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Abstract
In this paper, we consider the complex dynamics of a discrete predator–prey system
with a strong Allee effect on the prey and a ratio-dependent functional response,
which is the discrete version of the continuous system in (Nonlinear Anal., Real World
Appl. 16:235–249, 2014). First, by giving several examples to display the limitations
and errors of the local stability of the equilibrium point p obtained in (Nonlinear Anal.,
Real World Appl. 16:235–249, 2014), we provide an easily verified and complete
discrimination criterion for the local stability of this equilibrium. Then we study some
properties of its discrete version, especially for the stability and bifurcation for the
equilibrium point E1, which has not been considered in any literature to the best of
our knowledge. By using the center manifold theorem and bifurcation theory, we
consider the flip bifurcation of this system at E1 and obtain the stability of the closed
orbits bifurcated from E1. The numerical simulations not only show the correctness of
our theoretical analysis, but also we find some new and interesting dynamics of this
system.

Keywords: Discrete predator–prey model; Strong Allee effect; Flip bifurcation;
Center Manifold Theorem

1 Introduction
It is well known that one of the most challenging investigation areas for the biology and/or
ecology population is the predator–prey interaction among the population. In the past
few decades, many ecologists, mathematicians and biologists have paid attention to this
field, especially for the persistence and/or extinction of one or more predator–predator
interacting groups [8, 9, 23].

From the modeling point of view, a potential mechanism that makes possible mutual ex-
tinction and creates long-term oscillation behavior is the interaction of predators and prey,
including ratio-dependent functional responses [3, 4, 11, 25]. With such a ratio-dependent
method, the growth rate of per capita predator is a function of the ratio of prey to predator
abundance.

In 1931, Allee pointed out that when the population size gets larger, the per capita
growth rates will start to rise and then fall. We call such a biological phenomenon an Allee
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effect; it is characterized by the positive correlation between the population size and the
average individual fitness of the population. There are two main types of Allee effect, which
are known as the strong Allee effect and the weak Allee effect. The strong Allee effect in-
dicates that there exists a critical population size under which the population growth rate
becomes negative. The weak Allee effect means a reduced per capita growth rate at low
population size but never becoming negative. There are many factors that lead to the Allee
effect, such as difficulties in finding mates, social dysfunction and inbreeding depression.
The Allee effect has also been found in wild ecosystems [5] and marine ecosystems [10].

There are many investigations for predator–prey models [2–12] and [23, 25]. In recent
years, the discrete-time population models have attracted more and more attention. On
the one hand, when the populations are not overlapping or the populations are small, the
discrete-time models are more suitable than the continuous-time models. On the other
hand, one can get more accurate numerical simulation results from discrete-time mod-
els. Moreover, the numerical simulation results are generally obtained by discretizing the
corresponding continuous-time model. The discrete-time models sometimes have richer
dynamical behaviors. For instance, the single-species discrete-time models have bifurca-
tions, chaos and more complex dynamical behaviors (see [6, 12–16, 18–22]). For the flip
bifurcation and Hopf bifurcation of discrete models, see also [6, 12–14, 24].

Recently, Aguirre et al. [1] considered the following continuous-time predator–prey sys-
tem:

⎧
⎨

⎩

dx
dt = x(1 – x)(x – m)(x + y) – αxy,
dy
dt = βxy – γ y(x + y),

(1.1)

where the positive parameter γ represents the death rate of the predator y; the parameter
α > 0 is the largest prey mortality rate due to predation for an infinite number of predators,
which is known as consumption capacity; the parameter β > 0 is the maximum predator
growth rate due to an infinite number of prey, which is called the predator growing ca-
pacity; and the parameter m (0 < m � 1) is a rescaled Allee threshold for the prey without
predator.

Considering the biological significance of the system (1.1), one only takes into account
the stability and bifurcation of its nonnegative equilibria.

For the sake of illustration, some denotations in [1] are still adopted as follows:

� = �(α,β ,γ , m) := β(m – 1)2 – 4α(β – γ ),

H = H(α,β ,γ , m) := β
√

�
[
(1 + m)

√
β –

√
�

]
– 2γ (β – γ )(β – α),

q :=
(

m + 1
2

,
(β – γ )(m + 1)

2γ

)

,

ps :=
(

β(m + 1) –
√

β�

2β
,

(β – γ )[β(m + 1) –
√

β�]
2βγ

)

,

(1.2)

and

p :=
(

β(m + 1) +
√

β�

2β
,

(β – γ )[β(m + 1) +
√

β�]
2βγ

)

.
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We also define the following function used later:

L = L(α,β ,γ , m) := β
√

�
[
(1 + m)

√
β +

√
�

]
+ 2γ (β – γ )(β – α). (1.3)

First of all, we notice that there are some obvious errors in [1] although there also are
some good results in [1]. Let us view the following proposition (Theorem 4.2 in [1]).

Proposition A Let β > γ and � > 0, then:
(a) the equilibrium point ps in system (1.1) is a hyperbolic saddle;
(b) if H < 0, the equilibrium point p in system (1.1) is a hyperbolic attractor;
(c) if H > 0, the equilibrium point p in system (1.1) is a hyperbolic repeller;
(d) if H = 0, the equilibrium point p in system (1.1) undergoes a Hopf bifurcation.

The following counterexample indicates that the conclusion (c) in Proposition A is
wrong.

Counterexample 1.1 Consider system (1.1) with the following parameters:

m = 0.1, α = 2, β = 2, γ = 1.8.

According to the symbols in [1], one can easily obtain � = 1/50, H = 2/5 > 0, and the equi-
librium point p = (3/5, 1/15). Thus the Jacobian matrix J of system (1.1) at the equilibrium
point p is given by

Jp =

(
2/25 –27/25
1/75 –3/25

)

, (1.4)

whose two eigenvalues are –0.02 ± 0.0663i. So, the equilibrium point p is a hyperbolic
attractor. Therefore, the result (c) in Proposition A is not appropriate for this counterex-
ample.

We now provide right results to correct Proposition A as follows.

Theorem 1.1 Let β > γ and � > 0, then
(a) the equilibrium point ps is a hyperbolic saddle;
(b) if L > 0, the equilibrium point p is a hyperbolic attractor;
(c) if L < 0, the equilibrium point p is a hyperbolic repeller;
(d) if L = 0, system (1.1) undergoes a Hopf bifurcation at the equilibrium point p.

Proof We just prove the parts (b), (c) and (d), since the proof of part (a) is the same as
in [1].

Parts (b) and (c). By some simple computations, we give the determinant of the Jacobian
matrix Jp by

Det(Jp) =
β – γ

8βγ

√
�

[
(1 + m)

√
β +

√
�

]3 > 0.
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Hence, the local stability of the equilibrium p is determined by the sign of the trace of the
Jacobian matrix Jp. Note that

Tr(Jp) = –
(1 + m)

√
β +

√
�

4β
3
2 γ

L,

we have sign(Tr(Jp)) = – sign(L). Therefore, by the Hartman–Grobman theorem [7, 17],
the parts (b) and (c) hold.

Part (d). Let L = 0, then Tr(Jp) = 0, and therefore the eigenvalues of the Jacobian matrix Jp

are ± β–γ

2β

√
α – βi, which cross the imaginary axis. Hence, system (1.1) undergoes a Hopf

bifurcation at the equilibrium point p. �

Remark 1.1 Comparing Theorem 1.1 with Proposition A, one can find that the part (b) in
Proposition A is only partly true. In fact, for β > γ , if H < 0, i.e.,

0 < β
√

�
[
(1 + m)

√
β –

√
�

]
< 2γ (β – γ )(β – α),

then β > α. Hence, L = β
√

�[(1 + m)
√

β +
√

�] + 2γ (β – γ )(β – α) > 0. By Theorem 1.1,
the part (b) in Proposition A holds.

Remark 1.2 Also, one can find that the part (d) in Proposition A is wrong. In fact, for
β > γ , if H = 0, i.e.,

β
√

�
[
(1 + m)

√
β –

√
�

]
= 2γ (β – γ )(β – α),

then

Tr(Jp) = –
α(m + 1)

√
�

4γ

[
(1 + m)

√
β +

√
�

]
< 0.

Hence, the equilibrium point p in system (1.1) cannot undergo a Hopf bifurcation.

Next, we consider the following discrete version of system (1.1) with strong Allee effect:

⎧
⎨

⎩

x(n + 1) = x(n) exp[(1 – x(n))(x(n) – m)(x(n) + y(n)) – αy(n)],

y(n + 1) = y(n) exp[βx(n) – γ (x(n) + y(n))],
(1.5)

where the positive parameters m, α, β , γ and their biological significance are the same
as in system (1.1). If the initial values of system (1.5) are positive, one can prove that the
corresponding solutions of system (1.5) (x(n), y(n)) are also positive.

The rest of this paper is organized as follows. In Sect. 2, we consider the existence and
local stability of equilibria of system (1.5). In Sect. 3, we give the flip and fold bifurcations
for the equilibrium point E1(1, 0) by using center manifold theory. In Sect. 4, we present
the numerical simulations, which not only show the consistency between our results and
theoretical analysis, but also we exhibit some complex dynamical behaviors, such as the
cascade of period-doubling bifurcation in periods 2, 4 and 8, quasi-periodic orbits and
chaotic sets. At last, some conclusions are presented in Sect. 5.



Fang and Li Advances in Difference Equations  (2018) 2018:320 Page 5 of 16

2 Equilibria and their dynamics
In this section, we first determine the existence of the equilibria of system (1.5), then we
investigate their dynamics.

2.1 Existence of equilibria
From system (1.5), we know the equilibria of system (1.5) satisfy the following equations:

⎧
⎨

⎩

x = x exp[(1 – x)(x – m)(x + y) – αy],

y = y exp[βx – γ (x + y)].
(2.1)

In view of the biological meanings of system (1.5), one only needs to consider the exis-
tence of nonnegative equilibria. The following results are easy to deduce.

Theorem 2.1 System (1.5) always has boundary equilibrium points E0(0, 0), E1(1, 0) and
Em(m, 0). For the nonnegative equilibrium point(s), the following statements hold.

(i) For β > γ ,
(i.1) if � > 0, then ps and p are two distinct positive equilibria of system (1.5);
(i.2) if � = 0, then ps and p collide into a unique positive equilibrium q.

(ii) For β = γ , p and ps become into the equilibria E1 and Em, respectively.

In order to investigate the local stability and bifurcation for an equilibrium point of a
general 2D system, the following lemma will be very useful and even essential; for the
details see [24].

Lemma 2.1 Let F(λ) = λ2 + Bλ + C, where B and C are two real constants. Suppose λ1 and
λ2 are two roots of F(λ) = 0. Then the following statements hold.

(i) If F(1) > 0, then
(i.1) |λ1| < 1 and |λ2| < 1 if and only if F(–1) > 0 and C < 1;
(i.2) λ1 = –1 and λ2 �= –1 if and only if F(–1) = 0 and B �= 2;
(i.3) |λ1| < 1 and |λ2| > 1 if and only if F(–1) < 0;
(i.4) |λ1| > 1 and |λ2| > 1 if and only if F(–1) > 0 and C > 1;
(i.5) λ1 and λ2 are a pair of conjugate complex roots with |λ1| = |λ2| = 1 if and only

if –2 < B < 2 and C = 1;
(i.6) λ1 = λ2 = –1 if and only if F(–1) = 0 and B = 2.

(ii) If F(1) = 0, namely, 1 is one root of F(λ) = 0, then the other root λ satisfies
|λ| = (<, >)1 if and only if |C| = (<, >)1.

(iii) If F(1) < 0, then F(λ) = 0 has one root lying in (1, ∞). Moreover,
(iii.1) the other root λ satisfies λ < (=) – 1 if and only if F(–1) < (=)0;
(iii.2) the other root λ satisfies –1 < λ < 1 if and only if F(–1) > 0.

Now, let us recall the definition of topological types for an equilibrium point (x, y).

Definition 2.1 Let E(x, y) be an equilibrium point of system (1.5) with multipliers λ1

and λ2.
(i) The point E(x, y) is called sink if |λ1| < 1 and |λ2| < 1, so sink is locally

asymptotically stable.
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(ii) The point E(x, y) is called source if |λ1| > 1 and |λ2| > 1, so source is locally
asymptotically unstable.

(iii) The point E(x, y) is called saddle if |λ1| < 1 and |λ2| > 1 (or |λ1| > 1 and |λ2| < 1).
(iv) The point E(x, y) is called non-hyperbolic if either |λ1| = 1 or |λ2| = 1.

2.2 The dynamics of boundary equilibria
In this subsection, we discuss the local dynamics for the boundary equilibria of system
(1.5). By some computations, one can easily derive the following results.

Theorem 2.2
(i) The equilibrium point E0 is always non-hyperbolic;

(ii) if β < γ , then the equilibrium point E1 is a sink, but equilibrium Em is a saddle;
(iii) if β = γ , then the equilibria E1 and Em are non-hyperbolic;
(iv) if β > γ , then the equilibrium point E1 is a saddle, while the equilibrium Em is a

source.

2.3 The dynamics of positive equilibria
Theorem 2.3 Assume that β > γ and � = 0, then the positive equilibrium point q is non-
hyperbolic.

Proof The Jacobian matrix J of system (1.5) at the point q is

Jq =

(
1 + 1

8 (m + 1)(m – 1)2 1
8 (m + 1)(m – 1)2 – 1

2α(m + 1)
(β–γ )2(m+1)

2γ
1 – 1

2 (β – γ )(m + 1)

)

. (2.2)

The characteristic equation associated with (2.2) is

F(λ) := λ2 – Tr(Jq)λ + Det(Jq) = 0, (2.3)

where Tr(Jq) and Det(Jq) are the trace and determinant of the matrix Jq respectively,
namely,

Tr(Jq) = 2 +
1

8α
(α – β)(m + 1)(m – 1)2 (2.4)

and

Det(Jq) = 1 +
1

8α
(α – β)(m + 1)(m – 1)2. (2.5)

Through some computations, we can see that its two roots are 1 and 1 + 1
8α

(α – β)(m +
1)(m – 1)2. Therefore, the positive equilibrium point q is non-hyperbolic. �

We are now in a position to consider the stability of positive equilibria ps and p.

Theorem 2.4 Let β > γ and � > 0, then the following statements hold.
(a) If β–γ

8βγ

√
�[(1 + m)

√
β –

√
�]3 – (1+m)

√
β–

√
�

2β
3
2 γ

H > 4, then the point ps is a source;
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(b) if β–γ

8βγ

√
�[(1 + m)

√
β –

√
�]3 – (1+m)

√
β–

√
�

2β
3
2 γ

H = 4, then the point ps is

non-hyperbolic;
(c) if β–γ

8βγ

√
�[(1 + m)

√
β –

√
�]3 – (1+m)

√
β–

√
�

2β
3
2 γ

H < 4, then the point ps is a saddle.

Proof The Jacobian matrix J of system (1.5) at the equilibrium point ps(x1, y1) is

Jps =

(
1 + x1[α(1 – γ

β
) +

√
β�

γ
x1] – αγ

β
x1

(β–γ )2

γ
x1 1 – (β – γ )x1

)

. (2.6)

Its characteristic equation is

F(λ) = λ2 – Tr(Jps )λ + Det(Jps ) = 0, (2.7)

where

Tr(Jps ) = 2 +
(1 + m)

√
β –

√
�

4β
3
2 γ

H

and

Det(Jps ) = 1 +
(1 + m)

√
β –

√
�

4β
3
2 γ

H –
β – γ

8βγ

√
�

[
(1 + m)

√
β –

√
�

]3.

Then

F(1) = –
β – γ

8βγ

√
�

[
(1 + m)

√
β –

√
�

]3 < 0

and

F(–1) = 4 +
(1 + m)

√
β –

√
�

2β
3
2 γ

H –
β – γ

8βγ

√
�

[
(1 + m)

√
β –

√
�

]3.

Therefore, by (iii) of Lemma 2.1, we get the desired results (a)–(c). �

Theorem 2.5 Let β > γ and � > 0, then the following conclusions hold.
(1) If 0 < (1+m)

√
β+

√
�

2β
3
2 γ

L – β–γ

8βγ

√
�[(1 + m)

√
β +

√
�]3 < 4, then the point p is a sink;

(2) if (1+m)
√

β+
√

�

2β
3
2 γ

L – β–γ

8βγ

√
�[(1 + m)

√
β +

√
�]3 = 4, then the point p is non-hyperbolic;

(3) if (1+m)
√

β+
√

�

2β
3
2 γ

L – β–γ

8βγ

√
�[(1 + m)

√
β +

√
�]3 > 4, then the point p is a saddle;

(4) if (1+m)
√

β+
√

�

2β
3
2 γ

L – β–γ

8βγ

√
�[(1 + m)

√
β +

√
�]3 < 0, then the point p is a source;

(5) if (1+m)
√

β+
√

�

2β
3
2 γ

L = β–γ

8βγ

√
�[(1 + m)

√
β +

√
�]3 < 4, then the point p is non-hyperbolic.

Proof The Jacobian matrix J of system (1.5) at the equilibrium point p(x2, y2) is

Jp =

(
1 + x2[α(1 – γ

β
) –

√
β�

γ
x2] – αγ

β
x2

(β–γ )2

γ
x1 1 – (β – γ )x2

)

. (2.8)
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Its characteristic equation is

F(λ) = λ2 – Tr(Jp)λ + Det(Jp) = 0, (2.9)

where

Tr(Jp) = 2 –
(1 + m)

√
β +

√
�

4β
3
2 γ

L (2.10)

and

Det(Jp) = 1 –
(1 + m)

√
β +

√
�

4β
3
2 γ

L +
β – γ

8βγ

√
�

[
(1 + m)

√
β +

√
�

]3. (2.11)

By (2.10) and (2.11), we have

F(1) =
β – γ

8βγ

√
�

[
(1 + m)

√
β +

√
�

]3 > 0

and

F(–1) = 4 –
(1 + m)

√
β +

√
�

2β
3
2 γ

L +
β – γ

8βγ

√
�

[
(1 + m)

√
β +

√
�

]3.

Part (1). If 0 < (1+m)
√

β+
√

�

2β
3
2 γ

L – β–γ

8βγ

√
�[(1 + m)

√
β +

√
�]3 < 4, then F(–1) > 0 and

Det(Jp) < 1. By (i.1) of Lemma 2.1, we know that two eigenvalues of (2.9) satisfy |λ1| < 1
and |λ2| < 1. Hence, the equilibrium point p is a sink.

Part (2). If (1+m)
√

β+
√

�

2β
3
2 γ

L – β–γ

8βγ

√
�[(1 + m)

√
β +

√
�]3 = 4, then F(–1) = 0. Notice Tr(Jp) �=

–2. So, by (i.2) of Lemma 2.1, we know that two eigenvalues of (2.9) satisfy λ1 = –1 and
λ2 �= –1. Hence, the equilibrium point p is non-hyperbolic.

Part (3). If (1+m)
√

β+
√

�

2β
3
2 γ

L – β–γ

8βγ

√
�[(1 + m)

√
β +

√
�]3 > 4, then F(–1) < 0. By (i.3) of

Lemma 2.1, it is easy to see that two eigenvalues of (2.9) satisfy |λ1| < 1 and |λ2| > 1. There-
fore, the equilibrium point p is a saddle.

Part (4). If (1+m)
√

β+
√

�

2β
3
2 γ

L – β–γ

8βγ

√
�[(1 + m)

√
β +

√
�]3 < 0, then F(–1) > 0 and Det(Jp) > 1.

By (i.4) of Lemma 2.1, two eigenvalues of (2.9) satisfy |λ1| > 1 and |λ2| > 1. Hence, the
equilibrium point p is a source.

Part (5). If (1+m)
√

β+
√

�

2β
3
2 γ

L = β–γ

8βγ

√
�[(1 + m)

√
β +

√
�]3 < 4, then |Tr(Jp)| < 2 and

Det(Jp) = 1. By (i.5) of Lemma 2.1, two eigenvalues of (2.9) satisfy |λ1| = |λ1| = 1, which
are a pair of conjugate complex eigenvalues. Therefore, the equilibrium point p is non-
hyperbolic at this time. �

3 Bifurcation analysis
In this section we are concerned with the bifurcation problems of system (1.5). It has been
shown that for certain parametric conditions some of the equilibrium points may be non-
hyperbolic, and hence, system (1.5) may undergo some bifurcations phenomena.

It is easy to see from Theorem 2.2 that the stability of the equilibrium point E1(1, 0)
changes when β varies near β0 = γ , while the relation in α, m and γ is fixed. So, this system
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probably undergoes a bifurcation nearby β0 = γ . We are now in a position to consider this
problem: what kind of bifurcation is it? For the reader’s convenience, we formulate this
process step by step.

The first step. Giving a perturbation β∗ of the parameter β = β0 � γ , we consider a per-
turbation of system (1.5) as follows:

⎧
⎨

⎩

x(n + 1) = x(n) exp[(1 – x(n))(x(n) – m)(x(n) + y(n)) – αy(n)],

y(n + 1) = y(n) exp[(β0 + β∗)x(n) – γ (x(n) + y(n))],
(3.1)

where |β∗| � 1.
The second step. Let u(n) = x(n) – 1 and v(n) = y(n) – 0, which transforms equilibrium

point E1(1, 0) to the origin O(0, 0) and system (3.1) into

⎧
⎨

⎩

u → (u + 1) exp[–u(u + 1 – m)(u + v + 1) – αv] – 1,

v → v exp[(β0 + β∗)(u + 1) – γ (u + v + 1)].
(3.2)

The third step. Expanding (3.2) as a Taylor series at (u, v,β∗) = (0, 0, 0) up to terms of
order 3 produces the following model:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(n + 1)

= e100u(n) + e010v(n) + e200u2(n) + e110u(n)v(n)

+ e020v2(n) + e300u3(n) + e210u2(n)v(n)

+ e120u(n)v2(n) + e030v3(n) + O(r4),

v(n + 1)

= f100u(n) + f010v(n) + f001β∗ + f200u2(n) + f020v2(n)

+ f002β
2∗ + f110u(n)v(n) + f101u(n)β∗ + f011v(n)β∗

+ f300u3(n) + f030v3(n) + f003β
3∗ + f210u2(n)v(n)

+ f120u(n)v2(n) + f021v2(n)β∗ + f201u2(n)β∗ + f102u(n)β2∗
+ f012v(n)β2∗ + f111u(n)v(n)β∗ + O(r4),

(3.3)

where

r =
√

u2(n) + v2(n) + β2∗ ,

e100 = m, e010 = –α,

e200 =
1
2
(
m2 + 2m – 5

)
, e020 =

1
2
α2, e110 = –mα + m – 1,

e210 =
1
2
[(

5 – m2 – 2m
)
α + 2

(
m2 – m – 1

)]
, e300 =

1
6
(
m3 + 6m2 – 15m – 4

)
,

e030 = –
1
6
α3, e120 =

1
2

mα2 + α(1 – m),

f100 = 0, f010 = 1, f001 = 0, f200 = 0,

f020 = –γ , f002 = 0, f110 = 0, f101 = 0,
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f011 = 1, f300 = 0, f030 =
1
2
γ 2, f003 = 0,

f210 = 0, f120 = 0, f021 = –γ , f201 = 0,

f102 = 0, f012 =
1
2

, f111 = 1.

Let

J(E1) =

(
e100 e010

f100 f010

)

, namely, J(E1) =

(
m –α

0 1

)

.

By some computations, we obtain the eigenvalues and corresponding eigenvectors of ma-
trix JE1 , which are

μ1 = m, μ2 = 1,

and

(u1, v1)T = (1, 0)T , (u2, v2)T =
(

α

m – 1
, 1

)T

,

respectively.
The fourth step. Let the matrix

B =

(
u1 u2

v1 v2

)

, namely B =

(
1

α

m – 1
0 1

)

.

Denote s � α
m–1 . Then B is invertible with

B–1 =

(
1 –s
0 1

)

.

Using the transformation below,

(
u(n), v(n)

)T = B
(
X(n), Y (n)

)T ,

we can transform system (3.3) into the following form:

{
X(n + 1) = mX(n) + F(X(n), Y (n),β∗) + O(r4),
Y (n + 1) = Y (n) + G(X(n), Y (n),β∗) + O(r4),

(3.4)

where r =
√

X2(n) + Y 2(n) + β2∗ ,

F
(
X(n), Y (n),β∗

)

= g200X2(n) + g020Y 2(n) + g002β
2
∗ + g110X(n)Y (n) + g101X(n)β∗

+ g011Y (n)β∗ + g300X3(n) + g030Y 3(n) + g003β
3
∗ + g210X2(n)Y (n)
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+ g120X(n)Y 2(n) + g201X2(n)r∗ + g102X(n)β2
∗ + g021Y 2(n)β∗

+ g012Y (n)β2
∗ + g111X(n)Y (n)β∗,

G
(
X(n), Y (n),β∗

)

= h200X2(n) + h020Y 2(n) + h002β
2
∗ + h110X(n)Y (n) + h101X(n)β∗

+ h011Y (n)β∗ + h300X3(n) + h030Y 3(n) + h003β
3
∗ + h210X2(n)Y (n)

+ h120X(n)Y 2(n) + h201X2(n)β∗ + h102X(n)β2
∗ + h021Y 2(n)β∗

+ h012Y (n)β2
∗ + h111X(n)Y (n)β∗,

g200 =
1
2
(
m2 + 2m – 5

)
, g020 = e200s2 + e020 – sf020 + se110,

g101 = 0, g011 = –s,

g110 = 2se200 + e110, g030 = e030 – sf030 + s2e210 + se120 + s3e300, g002 = 0,

g300 =
1
6
(
m3 + 6m2 – 15m – 4

)
, g003 = 0, g210 = 3se300 + e210, g102 = 0,

g120 = 3s2e300 + 2se210 + e120, g012 = –
1
2

s, g201 = 0, g021 = sγ – s2,

g111 = –s; h200 = 0, h020 = –γ , h002 = 0, h110 = 0, h101 = 0,

h011 = 1, h300 = 0, h030 =
1
2
γ 2, h003 = 0,

h210 = 0, h120 = 0, h201 = 0, h012 =
1
2

,

h021 = s – γ , h102 = 0, h111 = 1.

The fifth step. Determine the center manifold W c(0, 0) of system (3.4) at the equilibrium
point O(0, 0) in a small neighborhood of β∗ = 0. By the center manifold theorem, we can
assume that the approximate representation of the central manifold W c(0, 0) is as follows:

W c(0, 0) =
{

(X, Y ) : X = �10Y + �01β∗ + �20Y 2 + �11Yβ∗ + �02β
2
∗

+ �30Y 3 + �21Y 2β∗ + �12Yβ2
∗ + �03β

3
∗ + O

(
r4)},

where r =
√

Y 2 + β2∗ and the coefficients �ij, i, j = 0, 1, 2, 3 are to be defined. Through some
computations, one may get

�10 = 0, �01 = 0, �20 =
s2e200 + e020 + se110 – sf020

1 – m
, �02 = 0,

�11 = –
sf011

1 – e100
=

α

(1 – m)2 , �12 = –
sf012 + �11f011

1 – e100
= –

(m + 1)α
2(1 – m)3 ,

�30 =
1

(1 – m)2 (2se200 + e110 – sf021)
(
s2e200 + e020 + se110 – sf020

)

+
1

1 – m
(
s3e300 + e030 + s2e210 + se120 – sf030

)
, �03 = 0,

�21 =
1

m – 1
(
sf021 + s2f111 + 2�20f011 + �11f021

)
+

1
1 – m

(2se200 + e110 – f021)�11.
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Hence, when β∗ = 0, the center manifold reads

W c(0, 0) =
{

(X, Y ) : X = �20Y 2 + �30Y 3 + O
(
Y 4)}.

Therefore, system (3.4) restricted to the center manifold W c(0, 0) has the expression

Y → Y – γ Y 2 +
1
2
γ 2Y 3 + O

(
Y 4).

Combining the above analysis and the conclusion in [17], we obtain the second main result
below.

Theorem 3.1 Consider system (1.5). Assume that β = γ and the other parameters in system
(1.5) are fixed. Give a perturbation β∗ of the parameter β = β0 := γ . Then system (1.5)
undergoes a fold bifurcation at equilibrium point E1(1, 0) when the parameter β∗ varies in
the small neighborhood of the origin. Moreover, the closed orbit bifurcating from E1(1, 0) is
unstable.

4 Numerical simulation
In this section, we give some numerical simulation results to illustrate the theoretical anal-
ysis obtained in the previous sections, and show some new interesting complex dynamics
of system (1.5). To do this, the initial value is taken to be (1.0, 0.5) and 1000 iteration steps
are implemented for each simulation.

On the basis of Theorem 2.1, we know that system (1.5) has three boundary nonnegative
equilibrium points E0(0, 0), E1(1, 0) and Em(m, 0). For E1(1, 0), its two eigenvalues are λ1 =
m < 1 and λ2 = exp(β – γ ).

Vary β in the range 5 ≤ β ≤ 20, and fix m = 0.1, α = 1, γ = 10. The bifurcation diagram
is plotted in Fig. 1(a)–(d). We see that the equilibrium point E1(1, 0) is stable for 5 < β < 12,
and loses its stability at the fold bifurcation parameter value β = 12. Moreover, a chaotic
set emerges with the increasing of β . But, from Fig. 1(b) and (d), we know that when β

increases to some fixed value the prey (predator) becomes extinct.
The maximum Lyapunov exponents corresponding to Fig. 1 are calculated and plotted

in Fig. 2.
The phase portraits are plotted in Fig. 3. From Fig. 3(a)–(f ), we can see the predator is ex-

tinct. Predator and prey are extinct from Fig. 3(f ). Figures 1–3 illustrate that Theorem 3.1
is correct.

5 Result and discussion
In this paper, we have considered a discrete predator–prey system with strong Allee effect
on the prey and ratio-dependent functional response. After a counterexample is formu-
lated to demonstrate the limitations and errors for the local stability of the equilibrium
point p stated in Theorem 4.2 [1], a complete determining criterion is presented for the
local stability of these equilibria in Theorem 1.1. What is more important is that the sta-
bility and bifurcation of the equilibrium point E1(1, 0) of this system are stated. The re-
sults obtained indicate that the stability of this system is influenced by many factors: the
death rate of the predator, the prey death rate, the predator growing ability and the Allee
threshold. Especially, the predator growing ability β varies around the death rate γ of the
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Figure 1 The dynamics of x and y

Figure 2 Maximum Lyapunov exponents corresponding to Fig. 1

predator, the fold bifurcation will occur at this system. Some more interesting dynamical
properties, such as chaos, are also obtained by a numerical simulation, which shows that
the system is worthy of further theoretical research.

Especially, the extinction and coexistence of both populations have also been found to
occur for some fixed parameter sets. This sufficiently demonstrates that the dynamical
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Figure 3 Phase portrait of the system (1.5) versus β

properties of this system may be highly sensitive to the living environment. It deserves fur-
ther consideration as regards the Allee effect and the interaction of a ratio-related predator
on the living environment of the populations.

It should be pointed out that there are differences for the obtained results between the
systems (1.1) and (1.5). Because the system (1.1) is a continuous-time model, while the
system (1.5) is a discrete model, i.e., a discrete version of the system (1.1), it is reason-
able that there exist differences as regards the derived conclusions between them. In fact,
the results obtained by the authors in [1] demonstrate that the system (1.1) exhibits the
B-T bifurcation, limit cycles, homoclinic orbits and heteroclinic connections. But the re-
sults obtained by us in this paper display that there is a flip bifurcation in the system (1.5),
which does not occur in the system (1.1). This indicates that some properties of discrete
model sometimes cannot be obtained by the discretization of the corresponding contin-
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uous model. This further implies that it is meaningful to study the discretization of the
continuous model.
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