
Zhong and Wang Advances in Difference Equations  (2018) 2018:321 
https://doi.org/10.1186/s13662-018-1778-5

R E S E A R C H Open Access

Basic theory of initial value problems of
conformable fractional differential equations
Wenyong Zhong1* and Lanfang Wang1

*Correspondence:
wyzhong@jsu.edu.cn
1College of Mathematics and
Statistics, Jishou University, Hunan,
China

Abstract
In this paper, we discuss the basic theory of the conformable fractional differential
equation Taαx(t) = f (t, x(t)), t ∈ [a,∞), subject to the local initial condition x(a) = xa or
the nonlocal initial condition x(a) + g(x) = xa, where 0 < α < 1, Taαx(t) denotes the
conformable fractional derivative of a function x(t) of order α, f : [a,∞)×R �→R is
continuous and g is a given functional defined on an appropriate space of functions.
The theory of global existence, extension, boundedness, and stability of solutions is
considered; by virtue of the theory of the conformable fractional calculus and by the
use of fixed point theorems, some criteria are established. Several concrete examples
are given to illustrate the possible application of our analytical results.
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1 Introduction
Fractional derivative is a generalization of the classical one to an arbitrary order, and it is as
old as calculus. It has been applied to almost every field of science, engineering, and math-
ematics in the last three decades [1–10]. At present, there exist a number of definitions of
fractional derivatives in the literature, each depending on a given set of assumptions, the
most popular of which are the Riemann–Liouville and Caputo fractional derivatives. But
it is worth noting that these two kinds of derivatives do not satisfy the classical chain rule.

Recently, Khalil et al. in [11] introduced a new well-behaved definition of a fractional
derivative, called the conformable fractional derivative, which satisfies the chain rule. The
new definition has attracted a great deal of attention from many researchers. And for the
basic properties of the conformable fractional derivative, some results have been obtained
[11–13]; its several applications and generalizations were also discussed [14–18]. But the
investigation of the theory of conformable fractional differential equations has only been
started quite recently.

The existence of solutions to the boundary value problems for some specific con-
formable fractional differential equations were discussed in [19–25]. For initial value prob-
lems, Abdourazek et al. in [26] studied the stability and asymptotic stability of conformable
fractional-order non-linear systems by using Lyapunov functions; Abdeljawad et al. in [27]
investigated abstract Cauchy problems of conformable fractional systems by introducing
fractional semigroups of operators; and Bayour et al. in [28] studied the existence of solu-
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tions for the following problem by using the notion of tube solution:

⎧
⎨

⎩

Tαx(t) = f (t, x(t)), t ∈ [a, b], a > 0,

x(a) = xa,

where Tαx(t) denotes the conformable fractional derivative starting from zero of a func-
tion x of order α with α in (0, 1). Some existence results of at least one solution for the
above-mentioned problem were obtained by the use of Schauder’s fixed point theorem.

In this paper, we consider the global existence, extension, boundedness and stabilities
of solutions to the fractional differential equation

Ta
αx(t) = f

(
t, x(t)

)
, t ∈ [a,∞), 0 < α < 1, (1.1)

subject to the initial conditions

x(a) = xa (1.2)

or

x(a) + g(x) = xa, (1.3)

where Ta
αx(t) denotes the conformable fractional derivative starting from a of a function

x of order α, f : [a,∞) × R �→ R is continuous, and g is a given functional defined on an
appropriate space of functions. The conditions (1.2) and (1.3) are often called local and
nonlocal initial conditions, respectively.

There is a vast literature concerning the existence of solutions to an initial value problem
for the differential equations with the Riemann–Liouville or Caputo fractional derivatives
[29–32]. While in the setting of the conformable fractional derivatives, as far as we know,
the global existence and extension and boundedness of solutions have not been discussed
in the literature. It is worth pointing out that the global existence and boundedness of
solutions play a prerequisite role in the discussion of the stabilities of solutions.

The rest of paper is organized as follows. Section 2 preliminarily provides some defini-
tions and lemmas which are crucial to the following discussion. In Sect. 3, we first establish
some criteria for the global existence, extension, and boundedness of solutions to the lo-
cal initial value problem by means of some fixed point theorems and by the use of the
conformable fractional calculus, and further discuss the stabilities of solutions; and then
we investigate the existence of solutions to the nonlocal initial value problem. Finally, we
give several concrete examples to illustrate the possible application of our analytical re-
sults.

2 Preliminaries
In this section, we preliminarily provide some definitions and lemmas which are useful in
the following discussion. It is always assumed that α ∈ (0, 1] throughout this paper.
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Definition 2.1 ([11, 13]) The conformable fractional derivative starting from a of a func-
tion f : [a,∞) �→R of order α is defined by

Ta
α f (t) = lim

ε→0

f (t + ε(t – a)1–α) – f (t)
ε

.

If Ta
α f (t) exists on (a, b), then Ta

α f (a) = limt→a Ta
α f (t).

Definition 2.2 ([11, 13]) The fractional integral starting from a of a function f : [a,∞) �→
R of order α is defined by

Ia
α f (t) =

∫ t

a
(s – a)α–1f (s) ds.

Lemma 2.1 ([11, 13]) If f : [a,∞) �→R is continuous. Then, for all t > a,

Ta
α Ia

α f (t) = f (t).

Lemma 2.2 ([22]) If Ta
α f (t) is continuous on [a, b], then Ia

αTa
α f (t) = f (t) – f (a).

Lemma 2.3 ([11, 13]) If f is differentiable at t in [a, b], then it is also α-differentiable at t
and Ta

α f (t) = (t – a)1–α df (t)
dt .

Lemma 2.4 ([11]) If f is α-differentiable at t in [a, b], then it is continuous at t.

Lemma 2.5 (Chain rule [13]) Let f , g : (a,∞) �→ R be α-differential functions, where α ∈
(0, 1]. Let h(t) = f (g(t)). Then h(t) is an α-differential and for all t �= a and g(t) �= a we have

(
Ta

αh
)
(t) =

(
Ta

α f
)(

g(t)
) · (Ta

αg
)
(t) · (g(t) – a

)α–1.

For t = a,

Ta
αh(a) = lim

t→a

(
Ta

α f
)(

g(t)
) · (Ta

αg
)
(t) · (g(t) – a

)α–1.

Lemma 2.6 ([11]) If f and g are α-differentiable at t in [a, b], then fg is also α-differentiable
at t and

Ta
α (fg)(t) = f (t)Ta

α f (t) + g(t)Ta
α f (t).

By an argument similar to the one used in [11], a general version of the mean value the-
orem for the conformable fractional derivative is yielded as follows [20]. It plays a crucial
role in the study of the extension of solutions.

Lemma 2.7 If f : [a, b] �→ R is continuous on the subinterval [c, d] of [a, b] and if Ta
α f (t)

exists on (c, d). Then there exists a point ξ in (c, d) such that

f (d) – f (c) =
1
α

Ta
α f (ξ )

[
(d – a)α – (c – a)α

]
.
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The following lemma is a direct consequence of the application of the mean value theo-
rem [13].

Lemma 2.8 If Ta
α f (t) ≤ 0 on [a, b], then f is decreasing on [a, b].

We next present an extended Gronwall’s inequality, which generalizes the result in [13];
and it plays a key role in the discussion of the extension and stabilities of solutions.

Lemma 2.9 Let f and g be continuous, nonnegative functions on [a, b] and λ a nonnegative
constant such that

f (t) ≤ λ + Ia
α(fg)(t) for t in [a, b],

then

f (t) ≤ λeIa
αg(t) for t in [a, b].

Proof Let F(t) = λ + Ia
α(fg)(t) and G(t) = e–Ia

αg(t). Then the hypothesis of the inequality of f
and g is equivalent to the inequality

f (t) ≤ F(t) for t in [a, b], (2.1)

and the assumptions of continuities of f and g ensure that F , G and GF are α-differentiable;
and thus from Lemma 2.1, the inequality (2.1) and the hypotheses of nonnegativity, it
follows that

Ta
αF(t) – F(t)g(t) = f (t)g(t) – F(t)g(t) ≤ f (t)g(t) – f (t)g(t) = 0.

Multiplying each side of the above inequality by G(t), and using Lemmas 2.5 and 2.6, we
get

Ta
α (FG)(t) ≤ 0.

This, together with Lemma 2.8, implies that F(t)G(t) is decreasing on [a, b]. Hence

F(t)G(t) ≤ F(a)G(a),

or, equivalently,

F(t) ≤ λeIa
αg(t).

Again, using the inequality (2.1), from the above inequality we obtain the desired conclu-
sion. �
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3 Main results
We first make the following hypotheses, which will be adopted in the following discussion.
Let D = [a,∞) ×R.

(H1) The function f : D �→R is continuous.
(H2) There exists a positive constant L such that, for any (t, u), (t, v) in D,

∣
∣f (t, u) – f (t, v)

∣
∣ ≤ L|u – v|.

(H3) There exists a nonnegative function h such that, for any (t, u) in D,

∣
∣f (t, u)

∣
∣ ≤ h(t)|u|

for which Ia
αh(t) is bounded on [a,∞).

(H4) There exist a nonnegative function l and a positive constant L such that, for any
(t, u), (t, v) in D,

∣
∣f (t, u) – f (t, v)

∣
∣ ≤ l(t)|u – v| ≤ L|u – v|

for which Ia
α l(t) is bounded on [a,∞).

3.1 Local initial value problems
In this subsection, we establish some criteria for the global existence, extension, bound-
edness, and stabilities of solutions to the local initial value problem. By Lemmas 2.1 and
2.2, the initial value problem (1.1)–(1.2) is easily transformed into an equivalent integral
equation.

Lemma 3.1 If (H1) holds, then a function x in C([a, b]) is a solution of the initial value
problem (1.1)–(1.2) if and only if it is a continuous solution of the following integral equa-
tion:

x(t) = xa + Ia
α f

(
t, x(t)

)
, t ∈ [a, b].

Now, we are in a position to present a result of existence and uniqueness of the solution
to the initial value problem (1.1)–(1.2).

Theorem 3.1 If (H1)–(H2) hold, then the initial value problem (1.1)–(1.2) has exactly one
solution defined on [a, b].

Proof Write I = [a, b]. The assertion will be proven by Banach’s contraction principle on
C(I) equipped with an appropriate weighted maximum norm. To this end, given a positive
number β in (L,∞), define a function e(t) by

e(t) = e–β
(t–a)α

α ,

and then, for x in C(I), define

‖x‖β =
∥
∥e(·)x(·)∥∥,
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where ‖ ·‖ denotes the maximum norm on C(I). It is easy to verify that ‖ ·‖β is also a norm
on C(I), which is equivalent to the maximum norm ‖ · ‖ since

e(b)‖ · ‖ ≤ ‖ · ‖β ≤ ‖ · ‖.

Hence (C(I),‖ · ‖β ) is a Banach space.
Define next an operator

T :
(
C(I),‖ · ‖β

) �→ (
C(I),‖ · ‖β

)

by

T x(t) = x0 +
∫ t

a
f
(
s, x(s)

)
(s – a)α–1 ds,

and then Lemma 3.1 ensures that the fixed points of the operator T are the solutions of
the problem (1.1)–(1.2).

We now show that T is a contraction on (C(I),‖ · ‖β ). Indeed, let x, y ∈ C(I) and observe

T x(t) – T y(t) =
∫ t

a

[
f
(
s, x(s)

)
– f

(
s, y(s)

)]
(s – a)α–1 ds.

Thus, by H2, a direct calculation gives, for every t in I ,

∣
∣T x(t) – T y(t)

∣
∣e(t) ≤ Le(t)

∫ t

a
e–1(s)e(s)

∣
∣x(s) – y(s)

∣
∣(s – a)α–1 ds

≤ Le(t)
∫ t

a
e–1(s)(s – a)α–1 ds‖x – y‖

= Le(t)Ia
αe–1(t)‖x – y‖

=
L
β

e(t)
(
e–1(t) – 1

)‖x – y‖

≤ L
β

‖x – y‖.

Hence

‖T x – T y‖ ≤ L
β

‖x – y‖.

Since 0 < L
β

< 1, the Banach contraction principle ensures that there is a unique x in C(I)
with x = T x, and equivalently the problem (1.1)–(1.2) has a unique solution x in C(I). The
proof is complete. �

We next discuss the extension to the right of the solutions of Eq. (1.1) with initial condi-
tion (1.2).

Lemma 3.2 If (H1) holds. Let x(t) be a solution of the initial value problem (1.1)–(1.2)
defined on [a, t+) with t+ �= ∞. If the limit of x(t) exists as t tends to t+, then the solution
x(t) can be extended to the closed interval [a, t+].



Zhong and Wang Advances in Difference Equations  (2018) 2018:321 Page 7 of 14

Proof Let limt→t+ x(t) = x+. Now let J = [a, t+) and define a function x̃(t) by

x̃ =

⎧
⎨

⎩

x(t), t ∈ J ,

x+, t = t+.

By Lemma 2.4, the function x̃(t) is obviously continuous on [a, t+].
We next show that the function x̃(t) is also a solution of (1.1)–(1.2) defined on [a, t+],

and clearly, it is sufficient to show

Ta
α x̃

(
t+)

= f
(
t+, x̃

(
t+))

.

Observe that the equation

Ta
α x̃(t) = f

(
t, x̃(t)

)
, for t ∈ [a, t+),

and the continuities of x̃ and f obviously imply

lim
t→t+

Ta
α x̃(t) = f

(
t+, x̃

(
t+))

. (3.1)

Moreover, using Lemma 2.7, we see that, for every t in [a, t+), there exists a point η in (t, t+)
such that

Ta
α x̃(η) = α · x̃(t) – x̃(t+)

t – t+ · t – t+

(t – a)α – (t+ – a)α
. (3.2)

Now letting t → t+, then it follows from (3.1) and (3.2) that the derivative of x̃(t) at t+ exists
and

x̃′(t+)(
t+ – a

)1–α = f
(
t+, x̃

(
t+))

.

Therefore, by Lemma 2.3,

Ta
α x̃

(
t+)

= f
(
t+, x̃

(
t+))

.

Consequently, we have shown that the function x̃(t) is also a solution of (1.1)–(1.2) defined
on [a, t+], and it is an extension of the solution x(t) to [a, t+]. Hence the desired assertion
follows. �

Definition 3.1 Let J be the maximal existence interval of the solution x(t) of the initial
value problem (1.1)–(1.2), then the solutions x(t) is called to come arbitrarily close to the
boundary of D = [a,∞) × R to the right if for any closed and bounded domain D0 in D,
it is impossible that the point (t, x(t)) always remains in D0 for every t in J .

Theorem 3.2 If (H1)–(H2) hold, then the solution of the initial value problem (1.1)–(1.2)
comes arbitrarily close to the boundary of D = [a,∞) ×R to the right.
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Proof According to Theorem 3.1, the initial value problem (1.1)–(1.2) has a unique solu-
tion, and denote the solution by x(t). Let J stand for the maximal existence interval of x(t).
Again, using Theorem 3.1, we infer that J = [a,∞) or [a, t+) with t+ �= ∞.

The desired result is obvious if J = [a,∞).
Next, consider the case J = [a, t+) with t+ �= ∞. Assume on the contrary that the desired

assertion is not true, then there exists a closed and bounded domain D0 ⊂ D such that
(t, x(t)) ∈D0 for every t in J . The continuity of f on D0 implies that there exists a positive
number M such that

∣
∣f

(
t, x(t)

)∣
∣ ≤ M (3.3)

for every t in J .
Moreover, Lemma 2.7 ensures that, for any t1, t2 in J with t1 < t2, there exists a point ξ

in (t1, t2) such that

x(t2) – x(t1) =
Ta

αx(ξ )
α

[
(t2 – a)α – (t1 – a)α

]
=

f (ξ , x(ξ ))
α

[
(t2 – a)α – (t1 – a)α

]
.

This, together with (3.3), yields

∣
∣x(t2) – x(t1)

∣
∣ ≤ M

α

∣
∣(t2 – a)α – (t1 – a)α

∣
∣,

which implies that x(t) is uniformly continuous on J , and thus the limit of x(t) exists as
t → t+. And therefore, according to Lemma 3.2, the solution x(t) can be extended to the
closed interval [a, t+], which contradicts the fact that [a, t+) is the maximal existence in-
terval of the solution x(t). Hence the desired assertion follows. �

Using Theorems 3.1 and 3.2, we now give a result guaranteeing that the solution of Eq. (1.1)
with the initial condition (1.2) is defined and bounded on [a,∞).

Theorem 3.3 If (H1)–(H3) hold, then the solution of the initial value problem (1.1)–(1.2)
is defined and bounded on [a,∞).

Proof By Theorem 3.1, Eq. (1.1) with the initial condition (1.2) has a unique solution. De-
note the solution by x(t) for which its maximal existence interval is [a, t+). It remains to
show that t+ = ∞ and that x(t) is bounded on [a,∞).

Observe that

x(t) = xa + Ia
α f

(
t, x(t)

)
.

By assumption (H3),

∣
∣x(t)

∣
∣ ≤ |xa| + Ia

α

∣
∣f

(
t, x(t)

)∣
∣

≤ |xa| + Ia
α

[
h(t)

∣
∣x(t)

∣
∣
]
.

Thus, Gronwall’s inequality implies that

∣
∣x(t)

∣
∣ ≤ |xa|eIa

αh(t) for every t in
[
a, t+)

.
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Noting that the assumption of boundedness of Ia
αh(t) implies that there exists a positive

number M such that Ia
αh(t) ≤ M for every t in [a, t+), and thus from the above inequality

we get

∣
∣x(t)

∣
∣ ≤ |xa|eM for every t in

[
a, t+)

.

Hence x(t) is bounded on [a, t+).
If t+ �= ∞, then Theorem 3.2 immediately implies limt→t+ x(t) = ∞, which contradicts the

boundedness of x(t) on [a, t+). Thus t+ = ∞, and therefore the desired result follows. �

By Gronwall’s inequality, we next investigate the stabilities of the solutions to the problem
(1.1)–(1.2).

Definition 3.2 Let x(t) be a solution to Eq. (1.1) defined on [a,∞) with x(a) = xa. The
solution x(t) is said to be stable if, for any positive number ε, there exists a positive number
δ such that every solution y(t) with |y(a) – x(a)| < δ exists for all t ≥ a and satisfies the
inequality

∣
∣y(t) – x(t)

∣
∣ < ε

for t ≥ a.

Theorem 3.4 If (H1), (H3) and (H4) hold, then every solution to Eq. (1.1) with the local
initial condition is always stable.

Proof In the light of Theorem 3.3, the solution to Eq. (1.1) satisfying the local initial con-
dition always exists and is defined on [a,∞). Let x(t) be a solution with x(a) = xa and y(t)
a solution with y(a) = ya. Then

x(t) = xa + Ia
α f

(
t, x(t)

)

and

y(t) = ya + Ia
α f

(
t, y(t)

)
.

By (H4),

∣
∣y(t) – x(t)

∣
∣ ≤ |ya – xa| + Ia

α

[
l(t)

∣
∣y(t) – x(t)

∣
∣
]

and thus, using Gronwall’s inequality, we obtain

∣
∣y(t) – x(t)

∣
∣ ≤ |ya – xa|eIa

α l(t) for every t in [a,∞).

Furthermore, the boundedness of Ia
α l(t) ensures that the exists a positive number M such

that Ia
α l(t) ≤ M for t in [a,∞), and therefore

∣
∣y(t) – x(t)

∣
∣ ≤ |ya – xa|eM for every t in [a,∞).

Hence x(t) is stable on [a,∞). �
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3.2 Nonlocal initial value problems
In this subsection, the existence of solutions to the nonlocal initial value problem is dis-
cussed. We next introduce a fixed theorem to be adopted to prove the main result in this
subsection.

Lemma 3.3 ([33]) Denoted by U an open set in a closed, convex set C of a Banach space
B. Assume 0 ∈ U . Also assume that A(Ū ) is bounded and that A : Ū �→ C is given by
A = A1 + A2, in which A1 : Ū �→ B is completely continuous and A2 : Ū �→ B is a nonlin-
ear contraction (i.e., there exists a nonnegative nondecreasing function φ : [0,∞) �→ [0,∞)
satisfying φ(z) < z for z > 0, such that ‖A2(x) – A2(y)‖ ≤ φ(‖x – y‖) for all x, y ∈ Ū ). Then
either

(C1) A has a fixed point u ∈ Ū ; or
(C2) there exist a point u ∈ ∂U and λ ∈ (0, 1) with u = λA(u), where Ū and ∂U ,

respectively, represent the closure and boundary of U .

We further make the following assumptions.
(H5) f is a continuous function defined on [a, b] ×R.
(H6) There exist a positive constant γ in (0, 1) and a nonnegative and nondecreasing

function φ in C([0,∞)) such that φ(z) < γ z for z > 0 and |g(u) – g(v)| ≤ φ(‖u – v‖)
for any u, v in C([a, b]).

(H7) There exist a nonnegative function ϕ in C([a, b]) for which ϕ > 0 on a subinterval
of [a, b] and a nonnegative and nondecreasing function ψ in C([0,∞)) such that

∣
∣f (t, u)

∣
∣ ≤ ϕ(t)ψ

(|u|)

for any (t, u) in [a, b] ×R and

sup
r∈(0,∞)

r
|xa| + ψ(r)Ia

αϕ(b)
>

1
1 – γ

.

By Lemmas 2.1 and 2.2, it is easy to verify the following lemma.

Lemma 3.4 If (H5) holds, then a function x in C([a, b]) is a solution of the nonlocal initial
value problem (1.1), (1.3) if and only if it is a continuous solution of the following integral
equation:

x(t) = xa – g(x) + Ia
α f

(
t, x(t)

)
, t ∈ [a, b].

In order to utilize the fixed point theorem to discuss the existence of solutions to the
nonlocal initial value problem, we first define some sets of functions in C([a, b]) and op-
erators.

Given a positive number r, define the subset Ur of C([a, b]) by

Ur =
{

u ∈ C
(
[a, b]

)
: ‖u‖ < r

}
.

Also, define three operators from the space C([a, b]) to itself, respectively, by

A1x(t) = Ia
α f

(
t, x(t)

)
, (3.1)
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A2x(t) = xa – g(x), (3.2)

Ax(t) = A1x(t) + A2x(t). (3.3)

Using the standard arguments, the complete continuity of the operator A1 : Ūr �→
C([a, b]) can be verified, and it is also easy to check that the operator A2 : Ūr �→ C([a, b])
is a nonlinear contraction under the condition (H6). Here we omit their proofs.

Lemma 3.5 If (H5) holds, then the operator A1 : Ūr �→ C([a, b]) is completely continuous.

Lemma 3.6 If (H6) holds, then the operator A2 : Ūr �→ C([a, b]) is a nonlinear contraction.

We now present the main result in this subsection.

Theorem 3.5 If (H5)–(H7) hold, then the nonlocal initial value problem (1.1), (1.3) exists
at least one solution defined on [a, b].

Proof In the light of the assumption of the supremum in (H7), there exists a positive num-
ber r such that

r
|xa| + ψ(r)Ia

αϕ(b)
>

1
1 – γ

. (3.4)

And then we define the set Ur by Ur = {u ∈ C([a, b]) : ‖u‖ < r}.
We first show that the operators A,A1 and A2 satisfy the corresponding conditions of

Lemma 3.3; and owing to Lemmas 3.5 and 3.6, we only need to show the boundedness of
A(Ūr). Indeed, for every x in Ūr , it follows from the assumptions (H5) and (H6) that

∣
∣A1x(t)

∣
∣ ≤ Ia

α

∣
∣f

(
t, x(t)

)∣
∣ ≤ (b – a)α

α
· sup

{∣
∣f (t, u)

∣
∣ : t ∈ [a, b], |u| ≤ r

}

and that

∣
∣A2x(t)

∣
∣ ≤ |xa| +

∣
∣g(x)

∣
∣ ≤ |xa| + γ r.

Hence, according the definition of the operator A,

‖Ax‖ ≤ |xa| + γ r +
(b – a)α

α
· sup

{∣
∣f (t, u)

∣
∣ : t ∈ [a, b], |u| ≤ r

}
.

This validates the unform boundedness of the set A(Ūr).
Finally, it remains to show that the case (C2) in Lemma 3.3 does not occur. We argue by

contradiction. Assume that the case (C2) holds. Then there exist λ in (0, 1) and x in ∂Ur

such that x = λAx, i.e.,

x(t) = λ
[
xa – g(x) + Ia

α f
(
t, x(t)

)]
.

This, combined with the hypotheses (H6)–(H7), further implies that

r ≤ |xa| + γ r + ψ(r)Ia
αϕ(b)
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or, equivalently,

r
|xa| + ψ(r)Ia

αϕ(b)
≤ 1

1 – γ
,

which contradicts the inequality (3.4). Consequently, we have shown that the operators
A,A1 and A2 satisfy all the conditions in Lemma 3.3, and therefore we conclude that the
operator A has at least one fixed point x in Ūr , which is a solution of the nonlocal initial
value problem. �

3.3 Illustrative examples
Let D = [a,∞) ×R, f (t, x) = e– (t–a)α

α (x + sin x), h(t) = l(t) = 2e– (t–a)α
α , and L = 2.

(I) Local initial value problems
It is easy to verify that, for any (t, u), (t, v) ∈ D,

∣
∣f (t, u) – f (t, v)

∣
∣ ≤ L|u – v|

and

∣
∣f (t, u)

∣
∣ ≤ h(t)|u|

for which Ia
αh(t) = 2 – h(t) ≤ 2. Hence, conditions (H1)–(H3) in Theorem 3.3 are satisfied

for the above specified functions and parameters, which implies the solution to the local
initial value problem (1.1)–(1.2) is defined and bounded on [a,∞).

(II) Stabilities
Similar to the case (I), we see that, for any (t, u), (t, v) ∈D,

∣
∣f (t, u) – f (t, v)

∣
∣ ≤ l(t)|u – v| ≤ L|u – v|

for which Ia
α l(t) = 2 – l(t) ≤ 2. Thus, all the conditions in Theorem 3.4 are satisfied. By

Theorem 3.4, we infer that every solution to the local initial value problem (1.1)–(1.2) is
always stable.

(III) Nonlocal initial value problems
Choose the interval [a, b] with 2 > e

(b–a)α
α . Define the functions

ϕ(t) = 2e– (t–a)α
α , ψ(z) = z and φ(z) =

γ

2
z

with 0 < γ < ϕ(b) – 1. For x in C([a, b]), define the functional g(x) = γ

2(b–a)
∫ b

a x(t) dt, and
then it is easy to check that g is a contraction. Moreover, observe that

∣
∣f (t, u)

∣
∣ ≤ ϕ(t)ψ

(|u|)

for any (t, u) in [a, b] ×R and that a direct computation gives

sup
r∈(0,∞)

r
|xa| + ψ(r)Ia

αϕ(b)
=

1
Ia
αϕ(b)

=
1

2 – ϕ(b)
>

1
1 – γ

.
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Therefore, conditions (H5)–(H7) in Theorem 3.5 are satisfied for the above specified func-
tions, functional and parameters, we conclude that the corresponding nonlocal initial
value problem (1.1), (1.3) exists at least one solution defined on [a, b].

4 Conclusion
By the use of the conformable fractional calculus and by means of fixed point theorems,
some criteria are established for the global existence, extension, boundedness, and stabil-
ities of solutions to the local initial value problem; and the existence result of solutions
to the nonlocal initial value problem is also obtained. The obtained conditions are easy
to satisfy and check. For α = 1, the classical results corresponding to ordinary differential
equations will be yielded.
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