

√
2+ i, J = 1+ i

√
5, and τ = 1. We choose the following activation function:

h(w) =

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

w + 1 + i, Re(w) > 0, Im(w) > 0,

w – 1, Re(w) < 0, Im(w) < 0,

w + 1, Re(w) < 0, Im(w) > 0,

w – 1 + i, Re(w) > 0, Im(w) < 0,

and h(0) = 0, which is shown in Fig. 1. From assumption A(2) we obtain α = 1, β =
√

5,
‖A‖1 =

√
3, ‖B‖1 =

√
3, and ‖J‖1 =

√
6. According to Theorem 3.2, μ1(–D) + ‖A‖1‖α‖1 +

‖B‖1‖α‖1 = –2 < 0 and r = 3
√

6, and it is easy to get that the invariant set is S = {w ∈ C
n :

‖w‖P ≤ 3.67 + ε}.
We separate h(w) into its real and imaginary parts:

hR(u, v) =

⎧
⎨

⎩
u + 1, v > 0,

u – 1, v < 0,
and hI(u, v) =

⎧
⎨

⎩
v + 1, u > 0,

v, u < 0.

We obtain that αR = 1, βR = 0, ηR = 2, αI = 0,β I = 1, and ηI = 1 in (3.7). According to
Theorem 3.4, it follows that μ1(–D) = –(2 + 2

√
3), ‖AR‖1 = 1, ‖AI‖1 =

√
2, ‖BR‖1 =

√
2,

‖BI‖1 = 1, ‖JR‖1 = 1, and ‖JI‖1 =
√

5. Choosing σ = 2(
√

3 –
√

2) and r = 7 + 6
√

2 +
√

5,
it follows that the invariant set is S = {w ∈ C

n : ‖Re(w)‖1 + ‖Im(w)‖1 ≤ 27.8 + ε}. The
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Figure 2 Time responses of the real part and imagine part of w in Example 1

trajectories of real and imaginary parts of v are shown in Fig. 2, and the invariant sets of
Theorem 3.2 and Theorem 3.4 are shown in Fig. 3.

Remark 9 Obviously, from Fig. 3 we can see that the invariant set obtained from Theo-
rem 3.2 is more accurate than that obtained in Theorem 3.4 because of the obvious in-
equality ‖w‖P ≤ ‖u‖P + ‖v‖P . Therefore the conditions of Theorem 3.2 are less conser-
vative than those in Theorem 3.4 and greatly reduce the complexity of computation.

Example 2 Here we consider the neural network model with two complex neurons:

ẇ = –Dw + Ah(w) + Bh
(
w(t – τ )

)
, (5.1)

where

D =

[
2 0
0 1

]

, A =

[
–1 + 0.5i 1 + 0.5i
–0.5 – i –1 + 0.5i

]

, B =

[
2 + i 1 + 0.5i

–0.5 – 2i –1 + 0.5i

]

,

and hi(χ ) = [(Re(χ ) – 1) sgn(Re(χ )) + Im(χ )] + i[(Im(χ ) – 1) sgn(Im(χ )) + Re(χ )] for any
χ ∈C, i = 1, 2, τ = 1. The trajectories for system (5.1) are shown in Fig. 4.

We separate h(w) into its real part and parts:

hR
i (ui, vi) = (ui – 1) sgn(ui) + vi, hI

i (ui, vi) = (vi – 1) sgn(vi) + ui.

We obtain that αR
i = βR

i = 1, ηR
i = 2, αI

i = β I
i = 1, and ηI

i = 2 for i = 1, 2. According to Theo-
rem 4.1, it follows that d = 1, ξ̄ = 6, ς̄ = 9, and π̄ = 15. If we choose κ = 15 and ρi = 16, then
the equilibrium of (5.1) is exponentially stable under the designed controllers. The trajec-
tories of the designed controllers and the state variables under control input are shown in
Figs. 5 and 6, respectively.
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Figure 3 The positive invariant sets in Theorem 3.2 and Theorem 3.4 of Example 1

Figure 4 Time responses for the real and imaginary parts of the state solution in Example 2 without control
input

6 Conclusion
In this paper, we investigate the global dissipativity and stabilization problem of discon-
tinuous complex-valued networks via the matrix measure method. Compared with the
existing results on continuous complex-valued neural networks, we propose a sufficient
condition for the global dissipativity of discontinuous complex-valued neural networks
based on differential inclusion. Compared with the results on discontinuous neural net-
works, we extend global dissipativity results to discontinuous neural networks with bivari-
ate activation functions. In future, we will study the synchronization control of complex
networks composed by discontinuous complex-valued differential equations.
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Figure 5 Time responses of the real and imaginary parts of the designed controllers in Example 2

Figure 6 Time responses for the real and imaginary parts of the state solution in Example 2 under the
designed controllers
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