RESEARCH

Open Access

Computing new solutions of algebro-geometric equation using the discrete inverse Sumudu transform

Adem Kılıçman^{1*} and Rathinavel Silambarasan²

*Correspondence: akilic@upm.edu.my ¹Department of Mathematics, Faculty of Science, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia Full list of author information is available at the end of the article

Abstract

The discrete inverse Sumudu transform method is designed to solve ordinary differential equations and tested for an algebro-geometric equation. The two new sets of exact analytical and complex solutions are gotten through a discrete inverse Sumudu transform, and Maple complex graphs are drawn to show the new solution simulations in the complex plane which are compared to the existing solutions. The list of inverse Sumudu transforms is added in the sequel to strengthen the study.

MSC: 33E30; 44A10

Keywords: Inverse Sumudu transform; Complex solutions; Lommel S1 function; Struve function

1 Introduction

Algebro-geometric lattices were constructed using Rings and Fields to obtain the solutions of KdV equation and Toda equation in [1]. For solving sine-Gordon equation, Landau–Lifshitz equation, and reducing Abelian and hyperelliptic integrals, theta functions algebro-geometric principles were employed in [2]. Nonlinear integrable equations of mathematical physics, electrical systems were studied using the algebro-geometric method in [3]. KdV equation, Toda equation AKNS, and Hill's hierarchy were solved in [4, 5]. Soliton and quasi solutions of Dym type and water flow equations were solved for algebro-geometric solutions in [6]. Theta function notation of algebro-geometric solutions for Camassa–Holm equation and soliton solutions was given in [7–9]. Algebrogeometric Sturm–Liouville coefficients were calculated in [10]. Solutions without reflection for hierarchies of evolution equations were given in [11]. Endpoint classification of three forms of algebro-geometric equation (AGE) and eigenvalues of Sturm–Liouville differential equations were given in [12].

A Sumudu transform was applied for nonzero modulus Dixon elliptic functions to calculate their Hankel determinants in [13]. A discrete inverse Sumudu transform (DIST) method was proposed to solve ordinary differential equations to obtain their new exact solutions, and Whittaker and Zettl equations with a table of the inverse Sumudu transform of functions were solved in [14] as in [15], which gives special functions [16] as inverse Sumudu. Lane–Emden type differential equations were solved by the decomposi-

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and indicate if changes were made.

tion method using Sumudu in [17]. Fractional reaction-diffusion equation and delay differential equation were studied using the Sumudu transform in [18, 19]. Human relationships were studied numerically in [20]. Fuzzy differential equations were solved using a fuzzy Sumudu transform in [21]. Fractional differential equations, telegraph equations, and fuzzy differential equations were solved using the Sumudu transform respectively in [22–24]. Cattaneo–Vernotte with space fractional, time fractional, and space-time fractional equations were solved for integer values and rational values of φ in [25]. In [26] a reaction-diffusion equation with variable order fractionals was solved numerically by using a combined Adams and finite difference method where they took Liouville-Caputo and ABC (Atangana-Baleanu-Caputo) fractional derivatives. Liouville-Caputo, Caputo-Fabrizio-Caputo, and Mittag-Leffler kernel fractional derivatives were applied for the Bateman-Feshbach-Tikochinsky oscillator and Caldirola-Kanai oscillator and their individual behavior was studied in [27]. In [28] Atangana-Baleanu fractional derivatives were used for a nonlinear Bloch system, and the Adams-Moulton method was applied to solve it numerically. A homotopy perturbation transform method was applied to solve some nonlinear fractional differential equations in [29]. Apart from this, some of the very recent advancements in fractional calculus theories were given in [30, 31].

2 DIST method description

The Sumudu transform of the function f(x) in the set $A = \{f(x) | \exists M, \tau_1, \tau_2 > 0, |f(x)| < Me^{\frac{|x|}{\tau_j}}$, if $x \in (-1)^j \times [0, \infty)$ } is defined by the following integral equation:

$$\mathbb{S}[f(x)](u) = F(u) = \int_0^\infty e^{-x} f(ux) \, dx = \frac{1}{u} \int_0^\infty e^{-\frac{x}{u}} f(x) \, dx; \quad u \in (-\tau_1, \tau_2). \tag{1}$$

In the discrete definition, for the function $f(x) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)x^n}{n!}$,

$$\mathbb{S}[f(x)](u) = F(u) = \sum_{n=0}^{\infty} f^{(n)}(0)u^n.$$
(2)

The DIST definition is given by the following infinite series:

$$\mathbb{S}^{-1}[f(x)](w) = F_{-1}(w) = \sum_{n=0}^{\infty} \frac{f^{(n)}(0)w^n}{(n!)^2},$$
(3)

where u is the (positive) Sumudu transform variable and w is the DIST (negative) Sumudu transform variable. For the functions from [15], the inverse Sumudu transform is calculated and provided in Table 1 and the corresponding special functions are defined in Table 2.

Theorem 1 Let $F_{-1}(w)$ be the inverse Sumudu transform of f(x).

$$\mathbb{S}^{-1}\left[x^n \frac{d^n f(x)}{dx^n}\right] = w^n \frac{d^n F_{-1}(w)}{dw^n}.$$
(4)

$$\mathbb{S}^{-1}\left[x^n \frac{d^n x^n f(x)}{dx^n}\right] = w^n F_{-1}(w).$$
(5)

S. No	<i>f</i> (<i>x</i>)	$\mathbb{S}^{-1}[f(x)] = F_{-1}(w)$
1	$\frac{1}{x+a}$	$\frac{1}{a}e^{-\frac{W}{a}}$
2	$\frac{1}{x-a}$	$-\frac{1}{a}e^{\frac{W}{a}}$
3	$\frac{1}{(x+a)^{r_1}}$	$\frac{e^{-\frac{w}{2a}}}{a^{n}w}[a(n+1)M_{n+1,\frac{1}{2}}(\frac{w}{a}) - (an-w)M_{n,\frac{1}{2}}(\frac{w}{a})]$
4		$\frac{(-1)^{-n}a^{n-1}e^{-\frac{w}{a}}}{2}[\Gamma(n+1) - n\Gamma(n, -\frac{w}{a})]$
5	$\frac{x^{h}}{x+a}$ $\frac{Ax+Ba}{x^{2}-a^{2}}$	$\frac{(-1)^{-n}a^{n-1}e^{-\frac{W}{a}}}{\frac{1}{2a}\left[e^{-\frac{W}{a}}(A-B)-e^{\frac{W}{a}}(A+B)\right]}$
5	$\frac{x - a}{x + ba}$	$\frac{1}{2a}\left[e^{-\frac{iW}{a}}\left(iA+B\right)-e^{\frac{iW}{a}}\left(iA-B\right)\right]$
7	$\frac{Ax+Ba}{x^2+a^2}$ $\frac{1}{\sqrt{x+a}}$	$\frac{1}{\sqrt{a}}e^{-\frac{W}{2a}} _{0}(\frac{W}{2a})$
3	$\frac{1}{(x+a)^2}$	$\frac{e^{-\frac{w}{2a}}}{2a}[(a-w)l_0(\frac{w}{2a}) + wl_1(\frac{w}{2a})]$
	(x+a) ² / ₂	u 2
)	$\frac{\sqrt{x}}{x+a}$	$-\frac{e^{-\overline{\alpha}}}{\sqrt{\overline{\alpha}}} \operatorname{erf}(\frac{i\sqrt{w}}{\sqrt{\overline{\alpha}}})$
0	$\frac{\sqrt{x-b}}{x}$	$-\frac{ie^{\frac{2}{2b}}}{2\sqrt{b}}\left[I_0(\frac{w}{2b}) - I_1(\frac{w}{2b})\right]$
11	$\frac{1}{\sqrt{x(x+a)}}$	$\frac{e^{-\frac{W}{d}}}{a^2\sqrt{w\pi}}[ae^{\frac{W}{d}} + i\sqrt{aw\pi}\operatorname{erf}(\frac{i\sqrt{w}}{\sqrt{a}})]$
12	$\frac{1}{\sqrt{x(x+a)}}$	$\frac{e \overline{a}}{\sqrt{aw\pi}}$
13		$\frac{\sqrt{a}}{\frac{w}{2b}} \frac{\sqrt{a}}{2b} \frac{1}{2b} \left[\log\left(\frac{w}{2b}\right) + \log\left(\frac{w}{2b}\right) \right]$
	$\frac{1}{x\sqrt{x-b}}$	
4	$\frac{\frac{x}{\sqrt{x^2 + a^2}}}{\frac{x}{\sqrt{b^2 - x^2}}}$	$-\frac{\frac{\omega \operatorname{csgn}(a)}{2a}}{2a} [J_0(\frac{\omega}{a})(\pi \mathbf{H}_1(\frac{\omega}{a}) - 2) - \pi J_1(\frac{\omega}{a})\mathbf{H}_0(\frac{\omega}{a})]$
15	$\frac{x}{\sqrt{b^2-x^2}}$	$\frac{w \operatorname{csgn}(b)}{2b} [I_0(\frac{w}{b})(\pi \mathbf{L}_1(\frac{w}{b}) + 2) - \pi I_1(\frac{w}{b})\mathbf{L}_0(\frac{w}{b})]$
16		$\frac{\frac{iw}{2b}}{[l_0(\frac{w}{b})(\pi \mathbf{L}_1(\frac{w}{b})+2) - \pi I_1(\frac{w}{b})\mathbf{L}_0(\frac{w}{b})]}$
17	$\frac{1}{x + \sqrt{x^2 + a^2}}$	$\frac{1}{2a^{3}}(2\operatorname{csgn}(a)J_{0}(\frac{w}{a})(a^{2}+w^{2}-\frac{\pi w^{2}}{2}\mathbf{H}_{1}(\frac{w}{a}))-2w(\operatorname{csgn}(a)J_{1}(\frac{w}{a})-a(a-\frac{\pi w}{2}\mathbf{H}_{0}(\frac{w}{a}))))$
8	$(x + \sqrt{1 + x^2})^n + (x - \sqrt{1 + x^2})^n$	$(e^{in\pi} + 1)_2 F_3(\frac{n}{2}, \frac{n}{2}; \frac{1}{2}, \frac{1}{2}, 1; -\frac{w^2}{4}) + nw(e^{in\pi} -$
	($1)_{2}F_{3}(\frac{1+n}{2}, \frac{1-n}{2}; 1, \frac{3}{2}, \frac{3}{2}; -\frac{w^{2}}{4})$
19	$\frac{(x+\sqrt{1+x^2})^2}{\sqrt{1+x^2}}$	${}_{2}F_{3}(\frac{1-n}{2},\frac{1+n}{2};\frac{1}{2},\frac{1}{2},1;-\frac{w^{2}}{4})+nw_{2}F_{3}(1-\frac{n}{2},1+\frac{n}{2};1,\frac{3}{2},\frac{3}{2};-\frac{w^{2}}{4})$
20	$\frac{(x+\sqrt{1+x^2})^n}{\sqrt{1+x^2}}$ $\frac{(x-\sqrt{1+x^2})^n}{\sqrt{1+x^2}}$ $\frac{(x-b)^{y}}{y}$	$(e^{in\pi})_2 F_3(\frac{1-n}{2}, \frac{1+n}{2}; \frac{1}{2}, \frac{1}{2}, 1; -\frac{w^2}{4}) - nw_2 F_3(1-\frac{n}{2}, 1+\frac{n}{2}; 1, \frac{3}{2}, \frac{3}{2}; -\frac{w^2}{4})$
21	$\frac{(x-b)^{V}}{x}$	$\frac{(-1)^{\nu}b^{\nu-1}[L_{\nu}(\frac{w}{b}) - L_{\nu}^{1}(\frac{w}{b})]}{\sqrt{w}S1_{\frac{3}{2},\frac{1}{2}}(w) + \nu(\nu+1)w^{\nu-1} - w^{\nu+1}}}{(\nu+1)!}$
22	$\frac{x^{\nu-1}}{1+x^2}$	<u> </u>
23	$(1+x^2)^{\nu-\frac{1}{2}}$	
24	$(x^2 - b^2)^{\nu - \frac{1}{2}}$	$(-b)^{v-\frac{1}{2}} {}_{1}F_{2}(\frac{1}{2}-v;\frac{1}{2},1;\frac{w^{2}}{4b^{2}})$
25	$(b^2 - x^2)^{\nu - \frac{1}{2}}$	$\frac{2(b^2)^{v-\frac{1}{2}}}{b^2(2v+1)} \left[w^2 L_{v+\frac{1}{2}}^1 \left(\frac{w^2}{b^2} \right) + \left((v+\frac{1}{2})b^2 - w^2 \right) L_{v+\frac{1}{2}} \left(\frac{w^2}{b^2} \right) \right]$
26	$x^{\nu-1}(x+a)^{\frac{1}{2}-\nu}$	$\frac{a^{\frac{1}{2}-v}_{W^{v-1}}e^{-\frac{W}{2a}}(\frac{w}{a})^{-\frac{v}{2}}}{av(v-1)!(v+1)w}[a(av+w)(v+\frac{3}{2})M_{\frac{v+3}{2},\frac{v+1}{2}}(\frac{w}{a}) +$
		$\left(\frac{2w^2 - 2wa - va^2}{2}\right) M_{\frac{v+1}{2}, \frac{v+1}{2}}\left(\frac{w}{a}\right)$
27	$x^{\nu-1}(x+a)^{-\frac{1}{2}-\nu}$	$\frac{e^{-\frac{W}{2a}(\frac{W}{a})-\frac{V}{2}a^{-(v+\frac{1}{2})}w^{v-1}}}{w^{v(v+1)(v-1)!}}[-(\frac{w+av}{2})M_{\frac{v+1}{2},\frac{v+1}{2}}(\frac{W}{a})+(v+\frac{w+av}{2})M_{\frac{v+1}{2},\frac{v+1}{2}}(\frac{W}{a})]$
		$\frac{3}{2} av M_{\frac{v+3}{2},\frac{v+1}{2}}(\frac{w}{a})]$
28	$(\sqrt{x^2+1}+x)^{\vee}$	
29	$(\sqrt{x^2+1}-x)^{v}$	${}_{2}F_{3}(\frac{v}{2}, -\frac{v}{2}; \frac{1}{2}, \frac{1}{2}, 1; -\frac{w^{2}}{4}) + vw_{2}F_{3}(\frac{1+v}{2}, \frac{1-v}{2}; 1, \frac{3}{2}, \frac{3}{2}; -\frac{w^{2}}{4})}{{}_{2}F_{3}(\frac{v}{2}, -\frac{v}{2}; \frac{1}{2}, \frac{1}{2}, 1; -\frac{w^{2}}{4}) - vw_{2}F_{3}(\frac{1+v}{2}, \frac{1-v}{2}; 1, \frac{3}{2}, \frac{3}{2}; -\frac{w^{2}}{4})}$
80	$\frac{(\sqrt{x^2+1}+x)^V}{\sqrt{2}}$	${}_{2}F_{3}(\frac{1-v}{2},\frac{1+v}{2};\frac{1}{2},\frac{1}{2},1;-\frac{w^{2}}{4}) + vw_{2}F_{3}(1-\frac{v}{2},1+\frac{v}{2};1,\frac{3}{2},\frac{3}{2};-\frac{w^{2}}{4})$
31	$\frac{\sqrt{x^2+1}}{(\sqrt{x^2+1-x})^{V}}$	${}_{2}F_{3}(\frac{1-\nu}{2},\frac{1+\nu}{2};\frac{1}{2},\frac{1}{2},1;-\frac{w^{2}}{4}) - vw_{2}F_{3}(1-\frac{\nu}{2},1+\frac{\nu}{2};1,\frac{3}{2},\frac{3}{2};-\frac{w^{2}}{4})$
32	$\frac{(\sqrt{x^{2}+1}+x)^{V}}{\sqrt{x^{2}+1}} \\ \frac{(\sqrt{x^{2}+1}-x)^{V}}{\sqrt{x^{2}+1}} \\ \frac{(\sqrt{x^{2}+1}-x)^{V}}{\sqrt{x^{2}-1}} \\ \frac{(\sqrt{x^{2}-1}+x)^{V}+(\sqrt{x^{2}-1}+x)^{-V}}{\sqrt{x^{2}-1}}$	$-\frac{(e^{j\pi v}+1)}{i^{\nu-1}}_{2}F_{3}(\frac{1-v}{2},\frac{1+v}{2};\frac{1}{2},\frac{1}{$
		$\frac{v}{2}$; 1, $\frac{3}{2}$, $\frac{3}{2}$; $\frac{w^2}{4}$)
33	$(\sqrt{x+2a}+\sqrt{x})^{2v}-(\sqrt{x+2a}-\sqrt{x})^{2v}$	$\frac{4v\sqrt{w}2^{V+\frac{1}{2}}a^{V-\frac{1}{2}}}{\sqrt{\pi}}{}_{2}F_{2}(\frac{1}{2}+v,\frac{1}{2}-v;\frac{3}{2},\frac{3}{2};-\frac{w}{2a})$
34	$(\sqrt{x+b} + \sqrt{x-b})^{2\nu} - (\sqrt{x+b} - \sqrt{x-b})^{2\nu}$	$-ivwb^{\nu-1}((1+i)^{2\nu}+(1-i)^{2\nu})_2F_3(\frac{1+\nu}{2},\frac{1-\nu}{2};1,\frac{3}{2},\frac{3}{2};\frac{w^2}{4b^2})-b^{\nu}(-(1-i)^{2\nu})_2F_3(\frac{1+\nu}{2},\frac{1-\nu}{2};1,\frac{3}{2},\frac{3}{2};\frac{w^2}{4b^2})-b^{\nu}(-(1-i)^{2\nu})_2F_3(\frac{1+\nu}{2},\frac{1-\nu}{2};1,\frac{3}{2},\frac{3}{2};\frac{w^2}{4b^2})-b^{\nu}(-(1-i)^{2\nu})_2F_3(\frac{1+\nu}{2},\frac{1-\nu}{2};1,\frac{3}{2},\frac{3}{2};\frac{w^2}{4b^2})-b^{\nu}(-(1-i)^{2\nu})_2F_3(\frac{1+\nu}{2},\frac{1-\nu}{2};1,\frac{3}{2},\frac{3}{2};\frac{w^2}{4b^2})-b^{\nu}(-(1-i)^{2\nu})_2F_3(\frac{1+\nu}{2},\frac{1-\nu}{2};1,\frac{3}{2},\frac{3}{2};\frac{w^2}{4b^2})-b^{\nu}(-(1-i)^{2\nu})_2F_3(\frac{1+\nu}{2};1,\frac{3}{2},\frac{3}{2};\frac{w^2}{4b^2})-b^{\nu}(-(1-i)^{2\nu})_2F_3(\frac{1+\nu}{2};1,\frac{3}{2};\frac{w^2}{4b^2})-b^{\nu}(-(1-i)^{2\nu})_2F_3(\frac{1+\nu}{2};1,\frac{3}{2};\frac{w^2}{4b^2})-b^{\nu}(-(1-i)^{2\nu})_2F_3(\frac{1+\nu}{2};1,\frac{3}{2};\frac{w^2}{4b^2})-b^{\nu}(-(1-i)^{2\nu})_2F_3(\frac{1+\nu}{2};1,\frac{3}{2};\frac{w^2}{4b^2})-b^{\nu}(-(1-i)^{2\nu})_2F_3(\frac{1+\nu}{2};1,\frac{3}{2};\frac{w^2}{4b^2})-b^{\nu}(-(1-i)^{2\nu})_2F_3(\frac{1+\nu}{2};1,\frac{3}{2};\frac{w^2}{4b^2})-b^{\nu}(-(1-i)^{2\nu})_2F_3(\frac{1+\nu}{2};1,\frac{3}{2};\frac{w^2}{4b^2})-b^{\nu}(-(1-i)^{2\nu})_2F_3(\frac{1+\nu}{2};1,\frac{3}{2};\frac{w^2}{4b^2})-b^{\nu}(-(1-i)^{2\nu})_2F_3(\frac{1+\nu}{2};1,\frac{3}{2};\frac{w^2}{4b^2})-b^{\nu}(-(1-i)^{2\nu})_2F_3(\frac{1+\nu}{2};1,\frac{3}{2};\frac{w^2}{4b^2})-b^{\nu}(-(1-i)^{2\nu})_2F_3(\frac{1+\nu}{2};1,\frac{3}{2};\frac{w^2}{4b^2})-b^{\nu}(-(1-i)^{2\nu})_2F_3(\frac{1+\nu}{2};1,\frac{3}{2};\frac{w^2}{4b^2})-b^{\nu}(-(1-i)^{2\nu})_2F_3(\frac{1+\nu}{2};1,\frac{3}{2};\frac{w^2}{4b^2})-b^{\nu}(-(1-i)^{2\nu})_2F_3(\frac{1+\nu}{2};1,\frac{3}{2};\frac{w^2}{4b^2})-b^{\nu}(-(1-i)^{2\nu})_2F_3(\frac{1+\nu}{2};1,\frac{3}{2};\frac{w^2}{4b^2})-b^{\nu}(-(1-i)^{2\nu})_2F_3(\frac{1+\nu}{2};1,\frac{3}{2};\frac{w^2}{4b^2})-b^{\nu}(-(1-i)^{2\nu})_2F_3(\frac{1+\nu}{2};1,\frac{3}{2};\frac{w^2}{4b^2})-b^{\nu}(-(1-i)^{2\nu})_2F_3(\frac{1+\nu}{2};1,\frac{3}{2};\frac{w^2}{4b^2})-b^{\nu}(-(1-i)^{2\nu})_2F_3(\frac{1+\nu}{2};1,\frac{3}{2};\frac{w^2}{4b^2})-b^{\nu}(-(1-i)^{2\nu})_2F_3(\frac{1+\nu}{2};1,\frac{3}{2};\frac{w^2}{4b^2})-b^{\nu}(-(1-i)^{2\nu})_2F_3(\frac{1+\nu}{2};1,\frac{3}{2};\frac{w^2}{4b^2})-b^{\nu}(-(1-i)^{2\nu})_2F_3(\frac{1+\nu}{2};1,\frac{3}{2};\frac{w^2}{4b^2})-b^{\nu}(-(1-i)^{2\nu})_2F_3(\frac{1+\nu}{2};1,\frac{w^2}{4b^2})-b^{\nu}(-(1-i)^{2\nu})_2F_3(\frac{1+\nu}{2};1,\frac{w^2}{4b^2})-b^{\nu}(-(1-i)^{2\nu})_2F_3(\frac{1+\nu}{2};1,\frac{w^2}{4b^2})-b^{\nu}(-(1-i)^{2\nu})_2F_3(\frac{1+\nu}{2};1,\frac{w^2}{4b^2})-b^{\nu}(-(1-i)^{2\nu})_2F_3(\frac{1+\nu}$
		$i)^{2\nu} + (1-i)^{2\nu})_2 F_3(\frac{\nu}{2}, -\frac{\nu}{2}; \frac{1}{2}, \frac{1}{2}, 1;, \frac{w^2}{4b^2})$

 Table 1
 Inverse Sumudu transform of elementary functions

 Table 1 ((Continued))

S. No	f(x)	$S^{-1}[f(x)] = F_{-1}(w)$
35	$\frac{(2a)^{2v}(x+\sqrt{x^2+4a^2})^{2v}}{\sqrt{x^3+4a^2x}}$	$\frac{1}{24}(\operatorname{csgn}^{2\nu+1}(a)w^{\frac{3}{2}}a^{4\nu-3}16^{\nu}(v^2-\frac{1}{4})) \times {}_2F_5(\frac{3}{2}-v,\frac{3}{2}+v,\frac{5}{4},\frac{3}{2},\frac{3}{2},\frac{7}{4},2;-\frac{w^2}{1024a^2}) +$
	<u> </u>	$\frac{1}{2}(\operatorname{csgn}^{2\nu}(a)va^{4\nu+2}16^{\nu}\sqrt{w}) \times {}_{2}F_{5}(1+\nu,1-\nu;\frac{1}{2},\frac{3}{4},1,\frac{5}{4},\frac{3}{2};-\frac{w^{2}}{1024a^{2}})$
6	$\frac{(x+\sqrt{x^2-1})^{2\nu}+(x-\sqrt{x^2-1})^{2\nu}}{\sqrt{x}\sqrt{x^2-1}}$	$\frac{\frac{8iv\sqrt{w}}{\sqrt{\pi}\sin(\pi v)}}{\sqrt{\pi}\sin(\pi v)}(\cos^2(\pi v) - 1)_2F_3(1 + v, 1 - v; \frac{3}{4}, \frac{5}{4}, \frac{3}{2}, \frac{w^2}{4}) - \frac{2i\cos(\pi v)}{\sqrt{\pi w}}_2F_3(\frac{1}{2} + v, \frac{1}{2} - v, \frac{1}{2})$
7	e^{-ax}	$ \begin{array}{c} v; \frac{1}{4}, \frac{1}{1}, \frac{3}{4}, \frac{w^2}{4} \\ J_0(2\sqrt{aw}) \end{array} $
8	xe ^{-ax}	w 12 (2) (200)
9	$x^{\nu-1}e^{-ax}$	$\frac{W^{1/2}\sqrt{aw}}{w^{\nu-1}\Gamma(\nu)J_{\nu-1}(2\sqrt{aw})}$
0	$\frac{e^{-ax}-e^{-bx}}{x}$	(v-1)!(aw) = 2 $b\sqrt{a}J_1(2\sqrt{bw}) - a\sqrt{b}J_1(2\sqrt{aw})$
1	$\frac{(1-e^{-ax})^2}{x^2}$	$\frac{\sqrt{abw}}{-2a(J_2(2\sqrt{aw})-J_2(2\sqrt{2aw}))}$
2	$\frac{1}{x} - \frac{(x+2)(1-e^{-X})}{2x^2}$	$\frac{wl_3(2\sqrt{-w})}{2(-w)^{\frac{3}{2}}}^{w}$
.3	$e^{-\frac{\chi^2}{4a}}$	2(-w) = 2 $_{0}F_{2}(; \frac{1}{2}, 1; -\frac{w^{2}}{162})$
4	$xe^{-\frac{x^2}{4a}}$	$w_0F_2(; 1, \frac{3}{2}; -\frac{w^2}{16\pi})$
15	$\frac{e^{-\frac{x^2}{4a}}}{\sqrt{x}}$	$\frac{1}{\sqrt{\pi w}} 0F_2(; \frac{1}{4}, \frac{3}{4}; -\frac{w^2}{16a})$
	\sqrt{x} $x^{v-1}e^{-\frac{x^2}{8a}}$	V
16 17	$x^{*} e^{-\frac{x}{4a}}$	$\frac{w^{V-1}}{(v-1)!} OF_2(; \frac{v}{2}, \frac{v+1}{2}; -\frac{w^2}{32a}) \\ I_0(\sqrt{-\frac{w}{a}})$
18	$\sqrt{x}e^{-\frac{x}{4a}}$	$2\sqrt{\frac{a}{\pi}}\sin(\sqrt{\frac{w}{a}})$
19	$\frac{e^{-\frac{X}{4a}}}{\sqrt{x}}$	$\sqrt{\frac{\pi}{m}}$ $\sqrt{\frac{\pi}{m}}$
	$\frac{e^{-\frac{X}{4a}}}{\frac{3}{2}}$	$\sqrt{\pi w}$ $(\sqrt{aw}\sin(\sqrt{\frac{w}{a}})+a\cos(\sqrt{\frac{w}{a}}))$
50	$\frac{3}{x^2}$	$-\frac{1}{2a\sqrt{\pi}w^2}$
51	$x^{\nu-1}e^{-\frac{x}{4a}}$	$-\frac{(\sqrt{aw}\sin(\sqrt{\frac{w}{a}})+a\cos(\sqrt{\frac{w}{a}}))}{2a\sqrt{\pi}w^{\frac{3}{2}}}}{(2w)^{\nu-1}\Gamma(\nu)(-\frac{w}{a})^{\frac{1-\nu}{2}}}I_{\nu-1}(\sqrt{-\frac{w}{a}})}$
52	$\frac{(e^{-\frac{X}{4a}}-1)}{\sqrt{x}}$	$\frac{1}{\sqrt{w\pi}} \left[\cos(\sqrt{\frac{w}{a}}) - 1 \right]$
53	$e^{-2\sqrt{a}\sqrt{x}}$	$-\frac{4\sqrt{aw}}{\sqrt{\pi}}_{0}F_{2}(;\frac{3}{2},\frac{3}{2};,aw) + {}_{0}F_{2}(;\frac{1}{2},1;,aw)$
54	$\sqrt{x}e^{-2\sqrt{a}\sqrt{x}}$	$\frac{2\sqrt{w}}{\sqrt{\pi}}_{0}F_{2}(;\frac{1}{2},\frac{3}{2};,aw) - 2w\sqrt{a_{0}}F_{2}(;\frac{3}{2},2;,aw)$
55	$\frac{e^{-2\sqrt{a}\sqrt{x}}}{\sqrt{x}}$ $\frac{e^{-2\sqrt{a}\sqrt{x}}}{\sqrt{2x}}$	$\frac{1}{\sqrt{w\pi}} {}_{0}F_{2}(; \frac{1}{2}, \frac{1}{2};, aw) - 2\sqrt{a_{0}}F_{2}(; 1, \frac{3}{2};, aw)$
56	$\frac{e^{-2\sqrt{a}\sqrt{x}}}{\sqrt{2x}}$	$\frac{1}{\sqrt{2w\pi}} {}_{0}F_{2}(;\frac{1}{2},\frac{1}{2};,aw) - \sqrt{2a_{0}}F_{2}(;1,\frac{3}{2};,aw)$
57	$\log(1 + ax)$	$Ei_1(aw) + ln(aw) + \gamma$
i8 i9	$log(x + a)$ $log(x^2 - a^2)$	$E_{i_1}(\frac{w}{a}) + \ln(w) + \gamma$ 2[ln(w) + γ - Chi($\frac{w}{a}$)] + $i\pi$
50	$\log(x^2 + a^2)$	$2[\ln(w) + \gamma - \operatorname{Cri}(\frac{w}{a})] + iii$
1	$\log(x^2 + a^2) - \log(a^2)$	$\frac{2}{w}[1 - \cos(\frac{w}{a})]$
2	$\log(\frac{\sqrt{x+b}+\sqrt{x-b}}{\sqrt{2}\sqrt{b}})$	$\frac{1}{2b} \left[-iw_2 F_3(\frac{1}{2}, \frac{1}{2}; 1, \frac{3}{2}, \frac{3}{2}; \frac{w^2}{4b^2}) - b(\ln(2) + 2\ln(i+1)) \right]$
3	$\log(\frac{\sqrt{x}+\sqrt{x+2a}}{\sqrt{2}\sqrt{a}})$	$\sqrt{\frac{2w}{a\pi}} {}_{2}F_{2}(\frac{1}{2},\frac{1}{2},\frac{3}{2},\frac{3}{2},-\frac{w}{2a})$
54	$\log(\frac{\sqrt{x+ib}+\sqrt{x-ib}}{\sqrt{2}\sqrt{b}})$	$\frac{1}{2b}[w_2F_3(\frac{1}{2},\frac{1}{2};1,\frac{3}{2},\frac{3}{2};-\frac{w^2}{4b^2}+2i\pi b)]$
55	sin(ax)	$bei_0(2\sqrt{aw})$
6	x sin(ax)	$-\frac{\sqrt{aw}}{2}$ [ber ₁ (2 \sqrt{w}) + bei ₁ (2 \sqrt{w})]
7	x ⁿ sin(ax)	$\frac{aw^{n-1}}{(n+1)!} {}_{0}F_{3}(; \frac{3}{2}, \frac{n}{2} + 1, \frac{n+3}{2}; -\frac{(aw)^{2}}{16})$
8	$x^{\nu-1}$ sin(ax)	$-\frac{\sqrt{aw}}{2} \left[\operatorname{ber}_{1}(2\sqrt{w}) + \operatorname{bei}_{1}(2\sqrt{w}) \right] \\ \frac{aw^{n+1}}{(n+1)!} _{0}F_{3}(; \frac{3}{2}, \frac{n}{2} + 1, \frac{n+3}{2}; -\frac{(aw)^{2}}{16}) \\ \frac{aw^{2}}{v!} \frac{_{0}F_{3}}{_{0}}(; \frac{3}{2}, \frac{v}{2} + 1, \frac{v+1}{2}; -\frac{(aw)^{2}}{16}) \right]$
9	$\frac{\sin(ax)}{x}$	$-\sqrt{\frac{a}{2w}}[\operatorname{ber}_1(2\sqrt{aw}) - \operatorname{bei}_1(2\sqrt{aw})]$
0	$\frac{\sin^2(ax)}{x}$ $\frac{\sin^3(ax)}{x}$ $\frac{\sin^2(ax)}{x^2}$	$-\sqrt{\frac{a}{4w}}[\operatorname{ber}_1(2\sqrt{2aw}) + \operatorname{bei}_1(2\sqrt{2aw})]$
'1	$\frac{\sin^2(ax)}{x}$	$-\frac{3\sqrt{a}}{8\sqrt{3iw}}\left[-\sqrt{3}(I_{1}(2(-1)^{\frac{1}{4}}\sqrt{aw}) + J_{1}(2(-1)^{\frac{1}{4}}\sqrt{aw})) + I_{1}(2\sqrt{3iaw}) + J_{1}(2\sqrt{3iaw})\right]$
2	$\frac{\sin^2(ax)}{x^2}$	$\frac{\sqrt{a}}{2w^{\frac{3}{2}}} [ber_1(2\sqrt{2aw}) + bei_1(2\sqrt{2aw}) + 2\sqrt{aw} bei_0(2\sqrt{2aw})]$
3	$sin(x^2)$	$\frac{2w^2}{2} \frac{w^2}{0} F_5(; \frac{3}{4}, 1, \frac{5}{4}, \frac{3}{2}, \frac{3}{2}; -\frac{w^2}{1024})$ $w F_5(; \frac{1}{3}, 1, \frac{5}{3}, \frac{3}{2}; -\frac{w^2}{1024})$
74	$\frac{\sin(x^2)}{x}$	$w_0F_5(; \frac{1}{2}, \frac{3}{4}, 1, \frac{5}{4}, \frac{3}{2}; -\frac{w^2}{1024})$

Table 1 (((Continued))
------------	--------------

S. No	f(x)	$\mathbb{S}^{-1}[f(x)] = F_{-1}(w)$
75	$\frac{\sin(x^2)}{x^2}$	$W_0F_5(:\frac{1}{4},\frac{1}{2},\frac{3}{2},1,\frac{3}{2};-\frac{w^2}{1024})$
76	$sin(2\sqrt{a}\sqrt{x})$	$\frac{4\sqrt{aw}}{\sqrt{\pi}}_{0}F_{2}(;\frac{3}{2},\frac{3}{2};-aW)$
77	$x^n \sin(2\sqrt{a}\sqrt{x})$	$\frac{\sqrt{\pi}}{(n+\frac{1}{2})} \frac{2\sqrt{2}}{0} F_2(;\frac{3}{2},\frac{3}{2}+n;-aw)$
78	$\frac{\sin(2\sqrt{a}\sqrt{x})}{x}$	$\frac{2\sqrt{a}}{\sqrt{w\pi}} e^{F_2(;\frac{1}{2},\frac{3}{2};-aw)}$
79	$\sqrt{x}\sin(2\sqrt{a}\sqrt{x})$	$2w\sqrt{a_0}F_2(;\frac{3}{2},2;-aw)$
80	$\frac{\sin(2\sqrt{a}\sqrt{x})}{\sqrt{x}}$	$2\sqrt{a_0}F_2(;1,\frac{3}{2};-aw)$
81	$x^{\nu-1}\sin(2\sqrt{a}\sqrt{x})$	$\frac{2\sqrt{a}w'^{-\frac{1}{2}}}{(v-\frac{1}{2})!} \circ F_2(; \frac{3}{2}, v+\frac{1}{2}; -aw)$
82	cos(ax)	$ber_0(2\sqrt{aw})$
83	cos ² (ax)	$\frac{1 - \frac{(aw)^2}{2}}{8} \frac{1}{1} F_4(1; \frac{3}{2}, \frac{3}{2}, 2, 2; -\frac{(aw)^2}{4})$ $\frac{3}{8} \left[l_0(2(-1)^{\frac{1}{4}} \sqrt{aw}) + J_0(2(-1)^{\frac{1}{4}} \sqrt{aw}) \right] + \frac{1}{8} \left[l_0(2\sqrt{3iaw}) + J_0(2\sqrt{3iaw}) \right]$
84	$\cos^3(ax)$	$\frac{3}{8} \left[l_0(2(-1)^{\frac{1}{4}} \sqrt{aw}) + J_0(2(-1)^{\frac{1}{4}} \sqrt{aw}) \right] + \frac{1}{8} \left[l_0(2\sqrt{3iaw}) + J_0(2\sqrt{3iaw}) \right]$
85	x cos(x)	$-\sqrt{\frac{w}{2}}[ber_1(2\sqrt{w}) - bei_1(2\sqrt{w})]$
86	x ⁿ cos(ax)	$\frac{w^{n}}{n!} {}_{0}F_{3}(; \frac{1}{2}, \frac{n}{2} + 1, \frac{n+1}{2}; -\frac{(aw)^{2}}{16})$
87	$x^{\nu-1}\cos(ax)$	$\frac{w^{1-1}}{(v-1)!} {}_{0}F_{3}(; \frac{1}{2}, \frac{v}{2}, \frac{v+1}{2}; -\frac{(aw)^{2}}{16})$
88	$\frac{1-\cos(ax)}{x}$	$-\sqrt{\frac{a}{2w}}\left[\operatorname{ber}_{1}\left(2\sqrt{aw}\right) + \operatorname{bei}_{1}\left(2\sqrt{aw}\right)\right]$
89	$cos(x^2)$	$\sqrt{2}$ oF5(; $\frac{1}{4}, \frac{1}{2}, \frac{1}{2}, \frac{3}{4}, 1; -\frac{w^2}{1024})$
90	$\cos(2\sqrt{a}\sqrt{x})$	$_{0}^{0}F_{2}(;\frac{1}{2},1;-aw)$
91	$x\sqrt{x}\cos(2\sqrt{a}\sqrt{x})$	$\frac{2\sqrt{w}}{\sqrt{\pi}} {}_{0}F_{2}(;\frac{1}{2},\frac{3}{2};-aw)$
92	$\frac{\cos(2\sqrt{a}\sqrt{x})}{\sqrt{x}}$	$\frac{1}{1} \int \frac{1}{1} $
	\mathbf{v}	V WALL
93	$x^{n-\frac{1}{2}}\cos(2\sqrt{a}\sqrt{x})$	$\frac{w^{n-\frac{1}{2}}}{(n-\frac{1}{2})!}oF_2(;\frac{1}{2},n+\frac{1}{2};-aw)$
94	$x^{\nu-1}\cos(2\sqrt{a}\sqrt{x})$	$ \begin{array}{l} \overset{(v-2)^{i}}{\underbrace{w^{v-1}}} & \overset{(v-2)^{i}}{\underbrace{(v-1)!}} 0^{F_2(j; \frac{1}{2}, v; -aw)} \\ \frac{1}{4} [l_0(2\sqrt{iw(a-b)}) + l_0(2\sqrt{-iw(a-b)})] - \frac{1}{4} [l_0(2\sqrt{iw(a+b)}) + l_0(2\sqrt{-iw(a+b)})] \\ \frac{1}{4} [i_0(2\sqrt{iw(a-b)}) - i_0(2\sqrt{-iw(a-b)})] + \frac{1}{4} [i_0(2\sqrt{-iw(a+b)}) - l_0(2\sqrt{iw(a+b)})] \\ \frac{1}{4} [l_0(2\sqrt{iw(a+b)}) + l_0(2\sqrt{-iw(a+b)})] + \frac{1}{4} [l_0(2\sqrt{iw(a-b)}) + l_0(2\sqrt{-iw(a-b)})] \\ \frac{1}{4} [l_0(2\sqrt{iw(a+b)}) + l_0(2\sqrt{-iw(a+b)})] + \frac{1}{4} [l_0(2\sqrt{iw(a-b)}) + l_0(2\sqrt{-iw(a-b)})] \\ \frac{1}{4} [l_0(2\sqrt{iw(a-b)}) + l_0(2\sqrt{-iw(a-b)})] + \frac{1}{4} [l_0(2\sqrt{iw(a-b)}) + l_0(2\sqrt{-iw(a-b)})] \\ \frac{1}{4} [l_0(2\sqrt{iw(a-b)}) + l_0(2\sqrt{-iw(a-b)})] + \frac{1}{4} [l_0(2\sqrt{iw(a-b)}) + l_0(2\sqrt{-iw(a-b)})] \\ \frac{1}{4} [l_0(2\sqrt{iw(a-b)}) + l_0(2\sqrt{-iw(a-b)})] + \frac{1}{4} [l_0(2\sqrt{iw(a-b)}) + l_0(2\sqrt{-iw(a-b)})] \\ \frac{1}{4} [l_0(2\sqrt{iw(a-b)}) + l_0(2\sqrt{-iw(a-b)})] + \frac{1}{4} [l_0(2\sqrt{iw(a-b)}) + l_0(2\sqrt{-iw(a-b)})] \\ \frac{1}{4} [l_0(2\sqrt{iw(a-b)}) + l_0(2\sqrt{-iw(a-b)})] + \frac{1}{4} [l_0(2\sqrt{iw(a-b)}) + l_0(2\sqrt{-iw(a-b)})] \\ \frac{1}{4} [l_0(2\sqrt{iw(a-b)}) + l_0(2\sqrt{-iw(a-b)})] + \frac{1}{4} [l_0(2\sqrt{iw(a-b)}) + l_0(2\sqrt{-iw(a-b)})] \\ \frac{1}{4} [l_0(2\sqrt{iw(a-b)}) + l_0(2\sqrt{-iw(a-b)})] + \frac{1}{4} [l_0(2\sqrt{iw(a-b)}) + l_0(2\sqrt{-iw(a-b)})] \\ \frac{1}{4} [l_0(2\sqrt{iw(a-b)}) + l_0(2\sqrt{-iw(a-b)})] + \frac{1}{4} [l_0(2\sqrt{iw(a-b)}) + l_0(2\sqrt{-iw(a-b)})] \\ \frac{1}{4} [l_0(2\sqrt{iw(a-b)}) + l_0(2\sqrt{-iw(a-b)})] + \frac{1}{4} [l_0(2\sqrt{iw(a-b)}) + l_0(2\sqrt{-iw(a-b)})] \\ \frac{1}{4} [l_0(2\sqrt{iw(a-b)}) + l_0(2\sqrt{-iw(a-b)})] + \frac{1}{4} [l_0(2\sqrt{iw(a-b)}) + l_0(2\sqrt{-iw(a-b)})] \\ \frac{1}{4} [l_0(2\sqrt{iw(a-b)}) + l_0(2\sqrt{-iw(a-b)})] + \frac{1}{4} [l_0(2\sqrt{iw(a-b)}) + l_0(2\sqrt{-iw(a-b)})] \\ \frac{1}{4} [l_0(2\sqrt{iw(a-b)}) + l_0(2\sqrt{-iw(a-b)})] + \frac{1}{4} [l_0(2\sqrt{iw(a-b)}) + l_0(2\sqrt{-iw(a-b)})] \\ \frac{1}{4} [l_0(2\sqrt{iw(a-b)}) + l_0(2\sqrt{-iw(a-b)})] + \frac{1}{4} [l_0(2\sqrt{iw(a-b)}) + l_0(2\sqrt{-iw(a-b)})] \\ \frac{1}{4} [l_0(2\sqrt{iw(a-b)}) + l_0(2\sqrt{-iw(a-b)})] + \frac{1}{4} [l_0(2\sqrt{iw(a-b)}) + l_0(2\sqrt{-iw(a-b)})] \\ \frac{1}{4} [l_0(2\sqrt{iw(a-b)}) + l_0(2\sqrt{-iw(a-b)})] + \frac{1}{4} [l_0(2\sqrt{iw(a-b)}) + l_0(2\sqrt{-iw(a-b)})] \\ \frac{1}{4} [l_0(2\sqrt{iw(a-b)}) + l_0(2\sqrt{-iw(a-b)})] + \frac{1}{4} [l_0(2\sqrt{iw(a-b)}) + l_0(2\sqrt{-iw(a-b)})]$
95	sin(ax) sin(bx)	$\frac{1}{4} \begin{bmatrix} l_0(2\sqrt{iw(a-b)}) + l_0(2\sqrt{-iw(a-b)}) \end{bmatrix} - \frac{1}{4} \begin{bmatrix} l_0(2\sqrt{iw(a+b)}) + l_0(2\sqrt{-iw(a+b)}) \end{bmatrix}$
96 97	cos(<i>ax</i>) sin(<i>bx</i>) cos(<i>ax</i>) cos(<i>bx</i>)	$\frac{1}{4} \left[\ln(2\sqrt{iw(a-b)}) - \ln(2\sqrt{-iw(a-b)}) + \frac{1}{4} \left[\ln(2\sqrt{-iw(a+b)}) - \ln(2\sqrt{iw(a+b)}) \right] + \ln(2\sqrt{-iw(a+b)}) + \ln(2\sqrt{-iw(a-b)}) + \ln(2\sqrt{-iw(a-b)}) \right]$
98	$\frac{2ax\sin(ax)\cos(ax)}{2ax\sin(ax)\cos(ax)-\sin^2(ax)}$	$\frac{1}{2\sqrt{aw^2}} [aw(2aw - 1)be_1(2\sqrt{2aw}) - aw(2aw + 1)be_1(2\sqrt{2aw}) - \frac{1}{2\sqrt{aw^2}} [aw(2aw - 1)be_1(2\sqrt{2aw}) - aw(2aw + 1)be_1(2\sqrt{2aw}) - \frac{1}{2\sqrt{aw^2}} [aw(2aw - 1)be_1(2\sqrt{2aw}) - aw(2aw + 1)be_1(2\sqrt{2aw}) - \frac{1}{2\sqrt{aw^2}} [aw(2aw - 1)be_1(2\sqrt{2aw}) - aw(2aw + 1)be_1(2\sqrt{2aw}) - \frac{1}{2\sqrt{aw^2}} [aw(2aw - 1)be_1(2\sqrt{2aw}) - aw(2aw + 1)be_1(2\sqrt{2aw}) - \frac{1}{2\sqrt{aw^2}} [aw(2aw - 1)be_1(2\sqrt{2aw}) - aw(2aw + 1)be_1(2\sqrt{2aw}) - \frac{1}{2\sqrt{aw^2}} [aw(2aw - 1)be_1(2\sqrt{2aw}) - aw(2aw + 1)be_1(2\sqrt{2aw}) - \frac{1}{2\sqrt{aw^2}} [aw(2aw - 1)be_1(2\sqrt{2aw}) - aw(2aw + 1)be_1(2\sqrt{2aw}) - \frac{1}{2\sqrt{aw^2}} [aw(2aw - 1)be_1(2\sqrt{2aw}) - aw(2aw + 1)be_1(2\sqrt{2aw}) - \frac{1}{2\sqrt{aw^2}} [aw(2aw - 1)be_1(22aw$
	X ²	
	$a_{x} \cos(a_{x}) - \sin(a_{x})$	$2(aw)^{\frac{3}{2}}$ bei ₀ $(2\sqrt{2aw})$]
99	$\frac{ax\cos(ax)-\sin(ax)}{x^2}$	$\frac{1}{2a^{\frac{7}{2}}w^{\frac{7}{2}}} [\sqrt{2}(aw)^{2}(aw + 1) \operatorname{bei}_{1}(2\sqrt{aw}) + \sqrt{2}(aw)^{2}(aw - 1)\operatorname{ber}_{1}(2\sqrt{aw}) - \frac{1}{2a^{\frac{7}{2}}w^{\frac{7}{2}}} (aw - 1)be$
		$2(aw)^{\frac{5}{2}} ber_0(2\sqrt{aw})]$
100	arcsin(x)	$W_2F_3(\frac{1}{2},\frac{1}{2};1,\frac{3}{2},\frac{3}{2};\frac{w^2}{4})$
101	x arcsin(x)	$\frac{w^2}{2} {}_2F_3(\frac{1}{2},\frac{1}{2},\frac{3}{3},\frac{3}{2},2;\frac{w^2}{4})$
102		$Si(\frac{W}{a})$
103	$\cot^{-1}(\frac{x}{a})$	$\frac{\pi}{2} - \operatorname{Si}(\frac{W}{a})$
104	x arctan $\left(\frac{x}{a}\right)$	$a[\cos(\frac{x}{a}) - 1] + wSi(\frac{W}{a})$
105	$x \cot^{-1}(\frac{x}{a})$ sinh(ax)	$a[1 - \cos(\frac{a}{a})] - W \sin(\frac{a}{a}) + \frac{w}{2}$ $\frac{1}{[l_{\alpha}(2 - \sqrt{a}w) - l_{\alpha}(2 - \sqrt{a}w)]}$
107	cosh(<i>ax</i>)	$\frac{1}{2} \left[\log(2\sqrt{aw}) + \log(2\sqrt{aw}) \right]$
108	$\sinh^2(ax)$	$a[1 - \cos(\frac{x}{a})] - wSi(\frac{w}{a}) + \frac{\pi w}{2}$ $\frac{1}{2}[l_0(2\sqrt{aw}) - J_0(2\sqrt{aw})]$ $\frac{1}{2}[l_0(2\sqrt{aw}) + J_0(2\sqrt{aw})]$ $\frac{(aw)^2}{2} _1F_4(1; \frac{3}{2}, \frac{3}{2}, 2, 2; \frac{(aw)^2}{4})$
109	$\cosh^2(ax)$	$1 + \frac{(aw)^2}{2} + \frac{1}{2} + \frac{(aw)^2}{2} + \frac{1}{2} + \frac{(aw)^2}{2} + \frac{1}{2} + \frac{(aw)^2}{2} + \frac{1}{2} + $
110	$\frac{2\sinh(ax)}{x}$	$\frac{a}{[1,(2,\sqrt{aw})]} + \frac{1}{[1,(2,\sqrt{aw})]}$
	$\frac{x}{2\cosh(ax)}$	$\frac{2}{2} \frac{174(1, 2, 2, 2, 2, 2, 4)}{14(1; \frac{3}{2}, \frac{3}{2}, 2, 2; \frac{(aw)^2}{4})} \\ \sqrt{\frac{a}{w}} [l_1(2\sqrt{aw}) + J_1(2\sqrt{aw})] \\ \sqrt{\frac{a}{w}} [l_1(2\sqrt{aw}) - J_1(2\sqrt{aw})]$
111	X	$\sqrt{\frac{1}{W}} \left[\left[\left[\left(2\sqrt{dW} \right) - J_1 \left(2\sqrt{dW} \right) \right] \right] \right]$
112	$x^{\nu-1}$ sinh(ax)	$\frac{w^2}{2a_{V=3}^2} [vI_V(2\sqrt{aw}) + \sqrt{aw}I_{V+1}(2\sqrt{aw}) - vJ_V(2\sqrt{aw}) + \sqrt{aw}J_{V+1}(2\sqrt{aw})]$
113	$x^{v-1} \cosh(ax)$	$\sqrt{\frac{1}{w}} \begin{bmatrix} I_{1}(2\sqrt{aw}) - J_{1}(2\sqrt{aw}) \end{bmatrix}$ $\frac{w^{2}_{2}-1}{2w^{2}_{2}} \begin{bmatrix} v_{1}(2\sqrt{aw}) + \sqrt{aw} I_{v+1}(2\sqrt{aw}) - vJ_{v}(2\sqrt{aw}) + \sqrt{aw} J_{v+1}(2\sqrt{aw}) \end{bmatrix}$ $\frac{w^{2}_{2}-1}{2w^{2}_{2}} \begin{bmatrix} v\sqrt{aw} I_{v}(2\sqrt{aw}) + aw I_{v+1}(2\sqrt{aw}) - v\sqrt{aw} J_{v}(2\sqrt{aw}) - aw J_{v+1}(2\sqrt{aw}) \end{bmatrix}$ $\frac{w^{2}_{2}-1}{2w^{2}_{2}-1} \begin{bmatrix} v\sqrt{aw} I_{v}(2\sqrt{aw}) + aw I_{v+1}(2\sqrt{aw}) - v\sqrt{aw} J_{v}(2\sqrt{aw}) - aw J_{v+1}(2\sqrt{aw}) \end{bmatrix}$
114	sin(ax) sinh(ax)	$\frac{(aw)^2}{(aw)^2} \circ F_7(; \frac{3}{2}, \frac{3}{2}, 1, \frac{5}{2}, \frac{5}{2}, \frac{3}{2}; -\frac{(aw)^2}{(aw)^2})$
	cos(ax) sinh(ax)aw	$_{0}F_{7}(:\frac{1}{2},\frac{1}{2},\frac{3}{2},\frac{3}{2},\frac{1}{2},\frac{5}{2},\frac{5}{2},-\frac{(aw)^{2}}{2(aw)^{2}}) - \frac{(aw)^{3}}{2(aw)^{3}} {}_{0}F_{7}(:1,\frac{5}{2},\frac{5}{2},\frac{3}{2},\frac{3}{2},\frac{7}{7},\frac{7}{7},-\frac{(aw)^{2}}{2(aw)^{2}})$
115	COS(ux) SITIT(ux)uw	0.707777777777777777777777777777777777
115 116	sin(ax) cosh(ax)	$ a_{0}F_{7}(; \frac{1}{2}, \frac{1}{2}, \frac{3}{4}, \frac{3}{4}, 1, \frac{5}{4}, \frac{5}{4}; -\frac{(aw)^{2}}{(16,384)} - \frac{(aw)^{3}}{18} a_{0}F_{7}(; 1, \frac{5}{4}, \frac{5}{2}, \frac{3}{2}, \frac{7}{4}, \frac{7}{4}; -\frac{(aw)^{2}}{(16,384)}) a_{W_{0}}F_{7}(; \frac{1}{2}, \frac{1}{2}, \frac{3}{4}, \frac{3}{4}, 1, \frac{5}{4}; \frac{5}{4}; -\frac{(aw)^{2}}{(16,384)} + \frac{(aw)^{3}}{18} a_{0}F_{7}(; 1, \frac{5}{4}, \frac{5}{4}, \frac{3}{2}, \frac{3}{2}, \frac{7}{4}, \frac{7}{4}; -\frac{(aw)^{2}}{(16,384)}) $

Table 1	((Continued))
---------	---------------

S. No	f(x)	$S^{-1}[f(x)] = F_{-1}(w)$
118	$\sinh(2\sqrt{a}\sqrt{x})$	$\frac{4\sqrt{aw}}{\sqrt{\pi}} {}_{0}F_{2}(; \frac{3}{2}, \frac{3}{2}; aw)$
119	$\cosh(2\sqrt{a}\sqrt{x})$	$_{0}F_{2}(;\frac{1}{2},1;aw)$
120	$\sqrt{x} \sinh(2\sqrt{a}\sqrt{x})$	$2\sqrt{a}w_0F_2(;\frac{3}{2},2;aw)$
121	$\sqrt{x} \cosh(2\sqrt{a}\sqrt{x})$	$\frac{2\sqrt{w}}{\sqrt{\pi}}_{0}F_{2}(;\frac{1}{2},\frac{3}{2};aw)$
122	$\frac{\sin((2\sqrt{u\sqrt{x}}))}{\sqrt{x}}$	$2\sqrt{a_0}F_2(; 1, \frac{3}{2}; aw)$
123	$\frac{\cosh(2\sqrt{a}\sqrt{x})}{\sqrt{x}}$	$\frac{1}{\sqrt{w\pi}} {}_{0}F_{2}(; \frac{1}{2}, \frac{1}{2}; aw)$
124	$\frac{\sinh^2(2\sqrt{a\sqrt{x}})}{\sqrt{x}}$	$\frac{2a\sqrt{w}}{\sqrt{\pi}} {}_{1}F_{3}(1; \frac{3}{2}, \frac{3}{2}, 2; aw)$
125	$\frac{\cosh^2(2\sqrt{a}\sqrt{x})}{\sqrt{x}}$	$\frac{1}{\sqrt{\pi w}} [1 + 2aw_1F_3(1; \frac{3}{2}, \frac{3}{2}, 2; aw)]$
126	$\frac{\sinh(2\sqrt{a}\sqrt{x})}{\cosh(2\sqrt{a}\sqrt{x})}$ $\frac{\sinh^2(2\sqrt{a}\sqrt{x})}{\sqrt{x}}$ $\frac{\sinh^2(2\sqrt{a}\sqrt{x})}{\sqrt{x}}$ $\frac{\cosh^2(2\sqrt{a}\sqrt{x})}{\sqrt{x}}$ $\frac{\sinh(2\sqrt{a}\sqrt{x})}{\sqrt{x}}$	$\frac{\sqrt{Ra}}{\sqrt{4a}} {}_{0}F_{2}(;\frac{3}{4},\frac{3}{2};2aw)$
127	$\frac{\cosh(2\sqrt{a}\sqrt{x})}{x^{\frac{3}{4}}}$	$\frac{1}{w^{\frac{3}{4}}(-\frac{1}{4})!} {}_{w^{\frac{3}{4}}(-\frac{1}{4})!} {}_{v^{\frac{3}{4}}(-\frac{1}{4})!} {}_{v^{\frac{3}{4}(-\frac{1}{4})!}} {}_{v^{\frac{3}{4}(-\frac{1}{4})!}}$
128	x^{v-1} sinh($2\sqrt{a}\sqrt{x}$)	$\frac{\sqrt{2aw^{\nu-\frac{1}{2}}}}{(\nu-\frac{1}{2})!} \circ F_2(; \frac{3}{2}, \nu+\frac{1}{2}; \frac{aw}{2})$
129	$x^{\nu-1} \cosh(2\sqrt{a}\sqrt{x})$	$\frac{w^{v-1}}{(v-1)!} e^{-F_2(v, \frac{1}{2}, v; \frac{aw}{2})}$
130	$\sinh^{-1}(x)$	$W_2F_3(\frac{1}{2},\frac{1}{2};1,\frac{3}{2},\frac{3}{2};-\frac{w^2}{4})$
131	$\cosh^{-1}(x)$	$-i\underline{w_2}F_3(\frac{1}{2},\frac{1}{2};1,\frac{3}{2},\frac{3}{2};\frac{w^2}{4}) + \frac{i\pi}{2}$
132	$\cosh^{-1}(1+\frac{x}{a})$	$\sqrt{\frac{8w}{a\pi}} {}_2F_2(\frac{1}{2},\frac{1}{2};\frac{3}{2},\frac{3}{2};-\frac{w}{2a})$
133	$x \sinh^{-1}(x)$	$\frac{w^2}{2} {}_2F_3(\frac{1}{2}, \frac{1}{2}; \frac{3}{2}, \frac{3}{2}, 2; -\frac{w^2}{4})$
134	$\sinh((2n + 1) \sinh^{-1}(x))$	$(2n+1)w_2F_3(-n,n+1;1,\frac{3}{2},\frac{3}{2};-\frac{w^2}{4})$
135	cosh(2 <i>n</i> sinh ⁻¹ (x))	$_{2}F_{3}(n,-n;\frac{1}{2},\frac{1}{2},1;-\frac{w^{2}}{4})$
136	sinh(v sinh ⁻¹ (x))	$\frac{vw_2F_3(\frac{1+v}{2},\frac{1-v}{2};1,\frac{3}{2},\frac{3}{2};-\frac{w^2}{4})}{{}_2F_3(\frac{v}{2},-\frac{v}{2};\frac{1}{2},\frac{1}{2},1;-\frac{w^2}{4})}$
137	cosh(v sinh ⁻¹ (x))	$_{2}F_{3}(\frac{v}{2},-\frac{v}{2};\frac{1}{2},\frac{1}{2},1;-\frac{w^{2}}{4})$
138	$\sinh(v\cosh^{-1}(1+\frac{x}{a}))$	$v\sqrt{\frac{8w}{a\pi}}{}_{2}F_{2}(\frac{1}{2}+v,\frac{1}{2}-v,\frac{3}{2},\frac{3}{2};-\frac{w}{2a})$
139	$\frac{\exp(n\sinh^{-1}(x))}{\sqrt{1+x^2}}$	$nw_2F_3(1+\frac{n}{2},1-\frac{n}{2};1,\frac{3}{2},\frac{3}{2};-\frac{w^2}{4})+{}_2F_3(\frac{1-n}{2},\frac{1+n}{2};\frac{1}{2},\frac{1}{2},1;-\frac{w^2}{4})$
140	$\frac{\exp(-n\sinh^{-1}(x))}{\sqrt{1+x^2}}$	$-nw_2F_3(1-\tfrac{n}{2},1+\tfrac{n}{2};1,\tfrac{3}{2},\tfrac{3}{2};-\tfrac{w^2}{4})+{}_2F_3(\tfrac{1-n}{2},\tfrac{1+n}{2};\tfrac{1}{2},\tfrac{1}{2},1;-\tfrac{w^2}{4})$
141	$\frac{\sinh(v\sinh^{-1}(x))}{\sqrt{x^2+1}}$	$vw_2F_3(1-\frac{v}{2},1+\frac{v}{2};1,\frac{3}{2},\frac{3}{2};-\frac{w^2}{4})$
142	$\frac{\cosh(n \sinh^{-1}(x))}{\sqrt{x^2+1}}$	${}_{2}F_{3}(\frac{1-n}{2},\frac{1+n}{2};\frac{1}{2},\frac{1}{2},\frac{1}{2},1;-\frac{w^{2}}{4})$
143	$\frac{\sqrt{1+x^2}}{\exp(-n \sinh^{-1}(x))} \\ \frac{\sinh(x \sinh^{-1}(x))}{\sqrt{x^2+1}} \\ \frac{\cosh(n \sinh^{-1}(x))}{\sqrt{x^2+1}} \\ \frac{\cosh(n \cosh^{-1}(x))}{\sqrt{x^2+1}} \\ \frac{\cosh(n \cosh^{-1}(x))}{\sqrt{x^2-1}} $	$-\frac{1}{\frac{in\pi}{2e^{-2}}}\left[i(1+e^{in\pi})_{2}F_{3}(\frac{1-n}{2},\frac{1+n}{2};\frac{1}{2},\frac{1}{2},1;\frac{w^{2}}{4})+nw(1+e^{in\pi})_{2}F_{3}(1-\frac{n}{2},1+\frac{1+n}{2e^{-2}};\frac{1}{2},$
	$exp(2ysinh^{-1}(\frac{x}{y}))$	$\frac{n}{2}; 1, \frac{3}{2}; \frac{3}{2}; \frac{w^2}{4})]$
144	$\frac{\exp(2\nu\sinh^{-1}(\frac{x}{2a}))}{\sqrt{x^3+4a^2x}}$	$\frac{\operatorname{csgn}(a)}{2a^2\sqrt{\pi w}} [a_2F_3(\frac{1}{2}+v,\frac{1}{2}-v,\frac{1}{4},\frac{1}{2},\frac{3}{4};-\frac{w^2}{16a^2}) + 2vw_2F_3(1-v,1+v,\frac{1}{2},1$
	$\exp(-2y \sinh^{-1}(X))$	$v; \frac{3}{4}, \frac{5}{4}, \frac{3}{2}; -\frac{w^2}{16a^2})]$
145	$\frac{\exp(-2v\sinh^{-1}(\frac{x}{2a}))}{\sqrt{x^3+4a^2x}}$	$\frac{csgn(a)}{2a^2\sqrt{\pi w}} [a_2F_3(\frac{1}{2} + v, \frac{1}{2} - v, \frac{1}{4}, \frac{1}{2}, \frac{3}{4}; -\frac{w^2}{16a^2}) - 2vw_2F_3(1 - v, 1 + \frac{w^2}{16a^2}) - 2vw_2F_3(1 - v, 1 $
		$V; \frac{3}{4}, \frac{5}{4}, \frac{3}{2}; -\frac{w^2}{16a^2})]$
146	$\frac{1}{\sqrt{x^3+4a^2x}}$ (cos((v +	$\frac{csgn(a)}{a^2\sqrt{2\pi w}}[a\cos(\pi v)_2F_3(\frac{1}{2}+v,\frac{1}{2}-v;\frac{1}{4},\frac{1}{2},\frac{3}{4};-\frac{w^2}{16a^2})+2vw\sin(\pi v)_2F_3(1-v$
	$(\frac{1}{4})\pi$) exp(-2v sinh ⁻¹ ($\frac{x}{2a}$)) +	$v, 1 + v; \frac{3}{4}, \frac{5}{4}, \frac{3}{2}; -\frac{w^2}{16\sigma^2})$]
	$sin((v + \frac{1}{4})\pi) exp(2v sinh^{-1}(\frac{x}{2a})))$	
147	$\frac{1}{\sqrt{x^3+4a^2x}}$ (sin((v +	$\frac{\operatorname{csgn}(a)}{a^2\sqrt{2\pi w}}[a\sin(\pi v)_2F_3(\frac{1}{2}+v,\frac{1}{2}-v;\frac{1}{4},\frac{1}{2},\frac{3}{4};-\frac{w^2}{16a^2})-2vw\cos(\pi v)_2F_3(1-v)_2F_3($
	$(\frac{1}{4})\pi$) exp(-2v sinh ⁻¹ ($\frac{x}{2a}$)) -	$v, 1 + v; \frac{3}{4}, \frac{5}{4}, \frac{3}{2}; -\frac{w^2}{16\sigma^2})$]
	$\cos((v + \frac{1}{4})\pi) \exp(2v \sinh^{-1}(\frac{x}{2a})))$	~ 104-
148	$\frac{\cos((v+\frac{1}{4})\pi)\exp(2v\sinh^{-1}(\frac{x}{2a}))}{\sqrt{x^3+4a^2x}}$	$\frac{v\sqrt{w}\operatorname{csgn}(a)}{a^2\sqrt{\pi}}{}_2F_3(1-v,1+v;\frac{3}{4},\frac{5}{4},\frac{3}{2};-\frac{w^2}{16a^2})$
149	$\frac{\cosh(2v \sinh^{-1}(\frac{x}{2a}))}{\sqrt{x^3 + 4a^2x}}$	$\frac{csgn(a)}{2a\sqrt{\pi}w}{}_{2}F_{3}(\frac{1}{2}+v,\frac{1}{2}-v;\frac{1}{4},\frac{1}{2},\frac{3}{4};-\frac{w^{2}}{16a^{2}})$
	$\sqrt{X^2 + 4a^2 X}$	$J_{0}(w) = \frac{\pi}{2} [J_{0}(w) \mathbf{H}_{1}(w) - J_{1}(w) \mathbf{H}_{0}(w)]$

S. No	Function	Definition
1	First kind Bessel function	$J_{n}(x) = \sum_{k=0}^{\infty} \frac{(-1)^{k} (\frac{x}{2})^{2k+n}}{\frac{k!(n+k)!}{k!(n+k)!}}$ $J_{n}(x) = \sum_{k=0}^{\infty} \frac{(\frac{x}{2})^{2k+n}}{\frac{k!(n+k)!}{k!(n+k)!}}$
2	Modified first kind Bessel function	$I_n(x) = \sum_{k=0}^{\infty} \frac{\frac{(x)^{2k+n}}{k!(n+k)!}}{\frac{(x)^{2k+n}}{k!(n+k)!}}$
3	Kelvin real function	$\operatorname{ber}_n(x) = \operatorname{Re} J_n(i^{\frac{3}{2}}x)$
4	Kelvin imaginary function	$bei_n(x) = \operatorname{Im} J_n(i^{\frac{3}{2}}x)$
5	Error function	$\operatorname{erf}(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-z^2} dz$
6	Complementary error function	$\operatorname{erfc}(x) = \frac{2}{\sqrt{\pi}} \int_{x}^{\infty} e^{-z^2} dz$
7	Struve function	$\mathbf{H}_{v}(x) = \left(\frac{x}{2}\right)^{v+1} \sum_{k=0}^{\infty} \frac{(-1)^{k} \left(\frac{x}{2}\right)^{2k}}{\Gamma(k+\frac{3}{2})\Gamma(k+v+\frac{3}{2})}$
8	Modified Struve function	$\mathbf{L}_{\nu}(x) = (\frac{x}{2})^{\nu+1} \sum_{k=0}^{\infty} \frac{(\frac{x}{2})^{2k}}{\Gamma(k+\frac{3}{2})\Gamma(k+\nu+\frac{3}{2})}$
9	Generalized hypergeometric function	${}_{p}F_{q}((a_{p});(b_{q});x) = \sum_{k=0}^{\infty} \frac{(a_{1})_{k} \cdot (a_{2})_{k} \cdots (a_{p})_{k} x^{k}}{(b_{1})_{k} \cdot (b_{2})_{k} \cdots (b_{q})_{k} k!}$
10	Lommel S1 function	$\mathbf{S}_{\mu,\nu}^{(1)}(x) = \frac{x^{\mu+1} r_2(1; \frac{\mu-\nu+3}{2}, \frac{\mu+\nu+3}{2}; -\frac{x^2}{4})}{(\mu+1)^2 - \nu^2}$
11	Whittaker M function	$M_{\kappa,\mu}(x) = e^{-\frac{x}{2}} x^{\mu+\frac{1}{2}} M(\mu-\kappa+\frac{1}{2},1+2\mu;x)$
12	Kummer function	$M(a,b,c) = \sum_{n=0}^{\infty} \frac{a^{(n)}x^n}{b^{(n)}n!} = {}_1F_1(a;b;x)$
13	Sign function	$\operatorname{csgn}(x) = \begin{cases} 1; x < \mathcal{R}(x), \\ -1; x > \mathcal{R}(x) \end{cases}$
14	Sine integral	$Si(x) = \int_0^x \frac{\sin(z) dz}{z}$
15	Cosine integral	$\operatorname{Ci}(x) = -\int_{x}^{\infty} \frac{\cos(z) dz}{z}$
16	Hyperbolic cosine integral	$Chi(x) = \gamma^{2x} + ln(x^{2}) + \int_{x}^{\infty} \frac{(cos(z)-1) dz}{z}$
17	Exponential integral	$Ei(x) = \int_{x}^{\infty} \frac{e^{-z} dz}{z}$
18	Laguerre polynomials	$L_n(x) = \frac{e^x}{n!} \frac{d^n}{dx^n} (x^n e^{-x})$
19	Euler's constant	$\gamma = 0.5772156$

 Table 2
 Special functions definition

$$\mathbb{S}^{-1}\left[x^n f(x)\right] = \underbrace{\int_0^w \cdots \int_0^w}_{n-times} F_{-1}(\eta) (d\eta)^n.$$
(6)

$$\mathbb{S}^{-1}\left[\frac{f(x)}{x^n}\right] = \frac{d^n F_{-1}(w)}{dw^n}.$$
(7)

Proof The proof is straightforward.

The following steps of Algorithm 1 solve the ordinary differential equations [14].

Algorithm 1 DIST methodology

Step 1. Apply inverse Sumudu using Theorem 1 to a given differential equation.

Step 2. If the result of Step 1 is an integro-differential equation with n integrals, then convert to a differential equation by substituting:

$$F_{-1}(w) = \frac{d^n G_{-1}(w)}{dw^n}.$$
(8)

Step 3. Find the power series solution of Step 2.

Step 4. Convert $G_{-1}(w)$ back to $F_{-1}(w)$ using Eq. (8).

Step 5. Apply the Sumudu transform to Step 4 which leads to the solution f(x) of the given differential equation.

3 New exact solutions of AGE-F1

In this work, the AGE-F1 (Sect. 40.1, pp. 308, [12]) ordinary differential equation is solved for integer coefficients to get their new exact solutions.

$$-\frac{d^2y(x)}{dx^2} + \frac{l(l+1)y(x)}{x^2} = \lambda y(x).$$
(9)

Applying the inverse Sumudu transform to Eq. (9) with $\mathbb{S}^{-1}[y(x)] = F_{-1}(w)$, using the properties of Theorem 1, and converting the resulting integro-differential equation and simplifying, we obtain

$$-w^2 \frac{d^4 G_{-1}(w)}{dw^4} + l(l+1) \frac{d^2 G_{-1}(w)}{dw^2} = \lambda G_{-1}(w).$$
(10)

Example 1 For l = 1 in Eq. (10), Step 3 of Algorithm 1 gives the following power series solution:

$$G_{-1}(w) := \frac{72}{\lambda^2} \left[\sum_{n=2}^{\infty} \frac{2^{4n} (n-1) (-\frac{\lambda}{16})^n w^{2n}}{n \Gamma(2n)^2} - \sum_{n=0}^{\infty} \frac{2^{4n} (2n-1) (2n+1) (-\frac{\lambda}{16})^n w^{2n+1}}{\Gamma(2n+2)^2} \right].$$
(11)

Next converting Eq. (11) to $F_{-1}(w)$ and applying the Sumudu transform, we get

$$y(x) := \frac{1}{\lambda^{\frac{3}{2}} x} \Big[\left(\lambda^2 x + 72 \right) \sin(x\sqrt{\lambda}) + \left(\lambda^{\frac{3}{2}} - 72x\sqrt{\lambda} \right) \cos(x\sqrt{\lambda}) \Big].$$
(12)

y(x) in Eq. (12) is the new exact solution of Eq. (9) with l = 1.

Example 2 For l = 2 in Eq. (10), we have the following power series solution:

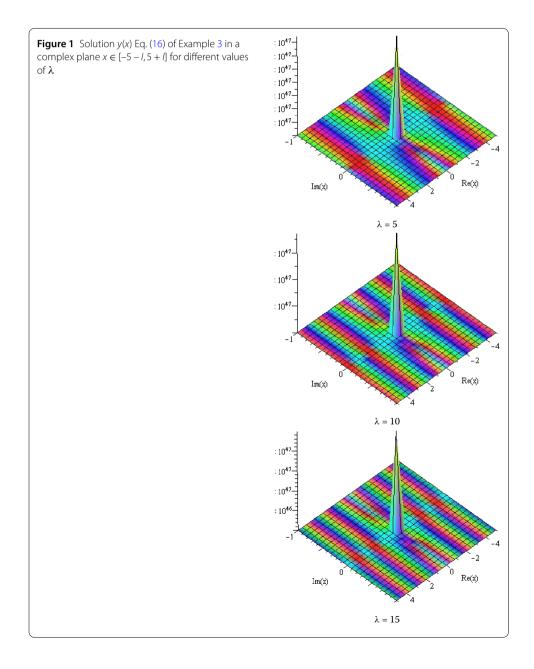
$$G_{-1}(w) := \frac{1}{3} \sum_{n=0}^{\infty} \frac{2^{4n} (2n-3)(2n-1)(-\frac{\lambda}{16})^n w^{2n}}{\Gamma(2n+1)^2} + \frac{7200}{\lambda^2} \sum_{n=2}^{\infty} \frac{2^{4n} (n-1)n(-\frac{\lambda}{16})^n w^{2n+1}}{n\Gamma(2n+2)^2}.$$
(13)

Differentiating twice w.r.t. w, (13) converts to $F_{-1}(w)$, then applying the Sumudu transform leads to

$$y(x) := -\frac{1}{3x^2 \lambda^{\frac{5}{2}}} \Big[(5400\lambda x^2 - 3\lambda^3 x - 16,200) \sin(x\sqrt{\lambda}) \\ + (\lambda^{\frac{7}{2}} x^2 - 16,200\sqrt{\lambda} x - 3\lambda^{\frac{5}{2}}) \cos(x\sqrt{\lambda}) \Big].$$
(14)

Here (14) is the new exact solution of (9) with l = 2.

Example 3 The power series solution of (10) for l = 3 is given by


$$G_{-1}(w) := -\frac{4}{3\lambda} \sum_{n=1}^{\infty} \frac{2^{4n}(2n-5)(2n-3)(2n-1)n(-\frac{\lambda}{16})^n w^{2n-1}}{\Gamma(2n+1)^2}$$

$$-\frac{151,200}{\lambda^3}\sum_{n=3}^{\infty}\frac{2^{4n}(n-2)(n-1)(-\frac{\lambda}{16})^nw^{2n}}{n(2n+1)\Gamma(2n)^2}.$$
(15)

Converting (15) to $F_{-1}(w)$ and applying the Sumudu transform to resulting summation leads to

$$y(x) := \frac{1}{3x^{3}\lambda^{4}} \Big[-2 \Big(\lambda^{\frac{9}{2}}x^{3} + 680,400\lambda^{\frac{3}{2}}x^{2} - 15\lambda^{\frac{7}{2}}x - 1,701,000\sqrt{\lambda} \Big) \sin(x\sqrt{\lambda}) \\ + \Big(226,800\lambda^{2}x^{3} - 12\lambda^{4}x^{2} - 340,200\lambda x + 30\lambda^{3} \Big) \cos(x\sqrt{\lambda}) \Big].$$
(16)

y(x) in (16) is the new exact solution of (9) with l = 3. The complex plot of (16) for $\lambda = 5, 10$, and 15 is shown in Fig. 1.

Example 4 When l = 4 in (10), the power series solution is given by

$$G_{-1}(w) := \frac{1}{15\lambda} \sum_{n=1}^{\infty} \frac{2^{4n}(2n-7)(2n-5)(2n-3)(-\frac{\lambda}{16})^n w^{2n-2}}{n\Gamma(2n-1)^2} + \frac{38,102,400}{\lambda^4} \sum_{n=4}^{\infty} \frac{2^{4n}(n-3)(n-2)(n-1)(-\frac{\lambda}{16})^n w^{2n-1}}{(2n+1)\Gamma(2n)^2}.$$
(17)

Applying the Sumudu transform after converting (17) to $F_{-1}(w)$ leads to

$$y(x) := \frac{1}{15x^4\lambda^5} \left[71,442,000 \left(\lambda^{\frac{5}{2}} x^4 - \frac{\lambda^{\frac{11}{2}} x^3}{3,572,100} - 45\lambda^{\frac{3}{2}} x^2 + \frac{\lambda^{\frac{9}{2}} x}{340,200} + 105\sqrt{\lambda} \right) \sin(x\sqrt{\lambda}) + 2\lambda \left(\lambda^5 x^4 + 357,210,000\lambda x^3 - 45\lambda^4 x^2 - 3,750,705,000x + 105\lambda^3 \right) \cos(x\sqrt{\lambda}) \right].$$
(18)

y(x) in (18) is the new exact solution of (9) for l = 4. The complex plot of (18) for $\lambda = 5, 10$, and 15 is shown in Fig. 2.

Example 5 In (10) for l = 5 the power series solution is

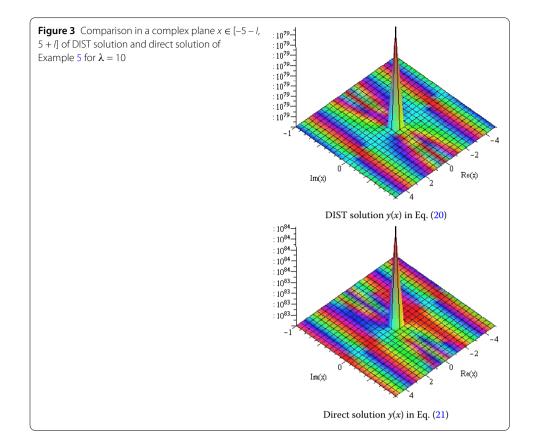
$$G_{-1}(w) := -\frac{8}{15\lambda^2} \sum_{n=2}^{\infty} \frac{2^{4n} (2n-9)(2n-7)(2n-5)(2n-3)(n-1)(-\frac{\lambda}{16})^n w^{2n-3}}{n\Gamma(2n-1)^2} - \frac{6,706,022,400}{\lambda^5} \times \sum_{n=5}^{\infty} \frac{2^{4n} (2n-1)(n-4)(n-3)(n-2)(n-1)(-\frac{\lambda}{16})^n w^{2n-2}}{(2n+1)\Gamma(2n)^2}.$$
 (19)

Applying the Sumudu transform after converting (19) leads to

$$y(x) := \frac{1}{15x^5\lambda^6} \left[8 \left(\lambda^{\frac{13}{2}} x^5 + 11,787,930,000\lambda^{\frac{5}{2}} x^4 - 105\lambda^{\frac{11}{2}} x^3 - 330,062,040,000\lambda^{\frac{3}{2}} x^2 + 945\lambda^{\frac{9}{2}} x + 742,639,590,000\sqrt{\lambda} \right) \sin(x\sqrt{\lambda}) - 6,286,896,000 \left(\lambda^2 x^5 - \frac{\lambda^5 x^4}{52,390,800} - 105\lambda x^3 + \frac{\lambda^4 x^2}{1,871,100} + 945x - \frac{\lambda^3}{831,600} \right) \lambda \cos(x\sqrt{\lambda}) \right].$$

$$(20)$$

y(x) in (20) is the new exact solution of (9) with l = 5.


Remark 1 Solutions in (12), (14), (16), (18), and (20) for respective l = 1 to 5 in (9) are verified in a Maple computer algebra system which satisfies the given differential equation

and all the new solutions appear for the first time in this research work as per the literature surveyed. Comparing to solving directly, the DIST method gives new exact analytical solutions for ordinary differential equations. For instance l = 5 in (9), solving directly gives the following solution:

$$y(x) := \frac{1}{x^5} \Big[\left(\lambda^{\frac{9}{2}} x^5 - 15\lambda^4 x^4 - 105\lambda^{\frac{7}{2}} x^3 + 420\lambda^3 x^2 + 945\lambda^{\frac{5}{2}} x - 945\lambda^2 \right) \sin(x\sqrt{\lambda}) \\ + \left(\lambda^{\frac{9}{2}} x^5 + 15\lambda^4 x^4 - 105\lambda^{\frac{7}{2}} x^3 - 420\lambda^3 x^2 + 945\lambda^{\frac{5}{2}} x + 945\lambda^2 \right) \cos(x\sqrt{\lambda}) \Big].$$
(21)

Comparative study of (20) and (21) shows that the DIST method solves the differential equations for new exact solutions, which is verified in a Maple computer algebra system both numerically and graphically, shown in a complex plot of Fig. 3.

4 New exact complex solutions of AGE-F1

By computing another power series solution of Step 3 of Algorithm 1, the second set of solutions of (9) is studied in this section which are new exact solutions. All the computations are worked through the Maple computer algebra system.

Example 6 When l = 1 in (10), the formal series solution is given by

$$G_{-1}(w) := -\frac{24i}{\lambda^{\frac{3}{2}}} \sum_{n=3}^{\infty} \frac{(n-2)e^{\frac{in\pi}{2}} \lambda^{\frac{n}{2}w^{n}}}{n\Gamma(n)^{2}}.$$
(22)

Converting $G_{-1}(w)$ in (22) to $F_{-1}(w)$ by differentiating twice w.r.t. *w* and then applying the Sumudu transform gives

$$y(x) := \frac{1}{\lambda x} \Big[24(ix\sqrt{\lambda} - 1)e^{ix\sqrt{\lambda}} \Big].$$
⁽²³⁾

Here (23) is the second new exact complex solution of (9) with l = 1.

Example 7 When l = 2 in (10), the formal series solution is

$$G_{-1}(w) := \frac{96(12 + \lambda w^2)}{\lambda^2} + \frac{384}{\lambda^2} \sum_{n=4}^{\infty} \frac{(n-3)(n-1)e^{\frac{in\pi}{2}}\lambda^{\frac{n}{2}w^n}}{n\Gamma(n+1)^2}.$$
(24)

Converting $G_{-1}(w)$ in (24) to $F_{-1}(w)$ by differentiating twice w.r.t. *w* and then applying the Sumudu transform leads to

$$y(x) := -\frac{192e^{-x\sqrt{-\lambda}}}{\lambda^2 x^2} \Big[\lambda x^2 - 3x\sqrt{-\lambda} - 3 + (\lambda x^2 + 3x\sqrt{-\lambda} - 3)e^{2x\sqrt{-\lambda}} \Big].$$
(25)

y(x) in (25) is the second new exact complex solution of (9) with l = 2.

Example 8 When l = 3 in (10), the formal series solution is given by

$$G_{-1}(w) := -\frac{11,520i}{\lambda^{\frac{5}{2}}} \sum_{n=5}^{\infty} \frac{(n-4)(n-2)e^{\frac{in\pi}{2}}\lambda^{\frac{n}{2}w^{n}}}{n(n+1)\Gamma(n)^{2}}.$$
(26)

Applying the Sumudu transform after converting (26) to $F_{-1}(w)$ gives

$$y(x) := \frac{11,520e^{ix\sqrt{\lambda}}}{\lambda^3 x^3} \Big[i\lambda^{\frac{3}{2}} x^3 - 6\lambda x^2 - 15ix\sqrt{\lambda} + 15 \Big].$$
(27)

y(x) in (27) is the second new exact complex solution of (9) with l = 3.

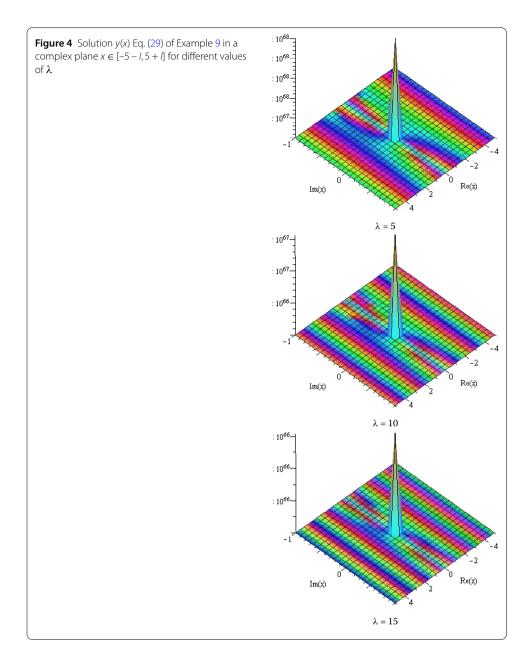
Example 9 When l = 4 in (10), the formal series solution is

$$G_{-1}(w) := -\frac{480}{\lambda^3} \left[-\lambda^2 w^4 - 216\lambda w^2 - 8640 + 1152 \sum_{n=6}^{\infty} \frac{(n-5)(n-3)(n-1)e^{\frac{in\pi}{2}}\lambda^{\frac{n}{2}w^n}}{(n+2)\Gamma(n+1)^2} \right].$$
(28)

Converting (28) to $F_{-1}(w)$ and applying the Sumudu transform gives

$$y(x) := \frac{552,960e^{ix\sqrt{\lambda}}}{\lambda^{\frac{17}{2}}x^4} \Big[\lambda^{\frac{13}{2}}x^4 + 10i\lambda^6x^3 - 45\lambda^{\frac{11}{2}}x^2 - 105i\lambda^5x + 105\lambda^{\frac{9}{2}}\Big].$$
 (29)

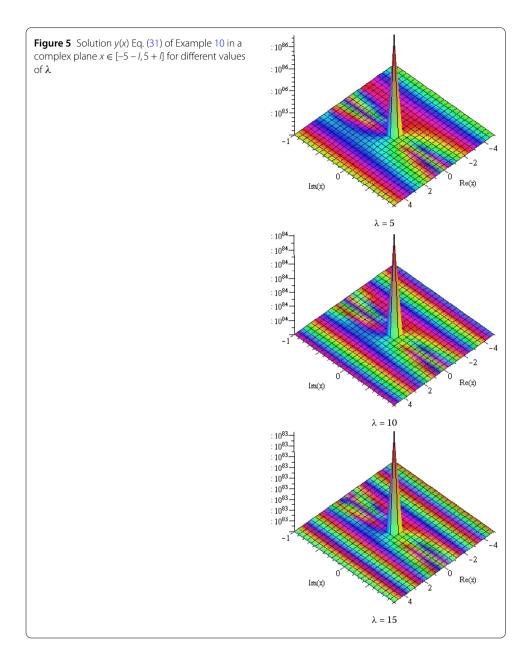
Here (29) is the second new exact complex solution of (9) with l = 4. The complex plot of (29) for $\lambda = 5, 10$, and 15 is shown in Fig. 4.


Example 10 When l = 5 in (10), the formal series solution is given by

$$G_{-1}(w) := \frac{38,707,200i}{\lambda^{\frac{7}{2}}} \sum_{n=7}^{\infty} \frac{(n-6)(n-4)(n-2)e^{\frac{in\pi}{2}}\lambda^{\frac{n}{2}w^{n}}}{n(n+1)(n+3)\Gamma(n)^{2}}.$$
(30)

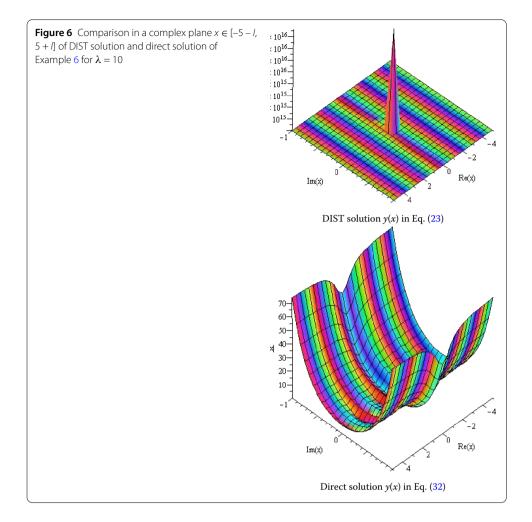
Converting (30) to $F_{-1}(w)$ by differentiating w.r.t. *w* and then applying the Sumudu transform leads to

$$y(x) := -\frac{38,707,200e^{ix\sqrt{\lambda}}}{\lambda^6 x^5} \left[i\lambda^{\frac{7}{2}} x^5 - 15\lambda^3 x^4 - 105i\lambda^{\frac{5}{2}} x^3 + 420\lambda^2 x^2 + 945i\lambda^{\frac{3}{2}} x - 945\lambda \right].$$
(31)


Here y(x) in (31) is the second new exact complex solution of (9) with l = 5. The complex plot of (31) for $\lambda = 5, 10$, and 15 is shown in Fig. 5.

Remark 2 Solutions (23), (25), (27), (29), and (31) are verified in the Maple computer algebra system, and they are new exact complex solutions of (9) respectively for l = 1 to 5. These complex solutions appear for the first time in this research works as per the literature surveyed. For instance, solving directly l = 1 in (9) gives

$$y(x) := \frac{e^{x\sqrt{-\lambda}}(\sqrt{\lambda x^2 + 2i\sqrt{\lambda}x - 1}) + e^{-x\sqrt{-\lambda}}(\sqrt{\lambda x^2 - 2i\sqrt{\lambda}x - 1})}{x}.$$
(32)


Comparing solutions (23) and (32), DIST solves the differential equations to new exact complex solutions, which is verified in the Maple computer algebra system both numerically and graphically and shown in a complex plot of Fig. 6.

Next, when solving for general l, (9), DIST method in both the above methods gives the new approximate analytical solution in terms of Lommel S1 function which will be studied in a separate work numerically.

5 Conclusion

Through this research communication an algorithm based on the discrete inverse Sumudu Transform (DIST) was described to solve ordinary differential equations for their new exact analytical and complex solutions. An algebro-geometric equation for different integer value coefficients was studied with the algorithm and the method was proven by deriving their new solutions. Efficiency of the DIST method was shown via the comparative study in Remarks 1 and 2, Maple plots were shown graphically in Figs. 3 and 6. The enlarged list of functions and their inverse Sumudu transforms in Table 1 shows that inverting the

elementary functions upon Sumudu discrete-wise gives the special functions in Table 2 and will help future research.

Acknowledgements

The authors are very grateful to Universiti Putra Malaysia for the partial support under the research grant having vot number UPM-GPB/2017/9543000.

Funding

Universiti Putra Malaysia.

Competing interests

The authors declare that they have no competing interests.

Authors' contributions

All authors contributed equally. All authors read and approved the final manuscript.

Author details

¹Department of Mathematics, Faculty of Science, Universiti Putra Malaysia, UPM Serdang, Selangor, Malaysia. ²Department of Information Technology, School of Information Technology and Engineering, Vellore Institute of Technology, Vellore, India.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 10 May 2018 Accepted: 30 August 2018 Published online: 14 September 2018

References

- Mumford, D.: An algebro-geometric construction of commuting operators and of solutions to the Toda lattice equation, Korteweg de Vries equation and related non-linear equations. In: Int. Symp. on Algebraic Geometry, Kyoto, pp. 115–153 (1977)
- Belokolos, E.D., Bobenko, A.I., Matveev, V.B., Enolskii, V.Z.: Algebraic-geometric principles of superposition of finite-zone solutions of integrable non-linear equations. Russ. Math. Surv. 41(2), 1–49 (1986). https://doi.org/10.1070/RM1986v041n02ABEH003241
- Belokolos, E.D., Bobenko, A.I., Enolskii, V.Z., Its, A.R., Matveev, V.B.: Algebro-Geometric Approach to Nonlinear Integrable Equations. Springer Series in Nonlinear Dynamics. Springer, Berlin (1994)
- Gesztesy, F., Weikard, R.: Elliptic algebro-geometric solutions of the KdV and AKNS hierarchies an analytic approach. Bull. Am. Math. Soc. 35(4), 271–317 (1998)
- Gesztesy, F., Ratneseelan, R.: An alternative approach to algebro-geometric solutions of the AKNS hierarchy. Rev. Math. Phys. 10(3), 345–391 (1998)
- Alber, M.S., Fedorov, Y.N.: Algebraic geometrical solutions for certain evolution equations and Hamiltonian flows on nonlinear subvarieties of generalized Jacobians. Inverse Probl. 17(4), 1017–1042 (2001). https://doi.org/10.1088/0266-5611/17/4/329
- Gesztesy, F., Holden, H.: Algebro-geometric solutions of the Camassa–Holm hierarchy. Rev. Mat. Iberoam. 19(1), 73–142 (2003)
- Gesztesy, F., Holden, H.: Soliton Equations and Their Algebro-Geometric Solutions. Vol. 1. (1 + 1)-dimensional Continuous Models. Cambridge Studies in Advanced Mathematics, vol. 79. Cambridge University Press, Cambridge (2003)
- Zampogni, L: On algebro-geometric solutions of the Camassa Holm hierarchy. Adv. Nonlinear Stud. 7(3), 345–380 (2007). https://doi.org/10.1515/ans-2007-0303
- Johnson, R., Zampogni, L.: Description of the algebro-geometric Sturm Liouville coefficients. J. Differ. Equ. 244(3), 716–740 (2008). https://doi.org/10.1016/j.jde.2007.09.013
- Johnson, R., Zampogni, L.: The Sturm–Liouville hierarchy of evolution equations and limits of algebro-geometric initial data. SIGMA 10, Article ID 020 (2014). https://doi.org/10.3842/SIGMA.2014.020
- 12. Amrein, W.O., Hinz, A.M., Pearson, D.B.: Sturm Liouville Theory. Past and Present. Birkhäuser, Basel (2005). https://doi.org/10.1007/3-7643-7359-8
- Kilicman, A., Silambarasan, R., Altun, O.: Quasi associated continued fractions and Hankel determinants of Dixon elliptic functions via Sumudu transform. J. Nonlinear Sci. Appl. 10(7), 4000–4014 (2017). https://doi.org/10.22436/insa.010.07.49
- 14. Silambarasan, R., Nisar, K.S., Belgacem, F.B.M.: Discrete inverse Sumudu transform application to Whittaker equation and Zettl equation. Preprint 2018020150 (2018). https://doi.org/10.20944/preprints201802.0150.v1
- 15. Erdelyi, A., Magnus, W., Oberhettinger, F., Tricomi, F.G.: Tables of Integral Transform, vol. 1. McGraw-Hill, New York (1954)
- 16. Abramowitz, H., Stegun, I.A.: Handbook of Mathematical Functions. Dover, New York (1972)
- Eltayeb, H., Kilicman, A., Bachar, I.: Modified Sumudu decomposition method for Lane–Emden-type differential equations. Adv. Mech. Eng. 7(12), 1–6 (2015)
- Alkahtani, B., Gulati, V., Kilicman, A.: Application of Sumudu transform in generalized fractional reaction–diffusion equation. Int. J. Appl. Comput. Math. 2(3), 387–394 (2016)
- Eltayeb, H., Abdeldaim, E.: Sumudu decomposition method for solving fractional delay differential equations. Res. Appl. Math. 1, Article ID 101268 (2017). https://doi.org/10.11131/2017/101268
- Singh, J., Kumar, D., Qurashi, M.A., Baleanu, D.: A novel numerical approach for a nonlinear fractional dynamical model of interpersonal and romantic relationships. Entropy 19, Article ID 375 (2017). https://doi.org/10.3390/e19070375
- Jafari, R., Razvarz, S.: Solution of fuzzy differential equations using fuzzy Sumudu transforms. In: 2017 IEEE International Conference on Innovations in Intelligent Systems and Applications (INISTA), pp. 84–89. IEEE, New York (2017). https://doi.org/10.1109/INISTA.2017.8001137
- Takaci, D., Takaci, A., Takaci, A.: Solving fractional differential equations by using Sumudu transform and Mikusinski calculus. J. Inequal. Spec. Funct. 8(1), 84–93 (2017)
- 23. Pandey, R.K., Mishra, H.K.: Numerical simulation for solution of space-time fractional telegraphs equations with local fractional derivatives via HAFSTM. New Astron. **57**, 82–93 (2017) https://doi.org/10.1016/j.newast.2017.06.009
- 24. Rahman, N.A.A., Ahmad, M.Z.: Solving fuzzy fractional differential equations using fuzzy Sumudu transform. J. Nonlinear Sci. Appl. **10**(5), 2620–2632 (2017)
- Gómez Aguilar, J.F., Córdova-Fraga, T., Tórres-Jiménez, J., Escobar-Jiménez, R.F., Olivares-Peregrino, V.H., Guerrero-Ramírez, G.V.: Nonlocal transport processes and the fractional Cattaneo–Vernotte equation. Math. Probl. Eng. 2016, Article ID 7845874 (2016). https://doi.org/10.1155/2016/7845874
- Coronel-Escamilla, A., Gómez Aguilar, J.F., Torres, L., Escobar-Jiménez, R.F.: A numerical solution for a variable-order reaction-diffusion model by using fractional derivatives with non-local and non-singular kernel. Phys. A, Stat. Mech. Appl. 491, 406–424 (2017). https://doi.org/10.1016/j.physa.2017.09.014
- Coronel-Escamilla, A., Gómez-Aguilar, J.F., Baleanu, D., Córdova-Fraga, T., Escobar-Jiménez, R.F., Olivares-Peregrino, V.H., Al Qurashi, M.M.: Bateman–Feshbach Tikochinsky and Caldirola–Kanai oscillators with new fractional differentiation. Entropy 19(2), Article ID 55 (2017). https://doi.org/10.3390/e19020055
- Gómez Aguilar, J.F.: Chaos in a nonlinear Bloch system with Atangana–Baleanu fractional derivatives. Numer. Methods Partial Differ. Equ. 34(5), 1716–1738 (2018). https://doi.org/10.1002/num.22219
- Gómez-Aguilar, J.F., Yépez-Martínez, H., Tórres-Jiménez, J., Córdova-Fraga, T., Escobar-Jiménez, R.F., Olivares-Peregrino, V.H.: Homotopy perturbation transform method for nonlinear differential equations involving to fractional operator with exponential kernel. Adv. Differ. Equ. 2017, Article ID 68 (2017). https://doi.org/10.1186/s13662-017-1120-7
- Atangana, A.: Non validity of index law in fractional calculus: a fractional differential operator with Markovian and non-Markovian properties. Phys. A, Stat. Mech. Appl. 505, 688–706 (2018) https://doi.org/10.1016/j.physa.2018.03.056
- Atangana, A., Gómez Aguilar, J.F.: Decolonisation of fractional calculus rules: breaking commutativity and associativity to capture more natural phenomena. Eur. Phys. J. Plus 133, Article ID 166 (2018). https://doi.org/10.1140/epjp/i2018-12021-3