
Liu et al. Advances in Difference Equations  (2018) 2018:326 
https://doi.org/10.1186/s13662-018-1774-9

R E S E A R C H Open Access

Homoclinic solutions for Hamiltonian
system with impulsive effects
Jian Liu1, Lizhao Yan2*, Fei Xu3 and Mingyong Lai1

*Correspondence:
yanbine@126.com
2School of Business, Hunan Normal
University, Changsha, P.R. China
Full list of author information is
available at the end of the article

Abstract
In this article, we investigate a class of impulsive Hamiltonian systems with a
p-Laplacian operator. By establishing a series of new sufficient conditions, the
existence of homoclinic solutions to such type of systems is revealed. We show the
existence of homoclinic orbit induced by impulses by introducing some conditions.
To illustrate the applications of the main results in this article, we create an example.
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1 Introduction
The aim of the article is to investigate the impulsive Hamiltonian systems with p-Laplacian
operator of the form

(
�p

(
u′(t)

))′ – ∇F
(
t, u(t)

)
= 0, t �= ti, t ∈ R, (1)

–�
(
�p

(
u′(ti)

))
= gi

(
u(ti)

)
, i ∈ Z. (2)

Here, we are particularly interested in the existence of homoclinic orbits for such sys-
tems. In the system, u ∈ R, �(�p(u′(ti))) = |u′(t+

i )|p–2u′(t+
i ) – |u′(t–

i )|p–2u′(t–
i ) with u′(t±

i ) =
limt→t±i

u′(t), ∇F(t, u) = gradu F(t, u), gi(u) = gradu Gi(u), Gi ∈ C1(Rn, Rn) for each i ∈ Z.
There exist an m ∈ N and a T > 0 such that 0 = t0 < t1 < · · · < tm = T , ti+m = ti + T and
gi+m = gi for all i ∈ Z.

The existence and multiplicity of homoclinic orbits attracted the attention of researchers
from all over the world and as such have been extensively investigated in the literature
[1–8]. Mathematical techniques such as the dual variational method [9], concentration
compactness method and Ekeland variational principle [10, 11], and the approximation
method [12] have been used in evaluating the existence of homoclinic orbits for Hamilto-
nian systems.

Real-world systems display a variety of abrupt changes, and such changes can be mod-
eled using impulsive differential equations. Impulsive effects have been integrated into
different types of differential equations to describe the consequences of abrupt changes.
Such systems have been investigated in the literature [13–24].

A special case of system (1)–(2) where p = 2 has been considered by Zhang and Li [20].
The authors get the following result.
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Theoerem 1 ([20]) Assume that, for j = 1, 2, . . . , m, gj is continuous and m-periodic in j,
and F and gj satisfy the following conditions:

(H1) F : R×RN → R is continuously differentiable and T-periodic, and there exist positive
constants r1, r2 > 0 such that

r1|u|2 ≤ F(t, u) ≤ r2|u|2, ∀(t, u) ∈ [0, T] × Rn;

(H2) F(t, u) ≤ (∇F(t, u), u) ≤ 2F(t, u), ∀(t, u) ∈ [0, T] × Rn;
(H3) there exists μ > 2 such that

0 < –μGj(u) ≤ –ugj(u), for u ∈ Rn \ {0}, j = 1, 2, . . . , m;

(H4) lim|u|→0
gj(u)
|u| = 0 for j = 1, 2, . . . , m.

Then the second order impulsive Hamiltonian system

u′′(t) – ∇F
(
t, u(t)

)
= 0, t �= ti, t ∈ R,

–�u′(ti) = gi
(
u(ti)

)
, i ∈ Z,

has at least one nonzero homoclinic solution generated by impulses.

For the general case of p �= 2, due to the complex structure of problem (1) and (2), it
is challenging to construct an appropriate functional such that the existence of its criti-
cal point implies a homoclinic orbit of the system. Since the domain under consideration
is unbounded, the Sobolev embedding might not be compact. In order to complete the
proof, we show that the homoclinic orbit u is obtained as the limit of 2kT-periodic solu-
tions uk of (1)–(2) as k → ∞. Due to the impulsive perturbation, the velocity is no longer
continuous. Besides, if p �= 2, the Sobolev space W 1,p

2kT is not a Hilbert space. When we use
the mountain pass theorem to prove the main results of the paper, it is necessary to guar-
antee that constants ρ and α are required to be independent of k. We also need to show
that the approximating solution sequence {uk} has a bound, which is independent of k.

Before introducing the main results, we make the following assumptions.

Theoerem 2 Assume that F , gi satisfies the following conditions:
(A1) F ∈ C1(R × RN , R), F(t, 0) ≡ 0 and F is T-periodic in its first variable;
(A2) F(t, u) = 1

p |u|p + H(t, u), where H ∈ C1(R × RN , R);
(A3) for every t ∈ R and u ∈ Rn\{0}, there exists μ > p such that

pH(t, u) ≥ u∇H(t, u) > 0;

(A4) there exists μ > p, such that gi(u)u ≤ μGi(u) ≤ 0, u ∈ Rn \ {0}, i = 1, 2, . . . , m.
Then the system (1)–(2) possesses at least one nonzero homoclinic solution generated by

impulses.

Here, a solution of problem (1)–(2) is said to be generated from the impulse if this solu-
tion emerges when the impulse is not zero, and on the other hand, the solution disappears
when the impulse is zero.
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The rest of the paper is organized as follows. In Sect. 2, we present some preliminaries
and statements, which will be used in proving our main results. The proof of the main
results of this article is given in Sect. 3. We then present an example to illustrate the ap-
plicability of our results in Sect. 4.

2 Preliminaries and statements
For each k ∈ N , set

Ek =
{

u : R → Rn | u, u′ ∈ Lp([–kT , kT], Rn), u(t) = u(t + 2kT), t ∈ R
}

.

Thus, Ek is a Hilbert space with the norm defined by

‖u‖Ek =
(∫ kT

–kT

(∣∣u′(t)
∣∣p +

∣∣u(t)
∣∣p)dt

) 1
p

.

Let Lp
2kT (R, Rn) denote the Hilbert space of 2kT-periodic functions on R with values in Rn

under the norm

‖u‖Lp
2kT (R,Rn) =

(∫ kT

–kT

∣∣u(t)
∣∣p dt

) 1
p

,

and L∞
2kT (R, Rn) be a space of 2kT-periodic essentially bounded measurable functions from

R to Rn under the norm

‖u‖L∞
2kT (R,Rn) = esssup

{∣∣u(t)
∣
∣ : t ∈ [–kT , kT]

}
.

Set �k = {–km + 1, –km + 2, . . . , 0, 1, 2, . . . , km – 1, km} and define

Ik(u) =
∫ kT

–kT

[
1
p
∣
∣u′(t)

∣
∣p + F

(
t, u(t)

)]
dt +

∑

i∈�k

Gi
(
u(ti)

)

=
1
p
‖u‖p

Ek
+

∫ kT

–kT
H

(
t, u(t)

)
dt +

∑

i∈�k

Gi
(
u(ti)

)
. (3)

It follows that Ik is Frechet differentiable at any u ∈ Ek . For any u ∈ Ek , we thus have

I ′
k(u)v =

∫ kT

–kT

[∣∣u′(t)
∣
∣p–2u′(t)v′(t) + ∇F

(
t, u(t)

)
v(t)

]
dt

+
∑

i∈�k

gi
(
u(ti)

)
v(ti). (4)

The above analysis shows that the critical points of the functional Ik are classical 2kT-
periodic solutions of system (1)–(2).

Lemma 1 ([25]) There exists a positive constant C independent of k such that, for each
k ∈ N and u ∈ Ek , one has

‖u‖L∞
2kT (R,Rn) ≤ C‖u‖Ek . (5)



Liu et al. Advances in Difference Equations  (2018) 2018:326 Page 4 of 12

Lemma 2 ([26]) Let u : R → Rn be a continuous mapping such that u′ ∈ Lp
loc(R, Rn). For

every t ∈ R, the following inequality holds:

∣∣u(t)
∣∣ ≤ 2

p–1
p

(∫ t+ 1
2

t– 1
2

(∣∣u(s)
∣∣p +

∣∣u′(s)
∣∣p)ds

) 1
p

. (6)

Lemma 3 ([27]) Let X be a real Banach space and I ∈ C′(X, R) satisfying the Palais–Smale
(PS)-condition. Suppose that I satisfies the following conditions:

(i) I(0) = 0;
(ii) there exist constants ρ,α > 0 such that I|∂Bρ (0) ≥ α;

(iii) there exists e ∈ X\B̄ρ(0) such that I(e) ≤ 0.
Then I possesses a critical value c ≥ α given by

c = inf
g∈�

max
s∈[0,1]

I
(
g(s)

)
,

where Bρ(0) is an open ball in X of radius ρ centered at 0, and

� =
{

g ∈ C
(
[0, 1], X

)
: g(0) = 0, g(1) = e

}
.

3 Proof of Theorem 2
Before starting the proof of Theorem 2, we recall some properties of the function H(t, u).

Remark 1 If (A3) holds, then, for every t ∈ [0, T], there exist a1, a2 > 0 such that:

H(t, u) ≥ a1|u|p, if 0 < |u| < 1, (7)

H(t, u) ≤ a2|u|p, if |u| ≥ 1, (8)

where a1 = mint∈[0,T],|u|=1 H(t, u), a2 = maxt∈[0,T],|u|=1 H(t, u).

Proof To prove this fact, it suffices to show that, for every u �= 0 and t ∈ [0, T] the function
ζ → H(t, ζ –1u)ζ p (where ζ ∈ (0, +∞)) is nonincreasing, which is an immediate conse-
quence of (A3). �

Remark 2 Assume that (A4) hold, then there exist b1, b2 > 0, such that

Gi(u) ≥ –b1|u|μ, if 0 < |u| < 1, (9)

Gi(u) ≤ –b2|u|μ, if |u| ≥ 1. (10)

Proof Since the proof is similar to that of Fact 2.2 of [11], here it is omitted. �

We divide the proof of Theorem 2 into several lemmas.

Lemma 4 If F , gi satisfies (A1)–(A4), then, for all k ∈ N , system (1)–(2) has a 2kT-periodic
solution.



Liu et al. Advances in Difference Equations  (2018) 2018:326 Page 5 of 12

Proof By (A1) and (A4), we get Ik(0) = 0.
We first show that Ik , gi satisfies the (PS)-condition. Assume that {uj}j∈N in Ek is a se-

quence such that {Ik(uj)}j∈N is bounded and I ′
k(uj) → 0 as j → +∞. Then, for every j ∈ N ,

there is a constant Ck > 0 such that
∣
∣Ik(uj)

∣
∣ ≤ Ck , (11)

∥
∥I ′

k(uj)
∥
∥

E∗
k
≤ Ck . (12)

It follows from (4) that

I ′
k(uj)uj =

∫ kT

–kT

[∣∣u′
j(t)

∣
∣p + ∇F

(
t, uj(t)

)
uj(t)

]
dt +

∑

i∈�k

gi
(
uj(ti)

)
uj(ti)

=
∫ kT

–kT

[∣∣u′
j(t)

∣
∣p +

∣
∣uj(t)

∣
∣p]dt +

∫ kT

–kT
∇H

(
t, uj(t)

)
uj(t) dt

+
∑

i∈�k

gi
(
uj(ti)

)
uj(ti). (13)

By (A3), (A4), (3), (11), (12) and (13) we have

2Ck ≥ Ik(uj) –
1
μ

I ′
k(uj)uj

=
∫ kT

–kT

1
p
∣∣u′

j(t)
∣∣p + F

(
t, uj(t)

)
dt +

∑

i∈�k

Gi
(
u(ti)

)

–
∫ kT

–kT

1
μ

∣∣u′
j(t)

∣∣μ –
1
μ

∇F
(
t, uj(t)

)
uj(t) dt –

∑

i∈�k

gi
(
uj(ti)

)
uj(ti)

≥
∫ kT

–kT

1
p
∣∣u′

j(t)
∣∣p +

1
p
∣∣uj(t)

∣∣p –
1
μ

∣∣u′
j(t)

∣∣μ –
1
μ

∣∣uj(t)
∣∣μ dt

+
∫ kT

–kT
H

(
t, uj(t)

)
–

1
μ

∇H
(
t, uj(t)

)
uj(t) dt

≥
(

1
p

–
1
μ

)
‖uj‖p

Ek
+

∫ kT

–kT
H

(
t, uj(t)

)
–

1
p
∇H

(
t, uj(t)

)
uj(t) dt

≥
(

1
p

–
1
μ

)
‖uj‖p

Ek
. (14)

Since μ > p, we know that {uj}j∈N is bounded in Ek . Using the method proposed in [27],
we can show that {un} has a convergent subsequence. It thus follows that Ik satisfies the
(PS)-condition.

We now show that the functional Ik satisfies Assumption (ii) in Lemma 3. Choose 0 <
δ < 1 such that

min

{
1
p

,
1
p

+ a1

}
δp

Cp –
b1δ

μ

Cμ
> 0.

If ‖u‖Ek = δ
C := ρ , then it follows from (5) that |u(t)| ≤ δ < 1 for t ∈ [–kT , kT]. From (3), (7)

and (9) we have

Ik(u) ≥
∫ kT

–kT

1
p
∣
∣u′

j(t)
∣
∣p +

1
p
∣
∣uj(t)

∣
∣p dt +

∫ kT

–kT
H

(
t, u(t)

)
dt +

∑

i∈�k

Gi
(
u(ti)

)
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≥
∫ kT

–kT

1
p
∣∣u′

j(t)
∣∣p +

1
p
∣∣uj(t)

∣∣p + a1
∣∣u(t)

∣∣p dt – b1
∑

i∈�k

|u|μ

≥ min

{
1
p

,
1
p

+ a1

}
‖u‖p

Ek
– b1‖u‖μ

Ek

= min

{
1
p

,
1
p

+ a1

}
δp

Cp –
b1δ

μ

Cμ

:= α > 0. (15)

It follows from (15) that ‖u‖Ek = δ
C = ρ , which implies that Ik(u) ≥ α.

It remains to prove that the functional Ik satisfies Assumption (iii) of Lemma 3. From
(3), (8) and (10) we have

Ik(ζu) =
|ζ |p

p
‖u‖p

Ek
+

∫ kT

–kT
H

(
t, ζu(t)

)
dt +

∑

i∈�k

Gi
(
ζu(ti)

)

≤ |ζ |p
p

‖u‖p
Ek

+ a2|ζ |p‖u‖p
Ek

– b2|ζ |μ
∑

i∈�k

∣∣u(ti)
∣∣μ. (16)

Take U ∈ E1 such that U(±T) = 0. Since μ > p and b1 > 0, then by (16) there exists ξ ∈
R\{0} such that ‖ξU‖E1 > ρ and I1(ξU) < 0. For k > 1, set e1(t) = ξU(t) and

ek(t) =

⎧
⎨

⎩
e1(t), |t| ≤ T ,

0, T < |t| ≤ kT .
(17)

Then ek ∈ Ek , ‖ek‖Ek = ‖e1‖E1 > ρ and Ik(ek) = I1(e1) < 0 for every k ∈ N .
By Lemma 3, Ik possesses a critical value ck ≥ α > 0. Then, for every k ∈ N , there exists

uk ∈ Ek satisfying

Ik(uk) = ck , I ′
k(uk) = 0. (18)

Hence, system (1)–(2) has a nontrivial 2kT-periodic solution uk . �

Lemma 5 Let {uk} be the sequence given by (18). There exist a subsequence {uj,j} of {uk}
and a function u0 ∈ W 1,p

loc ∩ L∞
loc(R, Rn) such that {uj,j} converges to u0 weakly in W 1,p

loc and
strongly in L∞

loc(R, Rn).

Proof Our first step is to show that the sequence {ck}k∈N is bounded. For each k ∈ N , let
gk : [0, 1] → Ek be a curve given by gk(s) = sek , where ek is defined by (17). Then gk ∈ �k

and Ik(gk(s)) = I1(g1(s)) for all k ∈ N and s ∈ [0, 1]. Therefore, it follows from the mountain
pass theorem that

ck ≤ max
s∈[0,1]

I1
(
g1(s)

) ≡ C0, (19)

which is independent of k ∈ N . Since I ′
k(uk) = 0, from (A3), (A4) and (3) we obtain

ck = Ik(uj) –
1
μ

I ′
k(uj)uj
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=
∫ kT

–kT

1
p
∣∣u′

j(t)
∣∣p + F

(
t, uj(t)

)
dt +

∑

i∈�k

Gi
(
u(ti)

)

–
∫ kT

–kT

1
μ

∣∣u′
j(t)

∣∣μ –
1
μ

∇F
(
t, uj(t)

)
uj(t) dt –

∑

i∈�k

gi
(
uj(ti)

)
uj(ti)

≥
∫ kT

–kT

1
p
∣
∣u′

j(t)
∣
∣p +

1
p
∣
∣uj(t)

∣
∣p –

1
μ

∣
∣u′

j(t)
∣
∣μ –

1
μ

∣
∣uj(t)

∣
∣μ dt

+
∫ kT

–kT
H

(
t, uj(t)

)
–

1
μ

∇H
(
t, uj(t)

)
uj(t) dt

≥
(

1
p

–
1
μ

)
‖uj‖p

Ek
+

∫ kT

–kT
H

(
t, uj(t)

)
–

1
p
∇H

(
t, uj(t)

)
uj(t) dt

≥
(

1
p

–
1
μ

)
‖uj‖p

Ek
. (20)

Since μ > p and all the constants in (20) are independent of k, then there exists a constant
L1 > 0 independent of k such that

‖uk‖Ek ≤ L1. (21)

The boundedness of ‖uk‖Ek implies the boundedness of the set

{‖uk‖W 1,p((–kT ,kT),Rn)
}

for each positive integer k. In particular, when k = 1, since {uk} is a bounded sequence in

W 1,p((–T , T), Rn),

we can pick a subsequence {u1,k} such that {u1,k} converges weakly in

W 1,p((–T , T), Rn)

and strongly in L∞((–T , T), Rn). For k = 2, since {u1,k} is bounded in W 1,p((–2T , 2T), Rn),
we can pick a subsequence {u2,k} such that {u2,k} converges weakly in W 1,p((–2T , 2T), Rn)
and strongly in L∞((–2T , 2T), Rn). We can repeat this process for k = 3, 4, . . . and see
that, for any positive integer m, there is a sequence {um,k} which converges weakly in
W 1,p((–mT , mT), Rn) and strongly in L∞((–mT , mT), Rn), and

{uk} ⊃ {u1,k} ⊃ {u2,k} ⊃ · · · ⊃ {um,k} ⊃ · · · .

It follows that the sequence {uk,k} converges weakly in W 1,p((–kT , kT), Rn) and strongly in
L∞((–kT , kT), Rn). Hence, there exists a function

u ∈ W 1,p
loc

(
R, Rn) ∩ L∞

loc
(
R, Rn)

such that the sequence {uk,k} converges weakly in W 1,p
loc (R, Rn) and strongly in L∞

loc(R, Rn). �
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Lemma 6 The function u0 determined by Lemma 5 is a nonzero homoclinic solution of the
system (1)–(2).

Proof The proof is divided into four steps.
First we show that u0 is a solution of system (1)–(2). For convenience, we denote {uk,k}

by {uk}. For any given interval (a, b) ⊂ (–kT , kT) and any v ∈ W 1,p
0 ((a, b), Rn), define

v1(t) =

⎧
⎨

⎩
v(t), t ∈ (a, b),

0, t ∈ (–kT , kT) \ (a, b).
(22)

Then, for any v ∈ W 1,p
0 ((a, b), Rn), one has

∫ b

a

(
u′

0v′ – ∇F(t, u0)v
)

dt +
∑

ti∈(a,b)

gi
(
u0(ti)

)
v(ti)

= lim
k→+∞

[∫ b

a

(
u′

kv′ – ∇F(t, uk)v
)

dt +
∑

ti∈(a,b)

gi
(
uk(ti)

)
v(ti)

]
= 0. (23)

Let k1 be a positive integer and set a = –k1T and b = k1T . By a similar method to the one
proposed in [20], using (23), we can show that u0|(ti ,ti+1) satisfies (1) in classical sense for
i = –k1m + 1, . . . , k1m, and u0 satisfies

∣∣u′
0
(
t+
i
)∣∣p–2u′

0
(
t+
i
)

=
∣∣u′

0
(
t–
i
)∣∣p–2u′

0
(
t–
i
)

+ gi
(
u0(ti)

)
, i = –k1m + 1, . . . , k1m – 1.

Since v ∈ W 1,p
0 ((–k1T , k1T), Rn), we cannot show that

∣
∣u′

0
(
t+
k1m

)∣∣p–2u′
0
(
t+
k1m

)
=

∣
∣u′

0
(
t–
k1m

)∣∣p–2u′
0
(
t–
k1m

)
+ gk1m

(
u0(tk1m)

)

from (23). Therefore, u0 is a solution of (1)–(2) in (–k1T , k1T). Since k1 is arbitrary, u0 is
a solution of system (1)–(2) in R.

Next, we prove that u0(t) → 0, as t → ±∞. Since {uk} is weakly continuous, it is weakly
lower semicontinuous, and thus we have

∫ +∞

–∞

(∣∣u0(t)
∣∣p +

∣∣u′
0(t)

∣∣p)dt = lim
k→+∞

∫ kT

–kT

(∣∣u0(t)
∣∣p +

∣∣u′
0(t)

∣∣p)dt

≤ lim
k→+∞

lim
j→+∞ inf

∫ kT

–kT

(∣∣uj(t)
∣
∣p +

∣
∣u′

j(t)
∣
∣p)dt

≤ Lp
1.

Therefore,

∫

|t|≥r

(∣∣u0(t)
∣∣p +

∣∣u′
0(t)

∣∣p)dt → 0, as r → +∞. (24)

By (6) and (24), we get u0(t) → 0 as t → ±∞.
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In the third step we show that u′
0(t±) → 0, as t → ±∞. Since u0(t) is a solution of system

(1)–(2), we obtain

∫ ti

ti–1

∣∣(�p
(
u′

0(t)
)′∣∣p dt =

∫ ti

ti–1

∣∣∇F
(
t, u0(t)

)∣∣p dt.

Since ∇F(t, 0) = 0 for all t ∈ R, u0(t) → 0 as t → ±∞, we have

∫ ti

ti–1

∣∣(�p
(
u′

0(t)
)′∣∣p dt → 0

as i → ±∞. Then, from the definition of �p(u), there exists L2 > 0 such that

∫ ti

ti–1

∣∣u′′
0(t)

∣∣p dt < L2.

By (6), we obtain

∣∣u′
0(t)

∣∣p ≤ 2p–1
∫ ti

ti–1

(∣∣u′
0(t)

∣∣p +
∣∣u′′

0(t)
∣∣p)dt

≤ 2p–1
∫ ti

ti–1

(∣∣u0(t)
∣
∣p +

∣
∣u′

0(t)
∣
∣p)dt + 2p–1

∫ ti

ti–1

∣
∣u′′

0(t)
∣
∣p dt, t ∈ (ti–1, ti).

Therefore we have u′
0(t±) → 0 as t → ±∞.

Next, we show that u0 �= 0. I ′
k(uk)uk = 0 implies

∫ kT

–kT

[∣∣u′
k(t)

∣∣p + ∇F
(
t, uk(t)

)
uk(t)

]
dt = –

∑

i∈�k

gi
(
uk(ti)

)
uk(ti). (25)

Let θ = mini∈Z{ti –ti–1} and θ = maxi∈Z{ti –ti–1}. Then, by the Hölder inequality and uk(ti) =
uk(τ ) +

∫ ti
τ

u′
k(t) dt, τ ∈ [ti–1, ti], i ∈ �k , one has

∑

i∈�k

∣∣uk(ti)
∣∣p

≤ 1
θ

∑

i∈�k

∫ ti

ti–1

∣
∣uk(ti)

∣
∣p dτ

≤ 2p–1

θ

∑

i∈�k

∫ ti

ti–1

(∣
∣uk(τ )

∣
∣p +

∣∣
∣∣

∫ ti

τ

u′
k(s) ds

∣∣
∣∣

p)
dτ

≤ 2p–1

θ

∫ kT

–kT

∣∣uk(τ )
∣∣p dτ +

2p–1

θ

∑

i∈�k

∫ ti

ti–1

[
(ti – τ )

∫ ti

τ

∣∣u′
k(s)

∣∣p ds
]

dτ

≤ 2p–1

θ
‖uk‖p

L2
2kT

+
2p–1θ

p

θ

∥
∥u′

k
∥
∥p

L2
2kT

≤ 2p–1

θ
max

{
1, θp}‖uk‖p

Ek
. (26)
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Suppose that ‖uk‖L∞ → 0, then, when k sufficiently large, by (A4), (9), (25) and (26), we
have

b1μ
∑

i∈�k

∣∣uk(ti)
∣∣μ ≥ –

∑

i∈�k

gi
(
uk(ti)

)
uk(ti)

=
∫ kT

–kT

[∣∣u′
k(t)

∣
∣p + ∇F

(
t, uk(t)

)
uk(t)

]
dt

=
∫ kT

–kT

[∣∣u′
k(t)

∣∣p +
∣∣uk(t)

∣∣p]dt +
∫ kT

–kT
∇H

(
t, uk(t)

)
uk(t) dt

≥ ‖uk‖p
Ek

≥ θ

2p–1 max{1, θp}
∑

i∈�k

∣∣uk(ti)
∣∣p.

This is impossible when ‖uk‖L∞ → 0. Hence, the system (1)–(2) has a nontrivial homo-
clinic solution. �

Lemma 7 The u0 given in Lemma 6 is generated by impulses.

Proof In order to complete the proof, we only need to show that under the conditions of
Theorem 2, the system (�p(u′(t)))′ – ∇F(t, u(t)) = 0 has no nontrivial homoclinic solution.

If u is a homoclinic solution of (�p(u′(t)))′ – ∇F(t, u(t)) = 0, then

lim
t→→±∞ u(t) = 0,

lim
t→→±∞ u′(t) = 0.

By

0 = –
∫ b

a

(∣∣u′(t)
∣
∣p–2u′(t)

)′u(t) – ∇F
(
t, u(t)

)
u(t) dt

=
∫ b

a

∣∣u′(t)
∣∣p + ∇F

(
t, u(t)

)
u(t) dt –

∣∣u′(t)
∣∣p–2u′(t)u(t)

∣
∣∣
∣

b

a

=
∫ b

a

(∣∣u′(t)
∣∣p +

∣∣u(t)
∣∣p)dt +

∫ b

a
H

(
t, u(t)

)
u(t) dt –

∣∣u′(t)
∣∣p–2u′(t)u(t)

∣
∣∣
∣

b

a
,

we have

∫ b

a

(∣∣u′(t)
∣
∣p +

∣
∣u(t)

∣
∣p)dt +

∫ b

a
H

(
t, u(t)

)
u(t) dt

≤ lim
a→–∞ lim

b→∞
∣∣u′(t)

∣∣p–2u′(t)u(t)
∣
∣∣
b

a
= 0.

Moreover, by (A3), we know that

∫ b

a
H

(
t, u(t)

)
u(t) dt ≥ 0.
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Then

∫ b

a

(∣∣u′(t)
∣
∣p +

∣
∣u(t)

∣
∣p)dt +

∫ b

a
H

(
t, u(t)

)
u(t) dt ≥ 0.

Therefore, u = 0. It thus follows that the system (�p(u′(t)))′ – ∇F(t, u(t)) = 0 has only a
trivial homoclinic solution. �

4 Example
In this section, we present an example to illustrate the application of the main results
obtained in precious sections.

Example 1 Let

p = 6, H(t, u) = (2 + sin t)u2,

Gi
(
u(ti)

)
= –

∣∣
∣∣cos

ti

2

∣∣
∣∣u

10(ti), gi
(
u(ti)

)
= –10

∣∣
∣∣cos

ti

2

∣∣
∣∣u

9(ti),
(27)

where ti = 2π i
m , i ∈ Z.

For μ = 7 and p = 6, we have F(t, u) = 1
6 |u|6 + (2 + sin t)u2. It is easy to see that F(t, 0) = 0.

We notice that (A1), (A2) are satisfied.
By H(t, u) = (2 + sin t)u2, one has ∇H(t, u) = 2(2 + sin t)u. Therefore,

0 < u∇H(t, u) = 2(2 + sin t)u2 < 6(2 + sin t)u2 = pH(t, u),

which implies that condition (A3) is satisfied.
By Gi(u(ti)) = –| cos ti

2 |u10(ti), gi(u(ti)) = –10| cos ti
2 |u9(ti), we have

gi
(
u(ti)

)
u(ti) = –10

∣
∣∣
∣cos

ti

2

∣
∣∣
∣u

10(ti) < –7
∣
∣∣
∣cos

ti

2

∣
∣∣
∣u

10(ti) = μGi
(
u(ti)

)
< 0.

Thus, condition (A4) is satisfied.
By Theorem 2, system (1)–(2) with F , H , Gi and gi defined in (27) has a nontrivial ho-

moclinic solution.
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