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Abstract
The discrete inverse Sumudu transform method is designed to solve ordinary
differential equations and tested for an algebro-geometric equation. The two new
sets of exact analytical and complex solutions are gotten through a discrete inverse
Sumudu transform, and Maple complex graphs are drawn to show the new solution
simulations in the complex plane which are compared to the existing solutions. The
list of inverse Sumudu transforms is added in the sequel to strengthen the study.
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1 Introduction
Algebro-geometric lattices were constructed using Rings and Fields to obtain the so-
lutions of KdV equation and Toda equation in [1]. For solving sine-Gordon equation,
Landau–Lifshitz equation, and reducing Abelian and hyperelliptic integrals, theta func-
tions algebro-geometric principles were employed in [2]. Nonlinear integrable equations
of mathematical physics, electrical systems were studied using the algebro-geometric
method in [3]. KdV equation, Toda equation AKNS, and Hill’s hierarchy were solved in
[4, 5]. Soliton and quasi solutions of Dym type and water flow equations were solved
for algebro-geometric solutions in [6]. Theta function notation of algebro-geometric so-
lutions for Camassa–Holm equation and soliton solutions was given in [7–9]. Algebro-
geometric Sturm–Liouville coefficients were calculated in [10]. Solutions without reflec-
tion for hierarchies of evolution equations were given in [11]. Endpoint classification of
three forms of algebro-geometric equation (AGE) and eigenvalues of Sturm–Liouville dif-
ferential equations were given in [12].

A Sumudu transform was applied for nonzero modulus Dixon elliptic functions to cal-
culate their Hankel determinants in [13]. A discrete inverse Sumudu transform (DIST)
method was proposed to solve ordinary differential equations to obtain their new exact
solutions, and Whittaker and Zettl equations with a table of the inverse Sumudu trans-
form of functions were solved in [14] as in [15], which gives special functions [16] as in-
verse Sumudu. Lane–Emden type differential equations were solved by the decomposi-
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tion method using Sumudu in [17]. Fractional reaction-diffusion equation and delay dif-
ferential equation were studied using the Sumudu transform in [18, 19]. Human relation-
ships were studied numerically in [20]. Fuzzy differential equations were solved using a
fuzzy Sumudu transform in [21]. Fractional differential equations, telegraph equations,
and fuzzy differential equations were solved using the Sumudu transform respectively in
[22–24]. Cattaneo–Vernotte with space fractional, time fractional, and space-time frac-
tional equations were solved for integer values and rational values of ϕ in [25]. In [26]
a reaction-diffusion equation with variable order fractionals was solved numerically by
using a combined Adams and finite difference method where they took Liouville–Caputo
and ABC (Atangana–Baleanu–Caputo) fractional derivatives. Liouville–Caputo, Caputo–
Fabrizio–Caputo, and Mittag-Leffler kernel fractional derivatives were applied for the
Bateman–Feshbach–Tikochinsky oscillator and Caldirola–Kanai oscillator and their in-
dividual behavior was studied in [27]. In [28] Atangana–Baleanu fractional derivatives
were used for a nonlinear Bloch system, and the Adams–Moulton method was applied
to solve it numerically. A homotopy perturbation transform method was applied to solve
some nonlinear fractional differential equations in [29]. Apart from this, some of the very
recent advancements in fractional calculus theories were given in [30, 31].

2 DIST method description
The Sumudu transform of the function f (x) in the set A = {f (x)|∃M, τ1, τ2 > 0, |f (x)| <

Me
|x|
τj , if x ∈ (–1)j × [0,∞)} is defined by the following integral equation:

S
[
f (x)

]
(u) = F(u) =

∫ ∞

0
e–xf (ux) dx =

1
u

∫ ∞

0
e– x

u f (x) dx; u ∈ (–τ1, τ2). (1)

In the discrete definition, for the function f (x) =
∑∞

n=0
f (n)(0)xn

n! ,

S
[
f (x)

]
(u) = F(u) =

∞∑

n=0

f (n)(0)un. (2)

The DIST definition is given by the following infinite series:

S
–1[f (x)

]
(w) = F–1(w) =

∞∑

n=0

f (n)(0)wn

(n!)2 , (3)

where u is the (positive) Sumudu transform variable and w is the DIST (negative) Sumudu
transform variable. For the functions from [15], the inverse Sumudu transform is calcu-
lated and provided in Table 1 and the corresponding special functions are defined in Ta-
ble 2.

Theorem 1 Let F–1(w) be the inverse Sumudu transform of f (x).

S
–1

[
xn dnf (x)

dxn

]
= wn dnF–1(w)

dwn . (4)

S
–1

[
xn dnxnf (x)

dxn

]
= wnF–1(w). (5)
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Table 1 Inverse Sumudu transform of elementary functions

S. No f (x) S
–1[f (x)] = F–1(w)

1 1
x+a

1
a e

–wa

2 1
x–a – 1

a e
w
a

3 1
(x+a)n

e
– w
2a

anw [a(n + 1)M
n+1, 12

(wa ) – (an –w)Mn, 12
(wa )]

4 xn
x+a

(–1)–nan–1e–
w
a

n! [�(n + 1) – n�(n, –w
a )]

5 Ax+Ba
x2–a2

1
2a [e

–wa (A – B) – e
w
a (A + B)]

6 Ax+Ba
x2+a2

1
2a [e

– iwa (iA + B) – e
iw
a (iA – B)]

7 1√
x+a

1√
a
e–

w
2a I0( w2a )

8 1

(x+a)
3
2

e
– w
2a

a
5
2

[(a –w)I0( w2a ) +wI1( w2a )]

9
√
x

x+a – e–
w
a√
a
erf( i

√
w√
a
)

10
√
x–b
x – ie

w
2b

2
√
b
[I0( w2b ) – I1(

w
2b )]

11 1√
x(x+a)

e–
w
a

a2
√
wπ

[ae
w
a + i

√
awπerf( i

√
w√
a
)]

12 1√
x(x+a)

e
w
a√
awπ

13 1
x
√
x–b

– ie
w
2b

2b
3
2
[I0( w2b ) + I1( w2b )]

14 x√
x2+a2

–w csgn(a)
2a [J0(wa )(πH1(wa ) – 2) –π J1(wa )H0(wa )]

15 x√
b2–x2

w csgn(b)
2b [I0(wb )(πL1(wb ) + 2) –π I1(wb )L0(

w
b )]

16 x√
x2–b2

iw
2b [I0(

w
b )(πL1(wb ) + 2) –π I1(wb )L0(

w
b )]

17 1

x+
√

x2+a2
1

2a3
(2 csgn(a)J0(wa )(a

2 +w2 – πw2
2 H1(wa )) – 2w(csgn(a)J1(

w
a ) +

a(a – πw
2 H0(wa ))))

18 (x +
√
1 + x2)n + (x –

√
1 + x2)n (einπ + 1)2F3( n2 ,

n
2 ;

1
2 ,

1
2 , 1; –

w2
4 ) + nw(einπ –

1)2F3( 1+n2 , 1–n2 ; 1, 32 ,
3
2 ; –

w2
4 )

19 (x+
√

1+x2)n√
1+x2

2F3( 1–n2 , 1+n2 ; 12 ,
1
2 , 1; –

w2
4 ) + nw2F3(1 – n

2 , 1 +
n
2 ; 1,

3
2 ,

3
2 ; –

w2
4 )

20 (x–
√

1+x2)n√
1+x2

(einπ )2F3( 1–n2 , 1+n2 ; 12 ,
1
2 , 1; –

w2
4 ) –nw2F3(1 – n

2 , 1+
n
2 ; 1,

3
2 ,

3
2 ; –

w2
4 )

21 (x–b)v
x (–1)vbv–1[Lv (wb ) – L

1
v (

w
b )]

22 xv–1

1+x2

√
wS1 3

2 ,
1
2
(w)+v(v+1)wv–1–wv+1

(v+1)!

23 (1 + x2)v–
1
2 1F2( 12 – v;

1
2 , 1; –

w2
4 )

24 (x2 – b2)v–
1
2 (–b)v–

1
2 1F2( 12 – v;

1
2 , 1;

w2

4b2
)

25 (b2 – x2)v–
1
2 2(b2)

v– 12
b2(2v+1)

[w2L1
v+ 1

2
(w

2

b2
) + ((v + 1

2 )b
2 –w2)L

v+ 1
2
(w

2

b2
)]

26 xv–1(x + a)
1
2 –v

a
1
2 –vwv–1e

– w
2a (wa )

– v2
av(v–1)!(v+1)w [a(av +w)(v + 3

2 )M v+3
2 , v+12

(wa ) +

( 2w
2–2wa–va2

2 )M v+1
2 , v+12

(wa )]

27 xv–1(x + a)–
1
2 –v

e
– w
2a (wa )

– v2 a
–(v+ 1

2 )wv–1

vw(v+1)(v–1)! [–(w+av2 )M v+1
2 , v+12

(wa ) + (v +
3
2 )avM v+3

2 , v+12
(wa )]

28 (
√
x2 + 1 + x)v 2F3( v2 , –

v
2 ;

1
2 ,

1
2 , 1; –

w2
4 ) + vw2F3( 1+v2 , 1–v2 ; 1, 32 ,

3
2 ; –

w2
4 )

29 (
√
x2 + 1 – x)v 2F3( v2 , –

v
2 ;

1
2 ,

1
2 , 1; –

w2
4 ) – vw2F3( 1+v2 , 1–v2 ; 1, 32 ,

3
2 ; –

w2
4 )

30 (
√

x2+1+x)v√
x2+1

2F3( 1–v2 , 1+v2 ; 12 ,
1
2 , 1; –

w2
4 ) + vw2F3(1 – v

2 , 1 +
v
2 ; 1,

3
2 ,

3
2 ; –

w2
4 )

31 (
√

x2+1–x)v√
x2+1

2F3( 1–v2 , 1+v2 ; 12 ,
1
2 , 1; –

w2
4 ) – vw2F3(1 – v

2 , 1 +
v
2 ; 1,

3
2 ,

3
2 ; –

w2
4 )

32 (
√

x2–1+x)v+(
√

x2–1+x)–v√
x2–1

– (eiπv+1)
iv–1 2F3( 1–v2 , 1+v2 ; 12 ,

1
2 , 1;

w2
4 ) – (eiπv–1)vw

iv 2F3(1 – v
2 , 1 +

v
2 ; 1,

3
2 ,

3
2 ;

w2
4 )

33 (
√
x + 2a +

√
x)2v – (

√
x + 2a –

√
x)2v 4v

√
w2

v+ 1
2 a

v– 12√
π 2F2( 12 + v, 12 – v;

3
2 ,

3
2 ; –

w
2a )

34 (
√
x + b +

√
x – b)2v – (

√
x + b –

√
x – b)2v –ivwbv–1((1 + i)2v + (1 – i)2v )2F3( 1+v2 , 1–v2 ; 1, 32 ,

3
2 ;

w2

4b2
) – bv (–(1 +

i)2v + (1 – i)2v )2F3( v2 , –
v
2 ;

1
2 ,

1
2 , 1; ,

w2

4b2
)
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Table 1 ((Continued))

S. No f (x) S
–1[f (x)] = F–1(w)

35 (2a)2v (x+
√

x2+4a2)2v√
x3+4a2x

1
24 (csgn

2v+1(a)w
3
2 a4v–316v (v2 – 1

4 ))× 2F5( 32 – v,
3
2 + v; 54 ,

3
2 ,

3
2 ,

7
4 , 2; –

w2

1024a2
) +

1
2 (csgn

2v (a)va4v+216v
√
w)× 2F5(1 + v, 1 – v; 12 ,

3
4 , 1,

5
4 ,

3
2 ; –

w2

1024a2
)

36 (x+
√

x2–1)2v+(x–
√

x2–1)2v√
x
√

x2–1

8iv
√
w√

π sin(πv)
(cos2(πv) – 1)2F3(1 + v, 1 – v; 34 ,

5
4 ,

3
2 ;

w2
4 ) – 2i cos(πv)√

πw 2F3( 12 + v, 12 –

v; 14 ,
1
1 ,

3
4 ;

w2
4 )

37 e–ax J0(2
√
aw)

38 xe–ax wJ1(2
√
aw)√

aw

39 xv–1e–ax wv–1�(v)Jv–1(2
√
aw)

(v–1)!(aw)
v–1
2

40 e–ax–e–bx
x

b
√
aJ1(2

√
bw)–a

√
bJ1(2

√
aw)√

abw

41 (1–e–ax )2

x2
–2a(J2(2

√
aw)–J2(2

√
2aw))

w

42 1
x –

(x+2)(1–e–x )
2x2

wI3(2
√
–w)

2(–w)
3
2

43 e–
x2
4a 0F2(; 12 , 1; –

w2
16a )

44 xe–
x2
4a w0F2(; 1, 32 ; –

w2
16a )

45 e
– x

2
4a√
x

1√
πw 0F2(; 14 ,

3
4 ; –

w2
16a )

46 xv–1e–
x2
8a wv–1

(v–1)! 0F2(;
v
2 ,

v+1
2 ; – w2

32a )

47 e–
x
4a I0(

√
–w
a )

48
√
xe–

x
4a 2

√
a
π sin(

√
w
a )

49 e
– x
4a√
x

cos(
√

w
a )√

πw

50 e
– x
4a

x
3
2

–
(
√
aw sin(

√
w
a )+a cos(

√
w
a ))

2a
√

πw
3
2

51 xv–1e–
x
4a

(2w)v–1�(v)(–wa )
1–v
2 Iv–1(

√
–wa )

(v–1)!

52 (e
– x
4a –1)√
x

1√
wπ

[cos(
√

w
a ) – 1]

53 e–2
√
a
√
x – 4

√
aw√
π 0F2(; 32 ,

3
2 ; ,aw) + 0F2(; 12 , 1; ,aw)

54
√
xe–2

√
a
√
x 2

√
w√
π 0F2(; 12 ,

3
2 ; ,aw) – 2w

√
a0F2(;

3
2 , 2; ,aw)

55 e–2
√
a
√
x√

x
1√
wπ 0F2(; 12 ,

1
2 ; ,aw) – 2

√
a0F2(; 1,

3
2 ; ,aw)

56 e–2
√
a
√
x√

2x
1√
2wπ 0F2(; 12 ,

1
2 ; ,aw) –

√
2a0F2(; 1,

3
2 ; ,aw)

57 log(1 + ax) Ei1(aw) + ln(aw) + γ

58 log(x + a) Ei1(wa ) + ln(w) + γ

59 log(x2 – a2) 2[ln(w) + γ – Chi(wa )] + iπ
60 log(x2 + a2) 2[ln(w) + γ – Ci(wa )]

61 log(x2+a2)–log(a2)
x

2
w [1 – cos(

w
a )]

62 log(
√
x+b+

√
x–b√

2
√
b

) 1
2b [–iw2F3( 12 ,

1
2 ; 1,

3
2 ,

3
2 ;

w2

4b2
) – b(ln(2) + 2 ln(i + 1))]

63 log(
√
x+

√
x+2a√

2
√
a

)
√

2w
aπ 2F2( 12 ,

1
2 ;

3
2 ,

3
2 ; –

w
2a )

64 log(
√
x+ib+

√
x–ib√

2
√
b

) 1
2b [w2F3( 12 ,

1
2 ; 1,

3
2 ,

3
2 ; –

w2

4b2
+ 2iπb)]

65 sin(ax) bei0(2
√
aw)

66 x sin(ax) –
√
aw
2 [ber1(2

√
w) + bei1(2

√
w)]

67 xn sin(ax) awn+1
(n+1)! 0F3(;

3
2 ,

n
2 + 1, n+32 ; – (aw)2

16 )

68 xv–1 sin(ax) awv
v! 0F3(; 32 ,

v
2 + 1, v+12 ; – (aw)2

16 )

69 sin(ax)
x –

√
a
2w [ber1(2

√
aw) – bei1(2

√
aw)]

70 sin2(ax)
x –

√
a
4w [ber1(2

√
2aw) + bei1(2

√
2aw)]

71 sin3(ax)
x – 3

√
a

8
√
3iw

[–
√
3(I1(2(–1)

1
4
√
aw) + J1(2(–1)

1
4
√
aw)) + I1(2

√
3iaw) + J1(2

√
3iaw)]

72 sin2(ax)
x2

√
a

2w
3
2
[ber1(2

√
2aw) + bei1(2

√
2aw) + 2

√
awbei0(2

√
2aw)]

73 sin(x2) w2
2 0F5(; 34 , 1,

5
4 ,

3
2 ,

3
2 ; –

w2
1024 )

74 sin(x2)
x w0F5(; 12 ,

3
4 , 1,

5
4 ,

3
2 ; –

w2
1024 )
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Table 1 ((Continued))

S. No f (x) S
–1[f (x)] = F–1(w)

75 sin(x2)
x2

w0F5(; 14 ,
1
2 ,

3
2 , 1,

3
2 ; –

w2
1024 )

76 sin(2
√
a
√
x) 4

√
aw√
π 0F2(; 32 ,

3
2 ; –aw)

77 xn sin(2
√
a
√
x) 2

√
aw

n+ 1
2

(n+ 1
2 )!

0F2(; 32 ,
3
2 + n; –aw)

78 sin(2
√
a
√
x)

x
2
√
a√

wπ 0F2(; 12 ,
3
2 ; –aw)

79
√
x sin(2

√
a
√
x) 2w

√
a0F2(; 32 , 2; –aw)

80 sin(2
√
a
√
x)√

x
2
√
a0F2(; 1, 32 ; –aw)

81 xv–1 sin(2
√
a
√
x) 2

√
aw

v– 12

(v– 12 )!
0F2(; 32 , v +

1
2 ; –aw)

82 cos(ax) ber0(2
√
aw)

83 cos2(ax) 1 – (aw)2
2 1F4(1; 32 ,

3
2 , 2, 2; –

(aw)2
4 )

84 cos3(ax) 3
8 [I0(2(–1)

1
4
√
aw) + J0(2(–1)

1
4
√
aw)] + 1

8 [I0(2
√
3iaw) + J0(2

√
3iaw)]

85 x cos(x) –
√

w
2 [ber1(2

√
w) – bei1(2

√
w)]

86 xn cos(ax) wn
n! 0F3(;

1
2 ,

n
2 + 1, n+12 ; – (aw)2

16 )

87 xv–1 cos(ax) wv–1
(v–1)! 0F3(;

1
2 ,

v
2 ,

v+1
2 ; – (aw)2

16 )

88 1–cos(ax)
x –

√
a
2w [ber1(2

√
aw) + bei1(2

√
aw)]

89 cos(x2) 0F5(; 14 ,
1
2 ,

1
2 ,

3
4 , 1; –

w2
1024 )

90 cos(2
√
a
√
x) 0F2(; 12 , 1; –aw)

91 x
√
x cos(2

√
a
√
x) 2

√
w√
π 0F2(; 12 ,

3
2 ; –aw)

92 cos(2
√
a
√
x)√

x
1√
wπ 0F2(; 12 ,

1
2 ; –aw)

93 xn–
1
2 cos(2

√
a
√
x) w

n– 12

(n– 12 )!
0F2(; 12 ,n +

1
2 ; –aw)

94 xv–1 cos(2
√
a
√
x) wv–1

(v–1)! 0F2(;
1
2 , v; –aw)

95 sin(ax) sin(bx) 1
4 [I0(2

√
iw(a – b)) + I0(2

√
–iw(a – b))] – 1

4 [I0(2
√
iw(a + b)) + I0(2

√
–iw(a + b))]

96 cos(ax) sin(bx) 1
4 [iI0(2

√
iw(a – b)) – iI0(2

√
–iw(a – b))] + 1

4 [iI0(2
√
–iw(a + b)) – I0(2

√
iw(a + b))]

97 cos(ax) cos(bx) 1
4 [I0(2

√
iw(a + b)) + I0(2

√
–iw(a + b))] + 1

4 [I0(2
√
iw(a – b)) + I0(2

√
–iw(a – b))]

98 2ax sin(ax) cos(ax)–sin2(ax)
x2

1

2
√
aw

5
2
[aw(2aw – 1)bei1(2

√
2aw) – aw(2aw + 1)ber1(2

√
2aw) –

2(aw)
3
2 bei0(2

√
2aw)]

99 ax cos(ax)–sin(ax)
x2

1

2a
3
2 w

7
2
[
√
2(aw)2(aw + 1)bei1(2

√
aw) +

√
2(aw)2(aw – 1)ber1(2

√
aw) –

2(aw)
5
2 ber0(2

√
aw)]

100 arcsin(x) w2F3( 12 ,
1
2 ; 1,

3
2 ,

3
2 ;

w2
4 )

101 x arcsin(x) w2
2 2F3( 12 ,

1
2 ;

3
2 ,

3
2 , 2;

w2
4 )

102 arctan( xa ) Si(Wa )
103 cot–1( xa )

π
2 – Si(Wa )

104 x arctan( xa ) a[cos( xa ) – 1] +wSi(Wa )
105 x cot–1( xa ) a[1 – cos( xa )] –wSi(

W
a ) +

πw
2

106 sinh(ax) 1
2 [I0(2

√
aw) – J0(2

√
aw)]

107 cosh(ax) 1
2 [I0(2

√
aw) + J0(2

√
aw)]

108 sinh2(ax) (aw)2
2 1F4(1; 32 ,

3
2 , 2, 2;

(aw)2
4 )

109 cosh2(ax) 1 + (aw)2
2 1F4(1; 32 ,

3
2 , 2, 2;

(aw)2
4 )

110 2sinh(ax)
x

√
a
w [I1(2

√
aw) + J1(2

√
aw)]

111 2cosh(ax)
x

√
a
w [I1(2

√
aw) – J1(2

√
aw)]

112 xv–1 sinh(ax) w
v
2 –1

2a
v
2
[vIv (2

√
aw) +

√
awIv+1(2

√
aw) – vJv (2

√
aw) +

√
awJv+1(2

√
aw)]

113 xv–1 cosh(ax) w
v–3
2

2a
v+1
2

[v
√
awIv (2

√
aw) + awIv+1(2

√
aw) – v

√
awJv (2

√
aw) – awJv+1(2

√
aw)]

114 sin(ax) sinh(ax) (aw)2
2 0F7(; 34 ,

3
4 , 1,

5
4 ,

5
4 ,

3
2 ,

3
2 ; –

(aw)2
16,384 )

115 cos(ax) sinh(ax)aw 0F7(; 12 ,
1
2 ,

3
4 ,

3
4 , 1,

5
4 ,

5
4 ; –

(aw)2
16,384 ) –

(aw)3
18 0F7(; 1, 54 ,

5
4 ,

3
2 ,

3
2 ,

7
4 ,

7
4 ; –

(aw)2
16,384 )

116 sin(ax) cosh(ax) aw0F7(; 12 ,
1
2 ,

3
4 ,

3
4 , 1,

5
4 ,

5
4 ; –

(aw)2
16,384 ) +

(aw)3
18 0F7(; 1, 54 ,

5
4 ,

3
2 ,

3
2 ,

7
4 ,

7
4 ; –

(aw)2
16,384 )

117 cos(ax) cosh(ax) 0F7(; 14 ,
1
4 ,

1
2 ,

1
2 ,

3
4 ,

3
4 , 1; –

(aw)2
16,384 )
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Table 1 ((Continued))

S. No f (x) S
–1[f (x)] = F–1(w)

118 sinh(2
√
a
√
x) 4

√
aw√
π 0F2(; 32 ,

3
2 ;aw)

119 cosh(2
√
a
√
x) 0F2(; 12 , 1;aw)

120
√
x sinh(2

√
a
√
x) 2

√
aw0F2(; 32 , 2;aw)

121
√
x cosh(2

√
a
√
x) 2

√
w√
π 0F2(; 12 ,

3
2 ;aw)

122 sinh(2
√
a
√
x)√

x
2
√
a0F2(; 1, 32 ;aw)

123 cosh(2
√
a
√
x)√

x
1√
wπ 0F2(; 12 ,

1
2 ;aw)

124 sinh2(2
√
a
√
x)√

x
2a

√
w√

π 1F3(1; 32 ,
3
2 , 2;aw)

125 cosh2(2
√
a
√
x)√

x
1√
πw

[1 + 2aw1F3(1; 32 ,
3
2 , 2;aw)]

126 sinh(2
√
a
√
x)

x
3
4

√
8a

w
1
4 (– 14 )!

0F2(; 34 ,
3
2 ; 2aw)

127 cosh(2
√
a
√
x)

x
3
4

1

w
3
4 (– 14 )!

0F2(; 12 ,
3
4 ; 2aw)

128 xv–1 sinh(2
√
a
√
x)

√
2aw

v– 12

(v– 12 )!
0F2(; 32 , v +

1
2 ;

aw
2 )

129 xv–1 cosh(2
√
a
√
x) wv–1

(v–1)! 0F2(;
1
2 , v;

aw
2 )

130 sinh–1(x) w2F3( 12 ,
1
2 ; 1,

3
2 ,

3
2 ; –

w2
4 )

131 cosh–1(x) –iw2F3( 12 ,
1
2 ; 1,

3
2 ,

3
2 ;

w2
4 ) + iπ

2

132 cosh–1(1 + x
a )

√
8w
aπ 2F2( 12 ,

1
2 ;

3
2 ,

3
2 ; –

w
2a )

133 x sinh–1(x) w2
2 2F3( 12 ,

1
2 ;

3
2 ,

3
2 , 2; –

w2
4 )

134 sinh((2n + 1) sinh–1(x)) (2n + 1)w2F3(–n,n + 1; 1, 32 ,
3
2 ; –

w2
4 )

135 cosh(2n sinh–1(x)) 2F3(n, –n; 12 ,
1
2 , 1; –

w2
4 )

136 sinh(v sinh–1(x)) vw2F3( 1+v2 , 1–v2 ; 1, 32 ,
3
2 ; –

w2
4 )

137 cosh(v sinh–1(x)) 2F3( v2 , –
v
2 ;

1
2 ,

1
2 , 1; –

w2
4 )

138 sinh(v cosh–1(1 + x
a )) v

√
8w
aπ 2F2( 12 + v, 12 – v;

3
2 ,

3
2 ; –

w
2a )

139 exp(n sinh–1(x))√
1+x2

nw2F3(1 + n
2 , 1 –

n
2 ; 1,

3
2 ,

3
2 ; –

w2
4 ) + 2F3( 1–n2 , 1+n2 ; 12 ,

1
2 , 1; –

w2
4 )

140 exp(–n sinh–1(x))√
1+x2

–nw2F3(1 – n
2 , 1 +

n
2 ; 1,

3
2 ,

3
2 ; –

w2
4 ) + 2F3( 1–n2 , 1+n2 ; 12 ,

1
2 , 1; –

w2
4 )

141 sinh(v sinh–1(x))√
x2+1

vw2F3(1 – v
2 , 1 +

v
2 ; 1,

3
2 ,

3
2 ; –

w2
4 )

142 cosh(n sinh–1(x))√
x2+1

2F3( 1–n2 , 1+n2 ; 12 ,
1
2 , 1; –

w2
4 )

143 cosh(n cosh–1(x))√
x2–1

– 1

2e
inπ
2

[i(1 + einπ )2F3( 1–n2 , 1+n2 ; 12 ,
1
2 , 1;

w2
4 ) + nw(1 + einπ )2F3(1 – n

2 , 1 +

n
2 ; 1,

3
2 ,

3
2 ;

w2
4 )]

144
exp(2v sinh–1( x2a ))√

x3+4a2x

csgn(a)
2a2

√
πw

[a2F3( 12 + v, 12 – v;
1
4 ,

1
2 ,

3
4 ; –

w2

16a2
) + 2vw2F3(1 – v, 1 +

v; 34 ,
5
4 ,

3
2 ; –

w2

16a2
)]

145
exp(–2v sinh–1( x2a ))√

x3+4a2x

csgn(a)
2a2

√
πw

[a2F3( 12 + v, 12 – v;
1
4 ,

1
2 ,

3
4 ; –

w2

16a2
) – 2vw2F3(1 – v, 1 +

v; 34 ,
5
4 ,

3
2 ; –

w2

16a2
)]

146 1√
x3+4a2x

(cos((v +

1
4 )π ) exp(–2v sinh–1( x

2a )) +
sin((v + 1

4 )π ) exp(2v sinh–1( x
2a )))

csgn(a)
a2

√
2πw

[a cos(πv)2F3( 12 + v, 12 – v;
1
4 ,

1
2 ,

3
4 ; –

w2

16a2
) + 2vw sin(πv)2F3(1 –

v, 1 + v; 34 ,
5
4 ,

3
2 ; –

w2

16a2
)]

147 1√
x3+4a2x

(sin((v +

1
4 )π ) exp(–2v sinh–1( x

2a )) –
cos((v + 1

4 )π ) exp(2v sinh–1( x
2a )))

csgn(a)
a2

√
2πw

[a sin(πv)2F3( 12 + v, 12 – v;
1
4 ,

1
2 ,

3
4 ; –

w2

16a2
) – 2vw cos(πv)2F3(1 –

v, 1 + v; 34 ,
5
4 ,

3
2 ; –

w2

16a2
)]

148
sinh(2v sinh–1( x2a ))√

x3+4a2x

v
√
w csgn(a)
a2

√
π

2F3(1 – v, 1 + v; 34 ,
5
4 ,

3
2 ; –

w2

16a2
)

149
cosh(2v sinh–1( x2a ))√

x3+4a2x

csgn(a)
2a

√
πw 2F3( 12 + v, 12 – v;

1
4 ,

1
2 ,

3
4 ; –

w2

16a2
)

150 sinh–1(x)
x J0(w) – π

2 [J0(w)H1(w) – J1(w)H0(w)]
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Table 2 Special functions definition

S. No Function Definition

1 First kind Bessel function Jn(x) =
∑∞

k=0
(–1)k ( x2 )

2k+n

k!(n+k)!

2 Modified first kind Bessel function In(x) =
∑∞

k=0
( x2 )

2k+n

k!(n+k)!

3 Kelvin real function bern(x) = Re Jn(i
3
2 x)

4 Kelvin imaginary function bein(x) = Im Jn(i
3
2 x)

5 Error function erf(x) = 2√
π

∫ x
0 e–z

2
dz

6 Complementary error function erfc(x) = 2√
π

∫ ∞
x e–z

2
dz

7 Struve function Hv (x) = ( x2 )
v+1 ∑∞

k=0
(–1)k ( x2 )

2k

�(k+ 3
2 )�(k+v+ 3

2 )

8 Modified Struve function Lv (x) = ( x2 )
v+1 ∑∞

k=0
( x2 )

2k

�(k+ 3
2 )�(k+v+ 3

2 )

9 Generalized hypergeometric function pFq((ap); (bq); x) =
∑∞

k=0
(a1)k ·(a2)k ···(ap )kxk
(b1)k ·(b2)k ···(bq )kk!

10 Lommel S1 function S(1)μ,v (x) =
xμ+1

1F2(1;
μ–v+3

2 ,μ+v+3
2 ;– x

2
4 )

(μ+1)2–v2

11 Whittaker M function Mκ ,μ(x) = e–
x
2 xμ+ 1

2 M(μ – κ + 1
2 , 1 + 2μ; x)

12 Kummer function M(a,b, c) =
∑∞

n=0
a(n)xn

b(n)n!
= 1F1(a;b; x)

13 Sign function csgn(x) =

{
1; x <R(x),

–1; x >R(x)
14 Sine integral Si(x) =

∫ x
0

sin(z)dz
z

15 Cosine integral Ci(x) = –
∫ ∞
x

cos(z)dz
z

16 Hyperbolic cosine integral Chi(x) = γ + ln(x) +
∫ ∞
x

(cos(z)–1)dz
z

17 Exponential integral Ei(x) =
∫ ∞
x

e–z dz
z

18 Laguerre polynomials Ln(x) = ex
n!

dn

dxn (x
ne–x )

19 Euler’s constant γ = 0.5772156

S
–1[xnf (x)

]
=

∫ w

0
· · ·

∫ w

0︸ ︷︷ ︸
n-times

F–1(η)(dη)n. (6)

S
–1

[
f (x)
xn

]
=

dnF–1(w)
dwn . (7)

Proof The proof is straightforward. �

The following steps of Algorithm 1 solve the ordinary differential equations [14].

Algorithm 1 DIST methodology
Step 1. Apply inverse Sumudu using Theorem 1 to a given differential equation.
Step 2. If the result of Step 1 is an integro-differential equation with n integrals, then
convert to a differential equation by substituting:

F–1(w) =
dnG–1(w)

dwn . (8)

Step 3. Find the power series solution of Step 2.
Step 4. Convert G–1(w) back to F–1(w) using Eq. (8).
Step 5. Apply the Sumudu transform to Step 4 which leads to the solution f (x) of the
given differential equation.
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3 New exact solutions of AGE-F1
In this work, the AGE-F1 (Sect. 40.1, pp. 308, [12]) ordinary differential equation is solved
for integer coefficients to get their new exact solutions.

–
d2y(x)

dx2 +
l(l + 1)y(x)

x2 = λy(x). (9)

Applying the inverse Sumudu transform to Eq. (9) with S
–1[y(x)] = F–1(w), using the prop-

erties of Theorem 1, and converting the resulting integro-differential equation and sim-
plifying, we obtain

–w2 d4G–1(w)
dw4 + l(l + 1)

d2G–1(w)
dw2 = λG–1(w). (10)

Example 1 For l = 1 in Eq. (10), Step 3 of Algorithm 1 gives the following power series
solution:

G–1(w) :=
72
λ2

[ ∞∑

n=2

24n(n – 1)(– λ
16 )nw2n

n�(2n)2

–
∞∑

n=0

24n(2n – 1)(2n + 1)(– λ
16 )nw2n+1

�(2n + 2)2

]

. (11)

Next converting Eq. (11) to F–1(w) and applying the Sumudu transform, we get

y(x) :=
1

λ
3
2 x

[(
λ2x + 72

)
sin(x

√
λ) +

(
λ

3
2 – 72x

√
λ
)

cos(x
√

λ)
]
. (12)

y(x) in Eq. (12) is the new exact solution of Eq. (9) with l = 1.

Example 2 For l = 2 in Eq. (10), we have the following power series solution:

G–1(w) :=
1
3

∞∑

n=0

24n(2n – 3)(2n – 1)(– λ
16 )nw2n

�(2n + 1)2

+
7200
λ2

∞∑

n=2

24n(n – 1)n(– λ
16 )nw2n+1

n�(2n + 2)2 . (13)

Differentiating twice w.r.t. w, (13) converts to F–1(w), then applying the Sumudu transform
leads to

y(x) := –
1

3x2λ
5
2

[(
5400λx2 – 3λ3x – 16,200

)
sin(x

√
λ)

+
(
λ

7
2 x2 – 16,200

√
λx – 3λ

5
2
)

cos(x
√

λ)
]
. (14)

Here (14) is the new exact solution of (9) with l = 2.

Example 3 The power series solution of (10) for l = 3 is given by

G–1(w) := –
4

3λ

∞∑

n=1

24n(2n – 5)(2n – 3)(2n – 1)n(– λ
16 )nw2n–1

�(2n + 1)2
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–
151,200

λ3

∞∑

n=3

24n(n – 2)(n – 1)(– λ
16 )nw2n

n(2n + 1)�(2n)2 . (15)

Converting (15) to F–1(w) and applying the Sumudu transform to resulting summation
leads to

y(x) :=
1

3x3λ4

[
–2

(
λ

9
2 x3 + 680,400λ

3
2 x2 – 15λ

7
2 x – 1,701,000

√
λ
)

sin(x
√

λ)

+
(
226,800λ2x3 – 12λ4x2 – 340,200λx + 30λ3) cos(x

√
λ)

]
. (16)

y(x) in (16) is the new exact solution of (9) with l = 3. The complex plot of (16) for λ = 5, 10,
and 15 is shown in Fig. 1.

Figure 1 Solution y(x) Eq. (16) of Example 3 in a
complex plane x ∈ [–5 – I, 5 + I] for different values
of λ

λ = 5

λ = 10

λ = 15
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Example 4 When l = 4 in (10), the power series solution is given by

G–1(w) :=
1

15λ

∞∑

n=1

24n(2n – 7)(2n – 5)(2n – 3)(– λ
16 )nw2n–2

n�(2n – 1)2

+
38,102,400

λ4

∞∑

n=4

24n(n – 3)(n – 2)(n – 1)(– λ
16 )nw2n–1

(2n + 1)�(2n)2 . (17)

Applying the Sumudu transform after converting (17) to F–1(w) leads to

y(x) :=
1

15x4λ5

[
71,442,000

(
λ

5
2 x4 –

λ
11
2 x3

3,572,100

– 45λ
3
2 x2 +

λ
9
2 x

340,200
+ 105

√
λ

)
sin(x

√
λ)

+ 2λ
(
λ5x4 + 357,210,000λx3

– 45λ4x2 – 3,750,705,000x + 105λ3) cos(x
√

λ)
]

. (18)

y(x) in (18) is the new exact solution of (9) for l = 4. The complex plot of (18) for λ = 5, 10,
and 15 is shown in Fig. 2.

Example 5 In (10) for l = 5 the power series solution is

G–1(w) := –
8

15λ2

∞∑

n=2

24n(2n – 9)(2n – 7)(2n – 5)(2n – 3)(n – 1)(– λ
16 )nw2n–3

n�(2n – 1)2

–
6,706,022,400

λ5

×
∞∑

n=5

24n(2n – 1)(n – 4)(n – 3)(n – 2)(n – 1)(– λ
16 )nw2n–2

(2n + 1)�(2n)2 . (19)

Applying the Sumudu transform after converting (19) leads to

y(x) :=
1

15x5λ6

[
8
(
λ

13
2 x5 + 11,787,930,000λ

5
2 x4 – 105λ

11
2 x3

– 330,062,040,000λ
3
2 x2 + 945λ

9
2 x + 742,639,590,000

√
λ
)

sin(x
√

λ)

– 6,286,896,000
(

λ2x5 –
λ5x4

52,390,800
– 105λx3

+
λ4x2

1,871,100
+ 945x –

λ3

831,600

)
λ cos(x

√
λ)

]
. (20)

y(x) in (20) is the new exact solution of (9) with l = 5.

Remark 1 Solutions in (12), (14), (16), (18), and (20) for respective l = 1 to 5 in (9) are ver-
ified in a Maple computer algebra system which satisfies the given differential equation
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Figure 2 Solution y(x) Eq. (18) of Example 4 in a
complex plane x ∈ [–5 – I, 5 + I] for different values
of λ

λ = 5

λ = 10

λ = 15

and all the new solutions appear for the first time in this research work as per the litera-
ture surveyed. Comparing to solving directly, the DIST method gives new exact analytical
solutions for ordinary differential equations. For instance l = 5 in (9), solving directly gives
the following solution:

y(x) :=
1
x5

[(
λ

9
2 x5 – 15λ4x4 – 105λ

7
2 x3 + 420λ3x2 + 945λ

5
2 x – 945λ2) sin(x

√
λ)

+
(
λ

9
2 x5 + 15λ4x4 – 105λ

7
2 x3 – 420λ3x2 + 945λ

5
2 x + 945λ2) cos(x

√
λ)

]
. (21)

Comparative study of (20) and (21) shows that the DIST method solves the differential
equations for new exact solutions, which is verified in a Maple computer algebra system
both numerically and graphically, shown in a complex plot of Fig. 3.
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Figure 3 Comparison in a complex plane x ∈ [–5 – I,
5 + I] of DIST solution and direct solution of
Example 5 for λ = 10

DIST solution y(x) in Eq. (20)

Direct solution y(x) in Eq. (21)

4 New exact complex solutions of AGE-F1
By computing another power series solution of Step 3 of Algorithm 1, the second set of so-
lutions of (9) is studied in this section which are new exact solutions. All the computations
are worked through the Maple computer algebra system.

Example 6 When l = 1 in (10), the formal series solution is given by

G–1(w) := –
24i
λ

3
2

∞∑

n=3

(n – 2)e inπ
2 λ

n
2 wn

n�(n)2 . (22)

Converting G–1(w) in (22) to F–1(w) by differentiating twice w.r.t. w and then applying the
Sumudu transform gives

y(x) :=
1
λx

[
24(ix

√
λ – 1)eix

√
λ
]
. (23)

Here (23) is the second new exact complex solution of (9) with l = 1.

Example 7 When l = 2 in (10), the formal series solution is

G–1(w) :=
96(12 + λw2)

λ2 +
384
λ2

∞∑

n=4

(n – 3)(n – 1)e inπ
2 λ

n
2 wn

n�(n + 1)2 . (24)
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Converting G–1(w) in (24) to F–1(w) by differentiating twice w.r.t. w and then applying the
Sumudu transform leads to

y(x) := –
192e–x

√
–λ

λ2x2

[
λx2 – 3x

√
–λ – 3 +

(
λx2 + 3x

√
–λ – 3

)
e2x

√
–λ

]
. (25)

y(x) in (25) is the second new exact complex solution of (9) with l = 2.

Example 8 When l = 3 in (10), the formal series solution is given by

G–1(w) := –
11,520i

λ
5
2

∞∑

n=5

(n – 4)(n – 2)e inπ
2 λ

n
2 wn

n(n + 1)�(n)2 . (26)

Applying the Sumudu transform after converting (26) to F–1(w) gives

y(x) :=
11,520eix

√
λ

λ3x3

[
iλ

3
2 x3 – 6λx2 – 15ix

√
λ + 15

]
. (27)

y(x) in (27) is the second new exact complex solution of (9) with l = 3.

Example 9 When l = 4 in (10), the formal series solution is

G–1(w) := –
480
λ3

[

–λ2w4 – 216λw2

– 8640 + 1152
∞∑

n=6

(n – 5)(n – 3)(n – 1)e inπ
2 λ

n
2 wn

(n + 2)�(n + 1)2

]

. (28)

Converting (28) to F–1(w) and applying the Sumudu transform gives

y(x) :=
552,960eix

√
λ

λ
17
2 x4

[
λ

13
2 x4 + 10iλ6x3 – 45λ

11
2 x2 – 105iλ5x + 105λ

9
2
]
. (29)

Here (29) is the second new exact complex solution of (9) with l = 4. The complex plot of
(29) for λ = 5, 10, and 15 is shown in Fig. 4.

Example 10 When l = 5 in (10), the formal series solution is given by

G–1(w) :=
38,707,200i

λ
7
2

∞∑

n=7

(n – 6)(n – 4)(n – 2)e inπ
2 λ

n
2 wn

n(n + 1)(n + 3)�(n)2 . (30)

Converting (30) to F–1(w) by differentiating w.r.t. w and then applying the Sumudu trans-
form leads to

y(x) := –
38,707,200eix

√
λ

λ6x5

[
iλ

7
2 x5 – 15λ3x4

– 105iλ
5
2 x3 + 420λ2x2 + 945iλ

3
2 x – 945λ

]
. (31)

Here y(x) in (31) is the second new exact complex solution of (9) with l = 5. The complex
plot of (31) for λ = 5, 10, and 15 is shown in Fig. 5.
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Figure 4 Solution y(x) Eq. (29) of Example 9 in a
complex plane x ∈ [–5 – I, 5 + I] for different values
of λ

λ = 5

λ = 10

λ = 15

Remark 2 Solutions (23), (25), (27), (29), and (31) are verified in the Maple computer al-
gebra system, and they are new exact complex solutions of (9) respectively for l = 1 to 5.
These complex solutions appear for the first time in this research works as per the litera-
ture surveyed. For instance, solving directly l = 1 in (9) gives

y(x) :=
ex

√
–λ(

√
λx2 + 2i

√
λx – 1) + e–x

√
–λ(

√
λx2 – 2i

√
λx – 1)

x
. (32)

Comparing solutions (23) and (32), DIST solves the differential equations to new exact
complex solutions, which is verified in the Maple computer algebra system both numeri-
cally and graphically and shown in a complex plot of Fig. 6.
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Figure 5 Solution y(x) Eq. (31) of Example 10 in a
complex plane x ∈ [–5 – I, 5 + I] for different values
of λ

λ = 5

λ = 10

λ = 15

Next, when solving for general l, (9), DIST method in both the above methods gives the
new approximate analytical solution in terms of Lommel S1 function which will be studied
in a separate work numerically.

5 Conclusion
Through this research communication an algorithm based on the discrete inverse Sumudu
Transform (DIST) was described to solve ordinary differential equations for their new ex-
act analytical and complex solutions. An algebro-geometric equation for different integer
value coefficients was studied with the algorithm and the method was proven by deriving
their new solutions. Efficiency of the DIST method was shown via the comparative study
in Remarks 1 and 2, Maple plots were shown graphically in Figs. 3 and 6. The enlarged
list of functions and their inverse Sumudu transforms in Table 1 shows that inverting the
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Figure 6 Comparison in a complex plane x ∈ [–5 – I,
5 + I] of DIST solution and direct solution of
Example 6 for λ = 10

DIST solution y(x) in Eq. (23)

Direct solution y(x) in Eq. (32)

elementary functions upon Sumudu discrete-wise gives the special functions in Table 2
and will help future research.
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