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Abstract

In this paper, we propose a host—vector-predator model with stage structure for the
vector to explore the impact of biological control agents on host—vector dynamics
and disease control. Here the total vector population is divided into two physiological
subclasses which are immature and mature subclasses. Holling type Il functional
response is used to portray the interactions between vectors and predators. Stability
analysis of the equilibria demonstrates that the basic reproduction number gives the
threshold condition determining the persistence and extinction of the disease.
Furthermore, the phenomenon of Hopf bifurcation occurs when predators are
introduced. The stability of limit cycle arising from a Hopf bifurcation is rigorously
investigated. Finally, numerical simulations are given to show the validity of analytical
results, and the comparative results of disease dynamics with and without predators.

Keywords: Vector-host diseases; Disease control; Stage structure; Hopf bifurcation;
Persistence

1 Introduction

Host—vector diseases, such as malaria, dengue fever, tobacco mosaic virus, pine wilt dis-
ease, and so forth, are transmitted to the host population (e.g. humans and plants) by
biological agents (arthropods) called vectors who carry the disease without getting them-
selves. Recent analysis demonstrates that the impact of environmental change and fre-
quent occurrence of natural disasters on complex host—parasite relationships for vector-
borne diseases is clear [1, 2]. Vector-borne diseases remain a serious threat to humans,
livestock, and plants, and thus the control of such diseases is of great economic and health-
care concern.

Vector control is one of the few proven ways to reduce transmission of many vector-
borne diseases. The mostly adopted methods to control vectors include physical control,
such as burning, clearness, burying, bednets, and so on, spraying insecticides [3], vaccina-
tion [4, 5], environment control [6]. As a newly proposed method of vector-borne diseases,
Sterile Insect Technique (SIT) [7] has obtained some applications in vector-borne disease
control though it is still in its infancy.

One potential approach to vector control is to use biological enemies (biocontrol agents)
of the vectors. Biological control shows no environmental contamination and vector re-

sistance, less maintenance costs, and more safety compared with insecticide, environment
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control, and Sterile Insect Technique, respectively. Moreover, it will be conducive to eco-
logical diversity and environment protection. Biological agents have obtained successful
application in controlling a variety of host—vector diseases. For human diseases, ento-
mogenous fungi were adopted as promising biopesticides for sleeping sickness and tick
control [8, 9]. Predators were introduced to control many diseases such as dengue fever,
malaria, Lyme disease and tick disease [10—14]. Several recent studies have shown that
predators have caused decline in local cases of malaria in India [15, 16] and dengue fever
in Vietnam and Thailand [17, 18]. In addition, biological agents were used in tree diseases
such as pine wilt disease in Japan and China [19, 20], as well as in crop diseases such as
the cassava mosaic virus in sub-Saharan Africa and the tomato leaf curl virus in India [21,
22].

However, biological control of vectors is still only partially understood compared with
biological control of herbivorous pests, which has long been established and widely ap-
plied in pest management aiming to directly reduce pest populations by pest enemies [23,
24], and many good research results of interactions between the biological agents (preda-
tors) and the pests (prey) have been stated in some papers (see, for example, [25-27] etc.).
This is primarily caused by the complexity of interactions among the host, vector, and
predator populations. The predators affect the spread of pathogen and the interactions
between the hosts and the vectors by preying on the vectors, and the interactions be-
tween the hosts and the vectors, between the pathogen and the hosts will in turn impact
the vector—predator dynamics.

Mathematical modeling provides strong support for understanding the complex dynam-
ics of epidemic and ecological systems as well as in decision making process on disease
prevention and disease control. Different mathematical models were proposed in [28, 29]
to explore the effect of Wolbachia, which shortened the lifespan of the vector (the infected
mosquito Sedes aegypti), on the transmission of dengue. Moore et al. [30] first adopted
a host—vector—predator mathematical model to investigate how the predators affect the
persistence or extinction of vector-borne diseases. In [31], authors considered the disease
dynamics for a class of host—vector models with the effect of predators, and the nonlinear
dynamics caused by predators. Okamoto and Amarasek [32] gave the comparative analy-
sis of three classes of biocontrol agents: pathogen, predator/parasitoid, and competitor of
the vector controlling diseases by reducing vector densities. However, all the above studies
focused on the effect of predators on vector-borne disease control without stage structure.

In reality, individuals in a population may grow through several stages of physiology,
such as immature and mature. Some epidemic models with physiology stage for the hosts
have been investigated recently (see [33-38]). However, for vector-borne diseases, there
are some kinds of vector—host diseases which are only spread among hosts by the imma-
ture vectors such as cysticercosis and Scrub typhus [39]. Some infectious diseases, such
as malaria, dengue fever, West Nile virus, pine wilt disease [40], and so on, are spread only
by the adult vectors. Consequently, to study realistically the host—vector disease transmis-
sion in a host population, we must consider the model to include stage structure for the
vectors, each stage being homogeneous.

Motivated by the above discussions, in this paper we develop a host—vector—predator
model with stage structure for the vectors to ask how the interactions between the vectors
and the biocontrol agents indirectly reduce the prevalence of a vector-borne disease in
the host population, how the predators cause the change in the host—pathogen dynamics,
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and how the stage structure impacts the disease dynamics with and without predators.
The remaining part of this paper is organized as follows: In Sect. 2, we mainly formulate
our model. In Sect. 3, we establish the existence and stability results of the disease and
disease-free equilibria of the model, and the phenomenon of Hopf bifurcation is rigorously
studied. In Sect. 4, numerical simulations are given to show the validity of our results
and to compare the disease dynamics with and without predators. The paper ends with a
conclusion.

The contributions of this paper can be summed as follows: (1) The coupled host-vector—
predator model with stage structure is considered, where the total vector population is
divided into immature and mature subclasses. (2) We analyze the dynamics of the model
by Routh—Hurwitz criteria and bifurcation theory. Theoretical results show that the in-
troduction of predators leads to the occurrence of Hopf bifurcation. Meanwhile, the in-
troduction of predators is greatly helpful to disease control. The effect of stage structure
on disease transmission is also investigated. (3) Finally, numerical simulations are given
to show the validity of analytical results, and the comparative results of disease dynamics
with and without predators are presented.

2 Model description
To model the interactions among the host population, the vector population with stage
structure, and the predator population, we divide the total vector population into two stage
groups, immature vectors M, (¢) and mature vectors N,(¢), and assume that only mature
vectors have the ability to transmit the disease to host populations. Therefore N, (¢) can be
divided into two subclasses, susceptible and infectious, with densities denoted by S, (¢) and
I,(t), respectively, so that N,(¢) = S,(¢) + 1,(¢). It is assumed that the virus in vectors does
not cause the death of vectors and does not influence the propagation of vectors. The birth
rate of the immature vector is assumed to be proportional to the density of mature vectors
with proportionality parameter b,. We assume that mature vector populations experience
growing effects with rate parameter «. We introduce the predator population for preying
on the vectors which transmits the disease among hosts, and the interactions between the
predators and the vectors are portrayed by Holling type II functional response, which is
N, (8)Py(2)/(1 + azN,(t)), where hy and a; are the capturing rate (or the attacking rate)
and the satiety rate of the predator P (¢), respectively, and P, (t) denotes the predator pop-
ulation of the mature vector population. The total host population is split into susceptible
and infectious subclasses, with sizes denoted by Sj,(¢) and I;(¢), respectively.

Using the above assumptions, we obtain the following host—vector—predator dynamical
model:

= by — B1Su(OL(t) — unSu(2),

O — g, S (E)1,(8) — (e + S)In(D),

WD = by (Su(8) + L,(1)) = (a1 + )M, (D),

“v = dM,(t) — B2 S, (OIn(£) - 11,2S,(t)
—aS,(O((S.(8) + 1,(£)) — 2200

D)~ ) Sy (OIn(E) — a2l (£)

—aL,(O((S(8) + L,(1) - Frazlarl) s,

dPy(t) _ yaha((Sy(8)+1y(2))Po(2)
7 = 1ia2((sv(t)+1v( )2) - exPy(t),

1)
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with initial conditions

Sy(0) >0, I,(0) > 0, M,(0) >0,

S,(0) >0, 1,(0) >0, P,(0) >0,

where b, is the recruitment rate of the host populations. p, is the natural death rate of the
infected host population, .1 and p,; are respectively the natural death rate of the imma-
ture and mature vectors. §;, is the disease-caused death rate of the infected hosts. d is the
conversion rate from immature vectors to mature vectors. 8; and B, are respectively the
rate of biting from susceptible hosts to infected vectors and susceptible vectors to infected
hosts. y, and e, respectively denote the conversion factor and the natural mortality of the
predator populations.

Without considering the effect of predators on host—vector disease model, (1) can be

reduced as follows:

940 _ B S, (O,(8) - 114 (D),

W) _ B SLOLE) - (i + SI(D),

DO = py(S,(t) + 1,(8)) ~ (tr + dYM(8),

BuO ~ AM,(t) - BoSy(OIn(E) — 11,25, (E) @
— aS,(O((S0) + L,2)),

A0 _ B,S,(O)4(8) - ol (2)
— aL(O((S,0) + L),

with initial conditions
S1(0) > 0, I,(0) > 0, M,(0) >0, 5,(0) >0, 1,(0) > 0.

3 Dynamics of model (1)
In this section, we mainly study the dynamics of model (1). As preliminary results, first we

give the equilibria of (1).

Lemma 3.1 The equilibria for model (1) are as follows.
(i) The boundary equilibrium Ey(b1/1y,0,0,0,0,0) always exists.
(i) The predator-absent disease-free equilibrium E;(S),0,M?,S°,0,0) exists if o > 0,
where

b MO = byS, 0 o

SY = =
¢ " (U +d)a

= ) v = ) o = bZd - /'LVZ(H'VI + d)'
M Myr +d

(iii) The predator-absent disease equilibrium E»(S;, I}, M, Sy, 1)), 0) exists if o > 0 and
Ry > 1, where

o b2 +aSY + Bolff)
" (s + @8O + Bolf) + 1 2SI
~in(pg + aSY)(Roy — 1)

I - ,
Ba(pn + B1S?)
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M = b258 . (ty2 + OZSS)SB . ,32591;:
" +d)’ " s + SO+ Bl "+ oSO+ Boli
0 o ,31/525258

0 , Ry = .
(s +d)al U7 (o + 80) (g + @ S0)

(iv) The predator-present disease-free equilibrium Es(S;,0, M}, S}, 0,P3) exists if o >0
and Ry > 1, where o is given in case (i), and

b by Sk
5}1252:—1, Mi: 2‘/ ) Si:eiz!
Mn Myt +d Vohy — ase;
- a(SO-SsH + 6125&)’ R = o (yahy — azey)

hz (le + d)an .

(v) The predator-present disease equilibrium E4(§h,}h,1\A/IV,§V,jV,IA’2) exists ifo > 0,
Ry > 1, and Ry > 1, where o and Ry are given in cases (i) and (iv), respectively, and

A ho P}
s bi(pn + oSt + Boly + 1;225)
h = T ,
A h P A
i + S+ Body + 1;2% )+ B1B2SL,
1, P
. M + oS, + —25)(Roz — 1)
Ih — 29y ,
Bolpn + B1SY)
hy P}
. bys . (1 + aSE + 1);23 )St
v— T N v = ’
d A P}

e d e 2
. BaSil, Sl e
v = ~ 1 7 v = ’

wrastepie 2y e

By-plo a(S? - SH(1 + aySY)

2 h2 ’

S0s1

Ry B1B2S,,S,

(e + 80 (e + @ S9)

The equilibria E; (i = 0,1,2,3,4) of Lemma 3.1 can be obtained by direct computation.
Here we omit it.

According to the next generation matrix proposed in [41, 42], Ry; and Ry, given in
Lemma 3.1 are the basic reproduction numbers of system (1) and system (2), respectively.
It is clear that Ry, < Ro; if Ry > 1 (where the condition R; > 1 ensures S0 > S}, therefore the
equilibrium density of the predator is larger than zero). That is, the basic reproduction
number has been lessened by introducing the predators.

3.1 Local stability and existence of Hopf bifurcation for system (1)
In this subsection, we shall investigate the local properties of the equilibria and Hopf bi-
furcation for system (1).

Theorem 3.1 For the predator-absent equilibria Ey, E1, and E, of system (1), we have:
(i) The equilibrium Ey is a saddle point, which is unstable.
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(i) IfRy <1, yohy — azes >0, and Ry < 1, then the predator-absent disease-free
equilibrium E; is locally asymptotically stable.

(ili) If Ry <1, yohy —agey >0, and Ry > 1, then the predator-absent disease equilibrium
E, is locally asymptotically stable.

Here Ey, E;, and E; are given in Lemma 3.1.

Proof By some mathematical deductions and using the Routh—Hurwitz criteria, we can

obtain the proof of Theorem 3.1. Here we omit it. O
By Theorem 3.1, we obtain the following corollary.

Corollary 3.1 The equilibria of system (2) are as follows.
(i) The boundary equilibrium Ey(b1/1y,0,0,0,0) is a saddle point, which is unstable.
(ii) IfRo1 < 1, then the disease-free equilibrium E1(S3,0,M?,S°,0) is locally
asymptotically stable.
(iii) If Ror > 1, then the disease equilibrium Ey(S}, I}, M}, S5, 1) is locally asymptotically
stable,
where S), MY, S, Sk, I¥, M, S%, and I} are given in Lemma 3.1.

From Corollary 3.1, the basic reproduction number Ry; of system (2) is the threshold to
decide the disease persistence and extinction without predators.

When R; > 1, system (1) has the predator-present equilibria E3 and E, given in
Lemma 3.1. In the following, we will give the stability results of E5 and E,.

Theorem 3.2 For the predator-present equilibria Es and E, of system (1), we have:

(i) The predator-present disease-free equilibrium Es is locally asymptotically stable if
Ry < 1 and C1Cy — C3 >0, in which case the vector—host disease can be eradicated
when a predator population Py is introduced. When C1Cy — C3 = 0 and Ry < 1, then
system (1) undergoes a Hopf bifurcation at Es, in which case, despite oscillations
occurring between the predator and the vector, predation can eliminate the pathogen
and the vector population is greater than zero.

(ii) The predator-present disease equilibrium Ey is locally asymptotically stable if
Roy > 1 and C,C, — Cs > 0, in which case the vector-borne diseases persist though the
predators are introduced in the system. When C1Cy — C3 = 0 and Ry, > 1, then
system (1) undergoes a Hopf bifurcation at Es, in which case predation causes
oscillations among host, vector, and predator populations, and the disease cannot be
eliminated though predators are introduced in the system.

Here
Cy =ty + g +d +2aSE + Gy, (3)
Cy = G2Gs + (o1 +d) (1yn + 208} + G1) — bod, (4)
Cs = (11 +d)G2G3, (5)
h, Pl
Gy= — 6)

(1 +aySh)?’
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hy St
= 4 N 7
Ty a,S} @)
hyPL
Gs = Yorialy (8)

(1 +aShy?’
where S! and P} are given in Lemma 3.1.

Proof (i) By some mathematical deductions and rearrangement, the characteristic poly-

nomial corresponding to the disease-free equilibrium E5 can be rewritten as

SO =+ wn) (A + Bid + By) (A + C1A% + Cod + C3) =0, (9)
where
hy P}

B = Sn+ s + @S2 z_

1= Mnt0p+ Uy +00, + 1+ﬂ25$

hy P}
By = ( + 81)(1 = Rop) | a0 + S + 22|
1+ ayS!

C1, Cy, and Cs are given in Theorem 3.2.
Obviously, Eq. (9) has a real root A; = —py, two roots A, 3 with negative real parts if
Roz < 1, and the other three eigenvalues can be obtained by solving
WBrCA2+Ca+Cy=0. (10)
For Eq. (10), three eigenvalues have negative real parts if they satisfy the Routh—Hurwitz
criteria, such that C; > 0,i=1,2,3 and C;C, — C; > 0. From the above expressions, we see
that C; >0, Cs > 0, and if C;C; — C3 > 0, then we have C; > 0. Thus, Ej3 is locally asymptot-
ically stable if Rgp <1 and C;Cy — C3 > 0.
Choose h; as a bifurcation parameter and let #* be the solution of equation C;C, — C5 =
0, that is, C; (/3)Cy(h3) — C3(h3) = 0, then Eq. (10) can be rewritten into
(M +C)(+Cr) =0, (11)
which has three roots
A1 =+iy Cy, Ao = —i/Cy, A3 =—Cj.
For hy € (13 - 6,15 + 8) (8 > 0), the roots are in general of following form:

(o) = wi(ha) + iwa(hy), Aa(h) = wi(hy) — iwo(hy), A3(hy) = —Ci(hy).

Now we verify the transversality condition

dx; .
Re[ } 40, i=1,23. (12)
Aah3 Lyjiy-ng

Page 7 of 22
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Substituting A; (h12) = wy () + iw,(h) in (11) and calculating the derivative, we get

Ei(ha)w)(h3) — Ex(ha)Wh(hy) + F(hy) =0,
Ey(ho)W,(3) + Ex(ha)wy(hs) + G(hp) =0,

where

E1(hy) = 3w3(hy) + 2Cy (ha)wy (ha) + Ca(ha) — 3w3(hy),

E>(hy) = 6w1(ha)wa(ha) + 2C; (ha)wa (h2),

F(h3) = wi(h2) C (h2) + w1 (h3) Cy(ha) + Ch(h2) = i (h2) C; (),
G(h2) = 2wy (h2)wa(h2) Cy (h2) + wa(h2) Cy ().

Since E; (h3)F (h3) + Ex(h5)G(h3) # 0, thus we have

dhi Ey(l3)F (i) + Ex(h3)G(h3) ‘
Re :W/ h _pk = 0’ l=1,2, 13
I:dh2:|h2h; 1r-rg El+E; 7 (13)
and
0
Rel:d)»gi| _ _Re|:dC1(h2):| _ 1+ aezfvz)eg 20 (14
dhy hy=H dh; ha=hj Ol)/z(hz)

Here S? is given in Lemma 3.1.

Thus, system (1) undergoes a Hopf bifurcation at E5 when R; > 1, Ry < 1, and &, passes
through the critical value /2 such that C;(4})Cy(/5) — C3(h3) = 0.

(ii) By some mathematical deduction and rearrangement, the characteristic polynomial
corresponding to E, can be rewritten as

(A +A12% + Axh + A3) (3% + C1A% + Cod + C3) =0, (15)
where C;, C;, Cs are given in (3), (4), and (5), respectively, and

hyP,

Al:Mh+,3121/+,uh+3h+liv2+,322h+0551}+ 1
1+ﬂ25v

)

R . R hyP
Ay = (i + BuL) (o + 80) + (i + L) oz + Bali + S + ———
1+a,S!

hy Py
1+ ﬂzs‘}

+ (o + 1) (MVZ + Boly + St + ) — B1B284S,

. . . hy D
= (n + Bil) (n +81) + (i + Bl oz + Bolh + aS)+ ——
1+a,S!

. b, by
+(p + 8 + oy + aS) + —(n+8 +aS) +
(Mh h)(l"l’l/z ﬁz hta v 1+ ﬂzs‘}) (Mh h)(MVZ o v 1+ 612511

1 5 Iy P
> (un+ B+ 80+ pn + Bl + @S + — 21 >0,
1+ ayS)}



Zhou et al. Advances in Difference Equations (2018) 2018:324 Page 9 of 22

hyP,
1+ Il2Sl

v

Az = (g, + BrlL) (s + 5h)<ﬂv2 + Bl + aS! + ) — 1B B2SiS,

. . h1y P
= (i + Bul) (i + 83) o + Boliy + @St + —=2 1
1+a,S]

hyPy
- ) +aSt+ >0,
(o + 8p) (Mvz Ty st )

where I, I, S,, Sy, P>, and Si are given in Lemma 3.1, and

A

. . h .
ArAy = As > (g + Budy + i+ 84+ o + Boli + Sy + —— ) (un + i)
1+ayS]
hyPy

1+ (lel

v

: [(uh +8p) + <uvz + Boly + aS! + )} — (i + BuL) (g, + 84)

. P,
. + Boly +aS! + > 0.
(Mvz Body + A, s a253>

Therefore, by the Routh—Hurwitz criteria, equation (A3 + A;A2 + Ay) + As) = 0 has three
roots with negative real parts. For the equation A3 + C;A2 + CoA + C3 = 0, by the analysis
results of disease-free E5 in Theorem 3.2, we have that the disease equilibrium E, is locally
asymptotically stable if Ry, > 1 and C;C; — C3 > 0, and if Ry > 1, then system (1) undergoes
a Hopf bifurcation at the disease equilibrium E, when /4, passes through the critical value
i such that C (/3)Cy(h5) — Cs(h3) = 0.

Hence the proof of Theorem 3.2. d

Remark 1 From Theorem 3.2, we find that the introduction of predation into vectors re-
sults in the occurrence of Hopf bifurcation for system (1), and the condition C;C, — C3 =0
is the threshold to determine the existence of Hopf bifurcation. On the other hand, when
Ry1 > 1 then the disease persists. By introducing predators to the vectors, it is clear that
the basic reproduction number Ry, takes the role of threshold determining the persis-
tence and extinction of the disease. If Ry, > 1, then the vector-borne diseases will persist.
If Rpy < 1, then the vector-borne diseases will tend to die out. That is to say, reducing the
value of R, will promote the positive effect of predators on disease control. In the next
numerical simulation, we will further analyze the relationship between some predator pa-
rameters and the value of Ry, and present some simulation figures to show the positive

role of predators in disease control.

3.2 Direction and stability of limit cycle
In this subsection, we study the stability of a limit cycle caused by the predator preying on
the mature vector population. Before giving the main results, we first discuss the following

subsystem:

A o Ny(E) = (n + d)M,(E),
d}\;vt(t) =dM,(t) — N,(£) — aN(¢) - %’ 1o

dPt) _ 1aloNu(OPy(®
@ = Thane )
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where N, (¢) is the total mature vector population density at time ¢, that is, N, () = S,(¢) +
L(¢).

For system (16), there always exist a predator-free equilibrium Eo(M?,N?,0) and a
predator-present equilibrium E; (M,, N, P,) if R; > 1, where N? = $%, M, = M}, N, = S,
P, =P}, and MY, S, M, S}, P} are given in Lemma 3.1.

It is easy to find that the equilibrium Ej of system (16) is locally asymptotically stable if
R; <1 and unstable if R; > 1. The characteristic polynomial at E; of system (16) is

B+ A2+ Cr+C3=0.

Then, by Theorem 3.2, we have the following results of the local stability and existence of
Hopf bifurcation for system (16).

Corollary 3.2 The local stability and existence of Hopf bifurcation of system (16) are as
follows:
(i) Eo(MC,N?,0) is locally asymptotically stable if Ry < 1 and unstable if Ry > 1.
(i) Ey(M,,N,,P,) is locally asymptotically stable if Ry > 1 and C;C, — C3 > 0.
(i) When hy passes through the critical value h, which satisfies
C1(h5)Co(ls) — Cs(h3) = 0, system (16) undergoes a Hopf bifurcation at the
equilibrium E; (MV,NV, 132),
where Cy, Cy, Cs are given in (3), (4), and (5), respectively.

In the following, we apply the center manifold theorem to study the stability of the limit
cycle arising from Hopf bifurcation. For convenience, we first translate the origin of the
coordinate system to the equilibrium E; (MV,NV,i)z) by writing

Mszv_Mw jv=1v_jw 1_)2=P2_i)2:

then from (16) we have

d MV MV ¢1
— N |=T|N, , 17
prll B J Ny | + | ¢2 (17)
P, p) ¥3
where
_(//Lvl + d) b2 0
J= d —(2 +2aSk + G1) -G (18)
0 Gs 0

and the nonlinear terms ¢, ¢5, and @3 are given by

¢1=0, @2 = —G4N? — G5N, Py, @3 = —GsN, Py, (19)
where
hyP) h hyyo Pl
Gi=a+ ax NIy 2 6_6l2 2V

’ G = ) - o
(1 +aySh)3 > 1+ aySh)? (1 + ayS1)3
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When the Hopf bifurcation characteristic equation holds, then the eigenvalues of J are
Ao =%in, A3 =60, where 6 = —Cy, n* = C = GoG3 + (41 +d) (142 + 2aS) + G1) — bod.

If the eigenvectors of J associated with A1 are Wi £ iW;, and the eigenvector cor-
responding to A3 is W3, then it can be shown that the matrix P = (W,, Wi, W3) is non-

singular. Furthermore,

0 -n O
PYr=|n o0 o0 (20)
0O 0 6
and P is given by
P=[py]l (i,j=12,3), (21)
where
-0 =1 __ b
P =Y, P2 =1, p13—ﬂv1+d+6,
_n _bkntd
P2 b2, P2 by )
P23 ’ P31 bon , P32 bz’ P33 9’
and
Q=P"=Algy] (i,j=1,2,3), (22)

where A =detP! and

qi1 = pP22pP33 — P23pP32, q12 = P32P13 — P12P33, q13 = P12p23 — P13P22,
q21 = pP31P23 — P21P33, 422 = p11p11 — P31P13; q23 = pP21P13 — P11P23,

q31 = P21P32 — P22pP31, q32 = P31P12 — P11P32, q33 = P11pP22 — P12P21-
Let the linear transformation
Y =PW, (23)
where Y = (M,,N,, ;)T and W = (x1, x5, %3)7, then we have

W =Py,

where P is given by (21).
Substituting (23) into (17), we get

d(PW)

=JPW + H(PW),
7 JPW + H(PW)
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where H(PW) = H(Y) = (¢1, ¢, 3)T, which implies that

‘Z—vf = (PYP)W + PT'H(PW), (24)

where P~1JP is a constant matrix given by (20).

Now system (24) can be written as

x=Ax+ Fi(x,9),

, (25)
¥ =By +F(x,y),
where x = (x1,%)7, y = (x3), A and B are the constant matrices given by
0 -
A:( ’7>, B=(0), (26)
n 0
and F), F, are functions of C2.
We can write system (24) as
J X1 0 -n O X1 @1
E Xl =1n 0 0 X | t Q @21 (27)
X3 0 0 0 X3 @3
From (27) we have that
dx3
T Ox3 + Alga191 + 3202 + 43393).- (28)

To prove the stability of limit cycle, we give the following two lemmas.

Lemma 3.2 ([43]) System (27) has a local center manifold y = vy (x), K < 8, where v is in
C2. The function v (x) can be approximated arbitrarily closed as a Taylor series as proved
by the following theorem.

Lemma 3.3 ([43]) Let ¢ : S" — S™ be C' in a neighborhood of origin, ¢(0) = 0, ¢'(0) = 0,
and Mo(x) = O(|x|P) as x — oo, then ¥ (x) = ¢p(x) + O(|x|P) as x — oo, where Mep(x) =
@' (x)[Bx + F>(x, ¢(x))] = Ap(x) — Fi(x,¢(x)) and p > 1.

Hence, by Lemma 3.3, the center manifold up to a quadratic approximation can be de-

scribed by

1
x3 =Y (x1,%) = 2 (ﬂux% + 2a19%1%2 + 422x§)~ (29)

Then it follows that

dx 0o -
d—: = (anxl + dipXy dipX + ﬂ22x2)> (n On) (z;) . (30)
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On the other hand, by (28) and (29) we have

dX3_9

T 5(511196% +2a13%1%2 + anxy) + Ag3191 + g3202 + G33903). (31)

From (23), we have

M, = p11x1 + praxo + p13xs3, N, = pr1x1 + pasXa + pazxs,

_ (32)
Py = p31x1 + p3axs + p33xs.

By substituting M,, N,, and P, from (32) into Eq. (19) and rearranging, we then obtain
1, ¢2, and @3 as follows:
$1 = 01
@2 = —Ga(parx1 + Paas + p23x3)® — Gs(par¥1 + paaxs + pazs)
- (p31%1 + p3axy + P3sxs3),
= —Ga(pa1%1 + P2x2)? — Gapas A(p21%1 + prxs)
-G X1 + PoX X1 + pP3Xx
5(P21%1 + poo®2)(p31x1 + p3axa) (33)
1 1
- EGspsaA(pmxl + Paa¥a) — §G5p23A(p31x1 + P32%2),
@3 = —-GsN, P,

= —Ge(parx1 + paoxa)(P31%1 + p32xs)

1 1
- §G6PB3A(P21951 + Poaxn) — §G6P23A(P31x1 + P32%2),

where A = a a3 + 2a10x1% + axnx3.
Now it follows from (30) and (31) that

dx3

( TR
— = \4d11X1 + d12% a1X1 + dyppXx
dr 1141 1242 1241 2242 n 0 %

0 2
=3 (a11%7] + 2a12%1%) + a2o%3) + A(g3191 + 3202 + G3393)

6
= x%[gau — A(q32(Gap, + Gspaipar) + 6133G619211931)] +X1%)

[0a12 — A(g32(2Gapaipaz + Gs(pa1ps + P2ap31)) + 33 Ge(Pa1p32 + P2opa1)) |

0
+ x5 |:50122 - A(g32(Gapdy + Gspmps) + IZ33G6P22P32):| +0(0%), (34)

where 0(p?) represents higher order term when p% — 0, p = /&2 + y2.
Comparing the coefficient of x?, x;x,, and x3 of both sides of Eq. (34), we have

ap | =12, (35)
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where

Q= —A(Q32(G419§1 + Gspaps1) + Q33G617211931),
Q = —A(q32(2Gapapa + Gs(P2ps2 + ppa1)) + 4s3Ge(P21p32 + pups1)),

Q3 = —A(g32(Gap3, + Gsprps) + q33Gepnpn).
It can be easily shown that

[%(Q1 + Q3) + § (2 + 621)]

ain = —

03 ’
(T +120)
2
(2 4 (3 - Q)]
ayjpp =— 3 ) (36)
(G +1%0)
2
B 35— EnQy + nP(Q + )]
13=— .

93
(T +120)
Then the flow on center manifold is governed by the two-dimensional system
x=Ax + Fi(x, ¥ ((%)). (37)

Now we give the center manifold theorem by the following theorem to determine the
asymptotic behaviors of the solution of (25).

Theorem 3.3 Suppose that the zero solution of (37) is asymptotically stable (unstable),
then the zero solution of (25) is asymptotically stable (unstable).

System (37) can be written as

d 0 - r
2 *) - TV ()« (), (38)
dt \x, n 0 X P
where I' = g11¢1 + qr2¢2 + q1393 + 0(p?), T = G191 + q22 + G393 + 0(p?), A, @1, 92, and
@3 are given in (33).

The stability of the limit cycle arising from a Hopf bifurcation is determined by the sign
of the quantity IT, where

1
IT=T111 + Zq12 + Tyop + Xogo + ;[FIZ(FII + ')

~ Z1(Z11 + B) T Zn + T T, (39)
3

where I'jx denotes the partial derivative ax-%xraxk at the origin and quantities with two
10%j

subscripts represent order partial derivatives at the origin.

If IT < 0, the bifurcation limit cycle is stable and the Hopf bifurcation is called super-
critical; if IT > 0, the bifurcation limit cycle is unstable and the Hopf bifurcation is called
subcritical.
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Here

[111 = —q12(6a11 Gappas + 3a11Gspaipas + 3a11Gspaspsi),
112 = —422(2a11Gaprprs + a11Gsprprs + a11Gspasps),
['22 = —q12(2a20Gapapas + anGspapss + anGspaspsi),
112 = —422(6a11Gaprpas + 3a20Gsparpss + 3a22Gspazpsa),
= —26112(G419%1 + Gspaips1) — 2q13Gepa1pst,

Iy = —26112(G4P§2 + Gspzzpsz) —2q13Geparp32,

Y= —26122(G4P§1 + Gspaip31) — 2q23Gep21p31

Yoy = —26]22(G4P§2 + G5P22P32) —2q23Gepaop3o,

12 = —q12 [2G4P%1 + G5(p21pn +P22p31)] - q13Gs(p21p32 + P2ap31),

Y12 =—qn [2G4P21P22 + Gs(pa1ps +l7221731)] — q23Ge(pa1ps2 + pap31)-

The sign of IT can be obtained by putting the values of I"111, X112, ['122, X222, ['11, [N22, X115
%22, ['12, X1 in Eq. (39).
Based on the above results, for system (1), we have the following.

Theorem 3.4 IfRy > 1, Ry < 1, and C,C, — Cs3 < 0, then for system (1), there exists a stable
limit cycle in the (M,, S,, P;) space, in which case, despite oscillations, predation will lead
to the elimination of the virus from the system, and uninfected vectors still exist.

Proof From the characteristic equation (9) of equilibrium Ej3 of system (1), we have
limy_ o0 (Sy(2), 1,(2), 1,(2)) = (S2,0,0) if R; > 1 and Ry, < 1. Then by Lemmas 3.2, 3.3 and The-
orem 3.3 there exists a stable limit cycle in the (M,, S,, P;) space for system (1) if Ry > 1,
Ryy <land C;C, —C3<0.

This completes the proof of Theorem 3.4. g

By numerical simulation, we show that there exists a stable limit cycle in the (Sy, I, M,,
Sy, 1, Py) space for system (1) if Ry > 1, Rpp > 1 and C;C; — C3 < 0 (see Fig. 4-5).

4 Numerical simulation of the system dynamics

In this subsection, numerical simulations are given to show the stability and bifurcation
of system (1) (see Fig. 1-5) and the effect of stage structure on disease dynamics with and
without predators (see Fig. 6-7).

Example1 We take b; = 0.7978, by = 0.9020, wj, = 0.3485, 8, = 0.8706, 4,1 = typ = 0.2381,
d = 0.8202, B = 0.9050, B, = 0.6740, a = 0.1464 (all the parameters are stochastically
chosen for illustrative purpose only). Numerical calculations give Ry; = 3.1489 > 1 and
C1Cy — C5 =-0.0138 < 0. It follows from Corollary 3.1 that the disease equilibrium of sys-
tem (2) is locally asymptotically stable, that is, the vector-borne disease will persist in the
absence of predators (see Fig. 1).

Example 2 We take a; = 0.6497, e; = 0.1356, y, = 0.7855, hy = 0.6425 and keep other
parameters unchanged in Example 1. Numerical calculations give R; = 6.2465 > 1 and
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Figure 1 Solution curves of system (2) with parameters given in Example 1
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Figure 2 Solution curves of system (1) with parameters given in Example 2

Roz = 0.5331 < 1. It follows from Theorem 3.2 that the vector-borne disease will tend to
die out (see Fig. 2). By calculations, C;C; — C3 = —0.0138 < 0, then by Theorem 3.4 there
exists a stable limit cycle in the (M,, S,, P;) space for system (1) (see Fig. 3).

Example 3 Keep all the parameters fixed in Example 2 except for /1, = 0.3841. By calcula-
tion the values of R; and C;C, — C3 remain the same as in Example 2 and Rgy = 1.0396 > 1,
then by Theorem 3.2 the vector-borne disease persists, but the equilibrium levels of the
infected hosts and vectors have been greatly lessened when the predator P, is added (see
Fig. 4). Moreover, Fig. 5 illustrates that there exists a stable limit cycle for system (1) if
Ry >1,Ryp <1,and C;C, — C3 < 0.

Example 4 Take p,; = 0.1 and keep all the parameters unchanged in Example 1 except
for parameters b, and d. Then Ry; < 1 if b, and d are close to 0.48 and 0.1, respectively.
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Figure 3 Stable limit cycle in the (M,, Sy, P>) space for system (1) with parameters given in Example 2

Population

Figure 4 Solution curves of system (1) with parameters given in Example 3

But if b, and d are large, then we have Ry; > 1. This suggests that in the absence of the
predator, the birth rate b, of the immature vectors and the conversion rate d from the
immature vectors to the mature vectors will cause the spread of the vector-borne disease
(see the left-hand side of Fig. 6). Take u,; = 0.1 and keep all the parameters unchanged
in Example 2 except for parameters b, and d, then from the right-hand side of Fig. 6 it
is clear that when predators are present, an increase in the vector birth rate b, and the
conversion rate d from the immature vectors to the mature vectors will reduce the value
of the reproduction number Ry, and therefore lessen the prevalence of disease, because
an increase in the vector birth rate and the conversion rate leads to an increase in the

predator population.

Example 5 Take b, = 0.7343 and keep all the parameters unchanged in Example 4 except
for parameters (1 and d. Then Ry; < 1 if d and u,; are close to 0.1 and 0.2, respectively.



Zhou et al. Advances in Difference Equations (2018) 2018:324 Page 18 of 22

2 2 1 4
1 o 1 _> 05 o 2
) ) \_M ; ) — N
05 2 4 - 2 4 - > 4 05 2 4
Ih 0 Sh lh 0 sh lh 0 sh ‘h 0 sh
2 1 4 1
o 1 > 05 o 2 _> 05
] S N e O~
W oo 2 ) W 070 2 ! W 00 2 ! L oo 2 )
s, M, s, M, s, s, S,
4 4 2 1
o~ 2 o~ 2 o 1 _> 05
L oo 2 ) % T 2 ! W 00 os W00 s
s, | s, M, I M I
4 1 4 4
o~ 2 > 05 o 2 o 2
L Q— 3 7 g r . ——
1 05 1 1 2 1 1 2 05 7 2
M, 00y s, %0 m s, 90 m I, 00 g
Figure 5 Stable limit cycle for system (1) with parameters given in Example 3
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Figure 6 Surface plot of the basic reproduction numbers Ryg; and Ro; as functions of b, and d for the
parameters given in Example 4

But if d is large and u,; is small, then we have Ry; > 1. This suggests that the conversion
rate d from the immature vectors to the mature vectors will cause the spread of the vector-
borne disease in the absence of predators, while the natural death rate u,; of the immature
vector can reduce the vector disease spread (see the left-hand side of Fig. 7). When the
predators are introduced, we find from the right-hand side of Fig. 7 that an increase in
the conversion rate d from the immature vectors to the mature vectors leads to a decline
in the value of the reproduction number Ry,, while an increase in the natural death rate
of the immature vectors leads to an increase in the value of the reproduction number
Ry, because an increase in the immature vector mortality rate ,; indirectly leads to an
increase in the predator densities.

Remark 2 From Figs. 2—3 and Figs. 4-5, it is clear that periodic solutions exist when a
predator species P, is introduced in the system, suggesting the occurrence of a super-
critical Hopf bifurcation. From Figs. 4-5, the hosts, the vectors, including the immature
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Figure 7 Surface plot of the basic reproduction numbers Ry and Ry, as functions of w1 and d for the
parameters given in Example 5

and mature ones, and the predators oscillate, leading to the persistence of the vector-
transmitted disease when the predator species P, is added. By enhancing predators’ attack
rate /1,, the level of infected hosts I;, and vectors I, will decline, and when /1, = 0.6425, from
Figs. 2—3 we can see that predation brings about the extinction of the disease, despite the
oscillations between the predators and the vectors. That is to say, introducing predators
to vectors is advantageous to vector-borne disease control, and the larger the capturing
rate /1, is, the better control of disease will be.

Remark 3 From the left-hand sides of Figs. 6 and 7, we find that the stage structure has dif-
ferent effects on disease transmission dynamics with and without predators. When preda-
tors are introduced, small values of the birth rate b, and the conversion rate d, and large
value of the natural death rate u,; will lead to the increase in the value of the basic re-
production number Ry, and therefore increase the risk of disease spread. In the absence
of predators, we find that the reproduction number Ry; increases with the increase in the
birth rate b, and the conversion rate d of the immature vectors, and with the decrease in
the natural death rate pt,; of the immature vectors. Therefore, for vector—host disease pre-
vention and control in the absence of the predator, it is necessary to take some strategies
to reduce the birth rate b, and the conversion rate d, and enlarge the natural death rate
i at vectors’ larva stage, such as use of physical strategies, use of pesticides, biological

control, and so on.

From Sect. 3, we find that the predator P, brings about complicated dynamics of system
(1), and we also find that introducing the predator has certain benefits to disease control. It
is clear from Figs. 2—5 that the larger the value of capturing rate /; is, the lower equilibrium
levels of infected hosts and vectors will be.

5 Conclusions and discussions

In this paper, we mainly formulate and analyze a host-vector—predator model with stage
structure for the vectors. The period of growth for the vectors is divided into immature
and mature stages according to the transmission properties (e.g., cysticercosis and scrub
typhus are spread among hosts by the immature vectors, while some infectious diseases,
such as malaria, dengue fever, West Nile virus, and pine wilt disease, are transmitted
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among hosts by the mature vectors). The interactions between the predator and the vec-
tor are modeled by Holling type II functional response. Corollary 3.1 reveals that in the
absence of the predator, the reproduction number Ry, of system (2) provides the threshold
which decides the persistence and extinction of vector-borne diseases. If Ry; < 1, the dis-
eases will tend to die out, while if Ry; > 1 then the diseases will persist (see Fig. 1). When the
predators are added, we find from Theorem 3.2 that the diseases still persist if Ry, > 1, but
the equilibrium levels of the infected hosts and vectors have been lessened (see Fig. 2). If
Roy < 1, then by Theorem 3.2 the diseases can be eradicated (see Fig. 3). Therefore, preda-
tors have positive effects on disease control. Moreover, by Theorem 3.2 predation causes
the phenomenon of limit cycle arising from a Hopf bifurcation (see Fig. 2—5). If Ry, < 1 and
C1Cy — Cs > 0, then there exists a stable limit cycle in the (M,, S,, P) space for system (1).
Though periodic oscillation occurs between the vectors and the predators, the diseases
can be eradicated by the effect of predators on vectors (see Fig. 2—3). However, if Ry > 1
and C;C; — Cs > 0, then there exists a stable limit cycle for system (1), and the diseases
cannot be eradicated (see Fig. 4-5). Finally, the effect of stage structure on disease spread
with and without predators has been illustrated (see Fig. 6-7). From the left-hand sides
of Figs. 6 and 7, it is clear that in the absence of predators, the reproduction number Ry;
increases with the increase in the birth rate b, and the conversion rate d of the immature
vectors, while Ry increases with the decrease in the natural death rate w,; of the immature
vectors. Therefore, it is necessary to take some strategies to reduce the birth rate b, and
the conversion rate d and enlarge the natural death rate ,; at vectors’ larva stage through
the use of physical strategies, use of pesticides, biological control, and so on. From the
right-hand sides of Figs. 6 and 7, we find that after introducing the predators, the effect
of by, d, and 1,1 on disease transmission is inverse compared with the effect of b,, d, and
1y1 on disease transmission in the absence of predators. Therefore, to exert the best effect
of predators on disease control, we should increase the values of the birth rate b, and the
conversion rate d to certain degree, and decrease the value of the natural death rate 1,
of vectors at the immature stage.

Acknowledgements
The authors would like to thank the editor and two anonymous reviewers for their valuable suggestions and comments.

Funding

The work is supported by the National Natural Science Foundation of China (grant no. 71701082 and 71271103), the Six
Talents Peak Foundation of Jiangsu Province, and the Innovative Foundation for Doctoral Candidate of Jiangsu Province,
China (grant no. CXZZ13_0687).

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions
All authors contributed equally to the writing of this paper. All authors read and approved the final manuscript.

Author details

' Department of Mathematics, Shaoxing University, Shaoxing, PR. China. 2School of Mathematics and Statistics, Central
South University, Changsha, PR. China. *Faculty of Science, Jiangsu University, Zhenjiang, PR. China. “College of Civil
Engineering, Shaoxing University, Shaoxing, PR. China. *School of Finance and Economics, Jiangsu University, Zhenjiang,
PR. China.

Publisher’s Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Received: 3 February 2018 Accepted: 22 August 2018 Published online: 15 September 2018



Zhou et al. Advances in Difference Equations (2018) 2018:324 Page 21 of 22

References

1. Jones, KE, Patel, N.G, Levy, M.A, Storeygard, A, Balk, D,, Gittleman, J.L,, Daszak, P: Global trends in emerging
infectious diseases. Nature 451, 990-993 (2008)

2. Daszak, P, Cunningham, A, Hyatt, A.D.: Anthropogenic environmental change and the infectious diseases in wildlife.
Acta Trop. 78, 103-116 (2001)

3. Yang, CX, Nie, L.F: Modelling the use of impulsive vaccination to control Rift Valley Fever virus transmission. J. Differ.
Equ. 2016, 134 (2016)

4. Nie, LF, Xue, Y.N.: The roles of maturation delay and vaccination on the spread of Dengue virus and optimal control.
J. Differ. Equ. 2017, 278 (2017)

5. Hemingway, J., Ranson, H.: Insecticide resistance in insect vectors of human disease. Annu. Rev. Entomol. 45, 371-391
(2000)

6. Castro, M.C, De Yamagata, Y, Mtasiwa, D., Tanner, M., Utzinger, J,, Keiser, J,, Singer, B.H.: Integrated urban malaria
control: a case study in Dares Salaam, Tanzania. Am. J. Trop. Med. Hyg. 71, 103-117 (2004)

7. Benedict, M.Q, Robinson, AS.: The first releases of transgenic mosquitoes: an argument for the sterile insect
technique. Trends Parasitol. 19, 349-355 (2003)

8. Kaaya, G.P, Hassan, S.: Entomogenous fungi as promising biopesticides for tick control. Exp. Appl. Acarol. 24, 913-926
(2000)

9. Scholte, EJ, Ng'Habi, K, Kihonda, J,, Takken, W.,, Paaijmans, K., Abdulla, S., Killeen, G.F, Knols, B.G.J.: An
entomopathogenic fungus for control of adult African malaria mosquitoes. Science 308, 1641-1642 (2005)

10. Legner, E.: Biological control of Diptera of medical and veterinary importance. J. Vector Ecol. 20, 59-120 (1995)

11. Stauffer, JR. Jr, Arnegard, M., Cetron, M.: Controlling vectors and hosts of parasitic diseases using fishes. Bioscience
47,41-49 (1997)

12. Samish, M., Rehacek, J.: Pathogens and predators of ticks and their potential in biological control. Annu. Rev. Entomol.
44,159-182 (1999)

13. Ostfeld, RS, Price, A, Hornbostel, V.L,, Benjamin, M.A., Keesing, F.: Controlling ticks and tick-borne zoonoses with
biological and chemical agents. Bioscience 56, 383-394 (2006)

14. Walker, K, Lynch, M.: Contributions of Anopheles larval control to malaria suppression in tropical Africa: review of
achievements and potential. Med. Vet. Entomol. 21, 2-21 (2007)

15. Ghosh, SK, Tiwari, S.N,, Sathyanarayan, T.S., Sampath, T.R, Sharma, V.P, Nanda, N., Joshi, H., Adak, T,, Subbarao, SK.
Larvivorous fish in wells target the malaria vector sibling species of the Anopheles culicifacies complex in villages in
Karnataka, India. Trans. R. Soc. Trop. Med. Hyg. 99, 101-105 (2005)

16. Ghosh, SK, Dash, AP: Larvivorous fish against malaria vectors: a new outlook. Trans. R. Soc. Trop. Med. Hyg. 101,
1063-1064 (2007)

17. Kay, B, Nam, V.S.: New strategy against Aedes aegypti in Vietnam. Lancet 365, 613-617 (2005)

18. Kittayapong, P, Yoksan, S., Chansang, U., Chansang, C., Bhumiratana, A.: Suppression of dengue transmission by
application of integrated vector control strategies at sero-positive GIS-based foci. Am. J. Trop. Med. Hyg. 78, 70-76
(2008)

19. Zhang, L.Q, Liu, J, Wu, H.: The screening of a virulent strain of Beauveria bassiana to Monochamus alternatus.
J.Nanjing For. Univ. 24, 33-37 (2000)

20. Lai, YX, Liu, J.D, Xu,QY, Wang, Y.H. Zhou, C.M.: Trials on the parasitism of Beauveria bassiana or Verticillium lecanii on
larvae of Monochamus alternatus Hope. J. Jiangsu. For. Sci. Technol. 30, 7-9 (2003)

21. Jeger, MJ, Holt, J, Van Den Bosch, F, Madden, LV.: Epidemiology of insect-transmitted plant viruses: modelling
disease dynamics and control interventions. Physiol. Entomol. 29, 291-304 (2004)

22. Otim, M, Legg, D., Kyamanywa, S., Polaszek, A., Gerling, D.: Population dynamics of Bemisia tabaci (Homoptera:
Aleyrodidae) parasitoids on cassava mosaic disease-resistant and susceptible varieties. Biocontrol Sci. Technol. 16,
205-214 (2006)

23. Luck, RF, Shepard, BM, Kenmore, PE.: Experimental methods for evaluating arthropod natural enemies. Annu. Rev.
Entomol. 33, 367-389 (1988)

24. Zehnder, G, Gurr, G.M, Kuhne, S, Wade, MR, Wratten, S.D., Wyss, E.: Arthropod pest management in organic crops.
Annu. Rev. Entomol. 52, 57-80 (2007)

25. Tian, B.D, Yang, L., Zhong, S.M.: Global stability of a predator—prey model with Allee effect. Int. J. Biomath. 8, 37-51
(2015)

26. Zha, LJ, Cui, J.A, Zhou, X.Y.: Ratio-dependent predator-prey model with stage structure and time delay. Int.
J.Biomath. 5, 15-37 (2012)

27. Zhou, FY. Existence and global attractivity of a positive periodic solution for a non-autonomous predator-prey model
under viral infection. Int. J. Biomath. 2, 419-442 (2009)

28. Schraiber, J.G, Kaczmarczyk, AN, Kwok, R, et al.: Constraints on the use of lifespan-shortening Wolbachia to control
dengue fever. J. Theor. Biol. 297, 26-32 (2012)

29. Hughes, H., Britton, N.F.: Modelling the use of Wolbachia to control dengue fever transmission. Bull. Math. Biol. 75,
796-818 (2013)

30. Moore, S.M,, Borer, E.T,, Hosseini, PR.: Predators indirectly control vector-borne disease: linking predator-prey and
host-pathogen models. J. R. Soc. Interface 7, 161-176 (2009)

31. Zhou, Y, Yao, H.Y.. Dynamics and biocontrol: the indirect effects of a predator population on a host-vector disease
model. Abstr. Appl. Anal. 2014, 252718 (2014)

32. Okamoto, KW, Amarasekare, P: The biological control of disease vectors. J. Theor. Biol. 309, 47-57 (2012)

33. Xiao, Y.N,, Chen, L.S.: An SIS epidemic model with stage structure and a delay. Acta Math. Appl. Sin. 18, 607-618
(2002)

34. Cai, L, Li, X, Ghosh, M.: Global stability of a stage-structured epidemic model with a nonlinear incidence. Appl. Math.
Comput. 214, 73-82 (2009)

35. Hyman, JM, Li, J, Stanley, EA: The differential infectivity and staged progression models for the transmission of HIV.
Math. Biosci. 155, 77-109 (1999)

36. Moghadas, S.M.,, Gumel, A.B.: Global stability of a two-stage epidemic model with generalized non-linear incidence.
Math. Comput. Simul. 60, 107-118 (2002)



Zhou et al. Advances in Difference Equations (2018) 2018:324 Page 22 of 22

37.
38.
39.
40.
41.
42.

43.

Martcheva, M., Castillo-Chavez, C.: Diseases with chronic stage in a population with varying size. Math. Biosci. 182,
1-25(2003)

Tian, B.D, Jin, Y.G, Zhong, SM, Chen, N.: Global stability of an epidemic model with stage structure and nonlinear
incidence rates in a heterogeneous host population. J. Differ. Equ. 2015, 260 (2015)

World health organization: Frequently Asked Questions Scrub Typhus (2008)

Zhao, B.G, Futai, K, Jack, R, Sutherland, JR, Takeuchi, Y. Pine Wilt Disease. Springer, New York (2008)

Diekmann, O,, Heesterbeek, J.A.P, Metz, J.A.J.: On the definition and the computation of the basic reproduction ratio
Ro in models for infectious diseases in heterogeneous populations. J. Math. Biol. 28, 365-382 (1990)

Driessche, V.P, Watmough, J.: Reproduction numbers and sub-threshold endemic equilibria for compartmental
models of disease transmission. Math. Biosci. 180, 29-48 (2002)

Singh, BK, Chattopadhyay, J., Sinha, S.: The role of virus infection in a simple phytoplankton zooplankton system.
J. Theor. Biol. 231, 153-166 (2004)

Submit your manuscript to a SpringerOpen®
journal and benefit from:

» Convenient online submission

» Rigorous peer review

» Open access: articles freely available online
» High visibility within the field

» Retaining the copyright to your article

Submit your next manuscript at » springeropen.com




	Impact of predator on the host-vector disease model with stage structure for the vector
	Abstract
	Keywords

	Introduction
	Model description
	Dynamics of model (1)
	Local stability and existence of Hopf bifurcation for system (1)
	Direction and stability of limit cycle

	Numerical simulation of the system dynamics
	Conclusions and discussions
	Acknowledgements
	Funding
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


