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Abstract
This paper presents new results related to the coexistence of function-based hybrid
synchronization types between non-identical incommensurate fractional-order
systems characterized by different dimensions and orders. Specifically, a new theorem
is illustrated, which ensures the coexistence of the full-state hybrid function projective
synchronization (FSHFPS) and the inverse full-state hybrid function projective
synchronization (IFSHFPS) between wide classes of three-dimensional master systems
and four-dimensional slave systems. In order to show the capability of the approach, a
numerical example is reported, which illustrates the coexistence of FSHFPS and
IFSHFPS between the incommensurate chaotic fractional-order unified system and the
incommensurate hyperchaotic fractional-order Lorenz system.
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1 Introduction
Chaos synchronization refers to a process wherein two dynamical systems (master and
slave systems, respectively) adjust their motion to achieve a common behavior, mainly
due to a coupling or control input [1]. The issue was firstly studied in dynamical sys-
tems described by integer-order differential equations [2]. By considering the historical
timeline of the topic, it can be observed that a large variety of synchronization types has
been proposed [3, 4]. Among the different methods, projective synchronization provides
the slave system variables consisting in scaled replicas of the master system variables [5].
Recently, the full-state hybrid projective synchronization (FSHPS) has been introduced,
wherein each slave system variable synchronizes with a linear combination of master sys-
tem variables. On the other hand, when the inverted scheme is implemented, i.e., each
master system state synchronizes with a linear combination of slave system states, the in-
verse full-state hybrid projective synchronization (IFSHPS) is obtained [6]. Moreover, when
the scaling factors are replaced by scaling functions, function-based hybrid synchroniza-
tion schemes are obtained, i.e., the full-state hybrid function projective synchronization
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(FSHFPS) and the inverse full-state hybrid function projective synchronization (IFSHFPS),
respectively. Note that some synchronization types may coexist in chaotic systems.

In recent years, fractional calculus has been noticed for having superior characteris-
tics over conventional calculus in the modeling dynamics of natural phenomena [7–13].
The recent development in fractional calculus has been focused on dynamical systems
in fractional sense, for example the nonlinear fractional-order systems with disturbances
[14]. These systems are characterized by the fact that the order of the derivative is a non-
integer number. In particular, it has been shown that may also have complex dynamics
such as chaos and bifurcation [15–17]. Some efforts have been recently made devoted to
the synchronization of fractional-order chaotic system [18, 19]. It is worth noting that, dif-
ferently from integer-order systems, most of the approaches for fractional-order systems
are related to the synchronization of identical systems rather than non-identical systems
[20]. On the other hand, referring to function-based hybrid synchronization schemes, only
few schemes have been proposed to date; see [21–23]. Similar considerations hold for the
coexistence of different synchronization types in fractional-order systems, given that very
few attempts have been made. For example, in [24] the coexistence of some synchroniza-
tion types has been illustrated, including the inverse generalized synchronization and the
Q-S synchronization. However, no function-based hybrid synchronization schemes have
been analyzed in [25].

Based on these considerations, this paper aims to give a further contribution to the
topic by considering the coexistence of function-based hybrid synchronization in non-
identical fractional-order (incommensurate) systems characterized by different dimen-
sions and different orders. Specifically, the paper illustrates a new theorem, which proves
the coexistence of the full-state hybrid function projective synchronization (FSHFPS) and
the inverse full-state hybrid function projective synchronization (IFSHFPS) between a
three-dimensional master system and a four-dimensional slave system. These fractional-
order master-slave systems belong to general classes, which include several chaotic (hy-
perchaotic) incommensurate systems characterized by different dimensions and orders.
Numerical examples of coexistence of synchronization types are illustrated, with the aim
to show the effectiveness of the approach developed herein. The manuscript is organized
as follows. In Sect. 2, the basic notions on fractional calculus are given, whereas in Sect. 3
the coexistence of FSHFPS and IFSHFPS for fractional-order systems is introduced. The
scheme is general and the only restriction on the scaling functions is that they must be
differentiable functions. In Sect. 4, by exploiting the stability of both integer-order and
fractional-order linear error systems, a new theorem is illustrated, which proves the co-
existence of FSHFPS and IFSHFPS between a three-dimensional incommensurate master
system and a four-dimensional incommensurate slave system. Finally, in Sect. 5, numerical
simulations show that the coexistence of FSHFPS and IFSHFPS is successfully achieved
between the incommensurate chaotic fractional-order unified system and the incommen-
surate hyperchaotic fractional-order Lorenz system.

2 Basic concepts on fractional calculus
Both the Riemann-Liouville operator and the Caputo fractional derivative are considered
through the paper. The Caputo fractional derivative is defined as follows [26]:

Dp
t x(t) = Jm–px(m)(t) with 0 < p ≤ 1, (1)
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where m = [p] (i.e., m is the first integer which is not less than p), x(m) is the mth-order
derivative in the usual sense, and Jq (q > 0) is the qth-order Riemann-Liouville integral
operator given by

Jqf (t) =
1

�(q)

∫ t

0
(t – τ )q–1y(τ ) dτ , (2)

where � denotes Gamma function [27].

Lemma 1 ([28]) Suppose f (t) has a continuous kth derivative on [0, t] (k ∈ N, t > 0), and
let p, q > 0 such that there exist some l ∈N with l ≤ k and (p, p + q) ∈ [l – 1, l]. Then it results
that Dp

t Dq
t f (t) = Dp+q

t f (t).

Lemma 2 ([29]) The n-dimensional fractional-order linear system:

Dp
t X(t) = AX(t), (3)

where Dp
t = [Dp1

t , Dp2
t , . . . , Dpn

t ], 0 < pi ≤ 1, 1 < i ≤ n and A ∈ R
n×n is asymptotically stable

if all roots λ of the equation

det
(
diag

(
λMp1 ,λMp2 , . . . ,λMpn

)
– A

)
= 0 (4)

satisfy the condition that | arg(λ)| > π
2M , where M is the least common multiple of the de-

nominators of pi’s.

3 Coexistence of function-based hybrid synchronization schemes
Consider the master system in the form

Dpi
t xi(t) = fi

(
X(t)

)
, i = 1, 2, 3, (5)

where X(t) = (x1(t), x2(t), x3(t))T is the state vector, fi : R3 → R, 0 < pi ≤ 1 and Dpi
t is the

Caputo fractional derivative of order pi, for i = 1, 2, 3. The slave system is defined as

Dqi
t yi(t) =

4∑
j=1

bijyj(t) + gi
(
Y (t)

)
+ ui, i = 1, 2, 3, 4, (6)

where Y (t) = (y1(t), . . . , y4(t))T is the state vector, gi : R4 →R, 0 < qi ≤ 1, Dqi
t is the Caputo

fractional derivative of order qi and ui are synchronization controllers (i = 1, 2, 3, 4).
In the following two different synchronization types are considered, where the scaling

factors between the state variables of master and slave systems are replaced by scaling func-
tions, indicating that function-based projective synchronization schemes are introduced.

Definition 1 The master system (5) and the slave system (6) are in full-state hybrid func-
tion projective synchronization (FSHFPS) when, for an initial condition, there exist con-
trollers ui, 0 ≤ i ≤ 4 and differentiable functions λij(t): R →R (1 ≤ i ≤ 4; 1 ≤ j ≤ 3) so that
the synchronization errors:

ei(t) = yi(t) –
3∑

j=1

λij(t)xj(t), i = 1, 2, 3, 4. (7)

Satisfy the condition that limt→+∞ ‖ei(t)‖ = 0.
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Definition 2 The master system (5) and the slave system (6) are in inverse full-state hybrid
function projective synchronization (IFSHFPS) when, for an initial condition, there exist
controllers ui, 0 < i ≤ 4 and differentiable functions μij(t): R →R (1 ≤ i ≤ 3; 1 ≤ j ≤ 4) so
that the synchronization errors:

ei(t) =
4∑

j=1

μij(t)yj(t) – xi(t), i = 1, 2, 3. (8)

Satisfy the condition that limt→+∞ ‖ei(t)‖ = 0.

Now the coexistence of such two different synchronization types is considered.

Definition 3 Full-state hybrid function projective synchronization (FSHFPS) and inverse
full-state hybrid function projective synchronization (IFSHFPS) coexist between the mas-
ter system (5) and the slave system (6), if there exist controllers ui (1 ≤ i ≤ 4) and differen-
tiable functions (αj(t))1≤i≤4, (βj(t))1≤i≤3, (γj(t))1≤i≤4 and (θj(t))1≤i≤3, such that the following
synchronization errors:

e1(t) =
4∑

j=1

αj(t)yj(t) – x1(t),

e2(t) = y2(t) –
3∑

j=1

βj(t)xj(t),

e3(t) =
4∑

j=1

γj(t)yj(t) – x3(t),

e4(t) = y4(t) –
3∑

j=1

θj(t)xj(t).

(9)

Satisfy the condition that limt→+∞ ‖ei(t)‖ = 0, i = 1, 2, 3, 4.

4 A theorem for the coexistence of FSHFPS and IFSHFPS
In this section the coexistence of two different function-based synchronization types is
proved, i.e., FSHFPS and IFSHFPS are proved to coexist between a three-dimensional
master system and a four-dimensional slave system.

The error system (9) between the master system (5) and the slave system (6) can be
derived as follows:

ė1(t) =
4∑

j=1

α̇j(t)yj(t) +
4∑

j=1

αj(t)ẏj(t) – ẋ1(t),

Dq2
t e2(t) = Dq2

t y2(t) – Dq2
t

[ 3∑
j=1

βj(t)xj(t)

]
,

ė3(t) =
4∑

j=1

γ̇j(t)yj(t) +
4∑

j=1

γj(t)ẏj(t) – ẋ3(t),

Dq4
t e4(t) = Dq4

t y4(t) – Dq4
t

[ 3∑
j=1

θj(t)xj(t)

]
.

(10)



Ouannas et al. Advances in Difference Equations  (2018) 2018:309 Page 5 of 12

Let us suppose that the controllers ui (i = 1, 2, 3, 4) can be designed as follows:

u1 = –
4∑

j=1

b1jyj(t) – g1
(
Y (t)

)
+ J1–q1 (v1),

u2 = v2,

u3 = –
4∑

j=1

b3jyj(t) – g3
(
Y (t)

)
+ J1–q3 (v3),

u4 = v4,

(11)

where vi (1 ≤ i ≤ 4) are new controllers to be determined. By substituting Eqs. (11) into
Eqs. (6), the slave system can be written as follows:

Dqi
t yi(t) = J1–qi (vi), i = 1, 3, (12)

and

Dqi
t yi(t) =

4∑
j=1

bijyj(t) + gi
(
Y (t)

)
+ vi, i = 2, 4. (13)

By applying the Caputo fractional derivative of order 1 – qi (i = 1, 3) to both the left and
the right sides of Eq. (12), the following result is obtained:

ẏi(t) = D1–qi
t

(
Dqi

t yi(t)
)

= D1–qi
t J1–qi (vi) = vi, i = 1, 3.

Note that 1 – qi satisfies 1 – qi ∈ [0, 1]. According to Lemma 1 the above statement holds.
Furthermore, the error system (10) can be written as

ė1(t) = –|b11|e1(t) + α1(t)v1 + α3(t)v3 + R1,

Dq2
t e2(t) = –|b22|e2(t) + v2 + R2,

ė3(t) = –|b33|e3(t) + γ1(t)v1 + γ3(t)v3 + R3,

Dq4
t e4(t) = –|b44|e4(t) + v4 + R4,

(14)

where

R1 = |b11|e1(t) +
4∑

j=1

α̇j(t)yj(t) + α2(t)ẏ2(t) + α4(t)ẏ4(t) – ẋ1(t),

R2 = |b22|e2(t) +
4∑

j=1

b2jyj(t) + g2
(
Y (t)

)
– Dq2

t

[ 3∑
j=1

βj(t)xj(t)

]
,

R3 = |b33|e3(t) +
4∑

j=1

γ̇j(t)yj(t) + γ2(t)ẏ2(t) + γ4(t)ẏ4(t) – ẋ3(t),

R4 = |b44|e4(t) +
4∑

j=1

b4jyj(t) + g4
(
Y (t)

)
– Dq4

t

[ 3∑
j=1

θj(t)xj(t)

]
.
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The error system (14) can be written in the compact form as

ėI(t) = BIe(t) + M × VI + RI (15)

and

Dq
t eII(t) = BIIe(t) + VII + RII , (16)

where

ėI(t) =
(
ė1(t), ė3(t)

)T , Dq
t eII(t) =

(
Dq2

t e2(t), Dq4
t e4(t)

)T ,

BI =

(
–|b11| 0

0 –|b33|

)
, BII =

(
–|b22| 0

0 –|b44|

)
, M =

(
α1(t) α3(t)
γ1(t) γ3(t)

)
,

RI = (R1, R3)T , RII = (R2, R4)T , VI = (v1, v3)T and VII = (v2, v4)T .

Now the following theorem can be proved.

Theorem Full-state hybrid function projective synchronization (FSHFPS) and inverse
full-state hybrid function projective synchronization (IFSHFPS) coexist between the mas-
ter system (5) and the slave system (6), provided that the control signals VI and VII in the
error system (15)–(16) are selected as

VI = –M–1 × RI , (17)

VII = –RII , (18)

where M =
( α1(t) α3(t)

γ1(t) γ3(t)
)

is assumed to be an invertible matrix.

Proof By applying the control law (17) to Eq. (15), it follows that the resulting error dy-
namics is described by

ėI(t) = BIe(t). (19)

Since all the eigenvalues of BI have negative real part, it can be readily concluded
that the integer-order linear continuous-time systems (19) is asymptotically stable, i.e.,
limt→+∞ e1(t) = limt→+∞ e3(t) = 0. Successively, by substituting the control law (18) into
Eq. (16), it follows that

Dq
t e(t) = BIIe(t). (20)

By computing the roots of the equation det(diag(λMq2 ,λMq4 ) – BII) = 0, the obtained results
are λi = |bii|

1
Mqi (cos π

Mqi
+ sin π

Mqi
), where M is the least common multiple of the denomina-

tors of q2 and q4 (i = 2, 4). By computing arg(λi), it can be readily shown that | arg(λi)| > π
2M ,

i = 2, 4. According to Lemma 2, the fractional-order system (20) is asymptotically stable,
indicating that limt→+∞ e2(t) = limt→+∞ e4(t) = 0. Since the two error systems (19) and (20)
are asymptotically stable, it can be concluded that FSHFPS and IFSHFPS coexist between
the master system (5) and the slave system (6). �
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Figure 1 Chaotic attractors of the fractional-order unified system: (a) plot in the (x1, x2, x3)-space; (b) plot in
the (x1, x2)-plane; (c) plot in the (x1, x3)-plane; (d) plot in the (x2, x3)-plane

5 Numerical example
The aim of this section is to show the effectiveness of the conceived method. The selected
master system is the incommensurate chaotic fractional-order unified system, whereas
the slave system is the incommensurate hyperchaotic fractional-order Lorenz system. In
particular, the considered master system is defined as

⎧⎪⎪⎨
⎪⎪⎩

Dp1
t x1 = (25r + 10)(x2 – x1),

Dp2
t x2 = (28 – 35r)x1 + (29r – 1)x2 + x1x3,

Dp3
t x3 = –(r+8)

3 x3 + x1x2.

(21)

System (21) exhibits chaotic behavior when (p1, p2, p3) = (0.85, 0.9, 0.95) and r = 1 [16].
The chaotic attractors of the incommensurate fractional-order unified system are shown
in Fig. 1.

The slave system is the fractional-order Lorenz system described by

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Dq1
t y1 = a(y2 – y1) + y4 + u1,

Dq2
t y2 = cy1 – y2 – y1y3 + u2,

Dq3
t y3 = –by3 + y1y2 + u3,

Dq4
t y4 = dy4 + y2y3 + u4,

(22)

where U = (u1, u2, u3, u4)T is the vector controller. This system exhibits hyperchaotic
behavior when (u1, u2, u3, u4) = (0, 0, 0, 0), (q1, q2, q3, q4) = (0.94, 0.96, 0.97, 0.99) and (a, b,
c, d) = (10, 8

3 , 28, –1) [17]. Some plots of the hyperchaotic Lorenz attractor are shown in
Fig. 2.
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Figure 2 Hyperchaotic attractors of the fractional-order Lorenz system: (a) plot in the (y1, y2, y3)-space;
(b) plot in the (y1, y2, y4)-space; (c) plot in the (y1, y3, y4)-space; (d) plot in the (y2, y3, y4)-space

By putting system (22) in the form (6), we have

B = (bij) =

⎛
⎜⎜⎜⎝

–10 10 0 1
28 –1 0 0
0 0 –8/3 0
0 0 0 –1

⎞
⎟⎟⎟⎠ , (gi)1≤i≤4 =

⎛
⎜⎜⎜⎝

0
–y1y3

y1y2

y2y3

⎞
⎟⎟⎟⎠ .

According to the conceived approach, FSHFPS and IFSHFPS coexist between the master
system (21) and the slave system (22) if the following synchronization errors:

e1 =
4∑

j=1

αj(t)yj – x1,

e2 = y2 –
3∑

j=1

βj(t)xj,

e3 =
4∑

j=1

γj(t)yj – x3,

e4 = y4 –
3∑

j=1

θj(t)xj,

(23)

asymptotically approach zero, where the functions (αj(t))1≤i≤4, (βj(t))1≤i≤3, (γj(t))1≤i≤4 and
(θj(t))1≤i≤3 have been selected as

α1(t) = t2 + 1, α2(t) = t, α3(t) = 0, α4(t) = –3,

β1(t) = 0, β2(t) = 2t, β3(t) = 0,
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γ1(t) = 0, γ2(t) = t, γ3(t) = exp(t), γ4(t) = 0,

θ1(t) = t2 + 1, θ2(t) = 0, θ3(t) = t.

By applying the theorem illustrated in the previous section, we have

BI =

(
–10 0

0 – 8
3

)
, BII =

(
–1 0
0 –1

)
,

M =

(
t2 + 1 0

0 exp(t)

)
, M–1 =

(
1

t2+1 0
0 exp(–t)

)
.

As a consequence, the controllers ui (1 ≤ i ≤ 4) in (22) can be written as

u1 = –a(y2 – y1) – y4 + J0.06
[

–1
t2 + 1

(
10e1(t) + 2ty1 + y2 + tẏ2 – 3ẏ4 – ẋ1

)]
,

u2 = –e2 – cy1 + y2 + y1y3 + 2D0.96[tx2],

u3 = by3 – y1y2 + J0.03
[

– exp(–t)
(

8
3

e3 + y2 + exp(t)y3 + tẏ2 – ẋ3

)]
,

u4 = –e4 – dy4 – y2y3 + D0.99[(t2 + 1
)
x1 + tx3

]
,

(24)

indicating that the error sub-system (15) can be written in the form

ė1(t) = –10e1(t),

ė3(t) = –
8
3

e3(t),
(25)

whereas the error sub-system (16) can be written as

D0.96
t e2(t) = –e2(t),

D0.99
t e4(t) = –e4(t).

(26)

Numerical simulations have been carried out for solving systems (25) and (26). In partic-
ular, the fourth-order Runge-Kutta integration method has been applied to the integer-
order system (25), whereas the fractional Euler integration method has been used for
solving the incommensurate fractional-order system (26). The initial states of the mas-
ter system and the slave system are (x1(0), x2(0), x3(0)) = (–1, 1, 10) and (y1(0), y2(0), y3(0),
y4(0)) = (2, –2, 1, –1), respectively. The initial states of the error system (25)–(26) are
(e1(0), e2(0), e3(0), e4(0)) = (1, –2, –10, –1). Figures 3 and 4 display the synchronization er-
rors between the master system (21) and the slave system (22), indicating that the coex-
istence of full-state hybrid function projective synchronization (FSHFPS) and inverse full-
state hybrid function projective synchronization (IFSHFPS) is effectively achieved.

6 Conclusion and future work
When analyzing the synchronization of fractional-order chaotic systems, an interest-
ing phenomenon that may occur is the coexistence of some synchronization types.
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Figure 3 Time evolution of the errors e1(t) and e3(t)

Figure 4 Time evolution of the errors e2(t) and e4(t)

Based on these considerations, this paper has presented new results related to the co-
existence of function-based hybrid synchronization types between non-identical incom-
mensurate fractional-order systems characterized by different dimensions and orders.
Specifically, the manuscript has proposed a new theorem, which ensures the coexis-
tence of FSHFPS and IFSHFPS between a three-dimensional master system and a four-
dimensional slave system. Note that the approach developed herein enables to prove the
coexistence of FSHFPS and IFSHFPS in several cases. Specifically, the approach can be
applied to: (i) wide classes of chaotic (hyperchaotic) fractional-order master-slave sys-
tems; (ii) non-identical incommensurate fractional-order systems with different dimen-
sions; (iii) schemes wherein the scaling factor of the linear combination can be any arbi-
trary differentiable function. A numerical example, describing the coexistence of FSHFPS
and IFSHFPS between the incommensurate chaotic fractional-order unified system and
the incommensurate hyperchaotic fractional-order Lorenz system, has clearly highlighted
the effectiveness of the approach proposed herein.

Finally, we would make some comments on future developments of the present work.
In particular, we are conscious that circuit implementations of synchronization schemes
are an important issue. For this reason, we are preparing a forthcoming paper where all
the details related to the circuit implementation of the conceived synchronization scheme
will be provided. Further developments and extended analysis related to the application
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of the new hybrid synchronization to secure communication systems and new complex
fractional schemes of synchronization will be investigated in a future work.
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