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Abstract
Elliptic interface problems have many important scientific and engineering
applications. Interface problems are encountered when the computational domain
involves multi-materials with different conductivities, densities, or permeability. The
solution or its gradient often has a jump across the interface due to discontinuous
coefficients or singular sources. In this paper, optimal convergence of an augmented
method is derived for one-dimensional interface problems. The dependence of the
discontinuous coefficient in the error analysis is also considered. Numerical examples
are presented to confirm the theoretical analysis and show that the estimate is sharp.

MSC: 65N15; 65N30; 35J60

Keywords: Interface problem; Immersed finite element; Augmented variable

1 Introduction
In scientific computation, we often encounter interface problems when multi-materials
with different conductivities, densities, or permeability are involved. The solution or its
gradient of the governing partial differential equation is often discontinuous due to dis-
continuous coefficients or singular sources across the interface. Traditional numerical
methods can not achieve optimal convergence unless the used mesh fits the interface. The
methods using fitted meshes are often called fitted mesh methods. There are many fitted
mesh methods in the literature (see, for example, [2, 3, 10]). However, the fitted mesh is
dependent on the shape and the location of the interface. It may be difficult and time con-
suming to generate a fitted mesh for a complicated interface. The difficulty becomes even
severer for three-dimensional problems. Another disadvantage of the fitted mesh is en-
countered when solving moving interface problems. Since the interface is moving, a new
fitted mesh has to be generated at each time step and an interpolation is required to trans-
fer the numerical solutions solved on different meshes. From this point of view, it would
be preferable to use an unfitted mesh in which the interface can be arbitrarily located with
respect to the fixed background mesh. Note that many other methods [4, 18, 20, 21] can be
used with fitted meshes when the problem is viewed as a problem with discontinuous co-
efficients. For unfitted mesh methods, the difficulty is that the interface can pass through
the interior of elements of the mesh. Thus, special treatment needs to be done on these
elements.
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There are many unfitted mesh methods in the literature, for instance, the extended fi-
nite element method [5], the unfitted Nitsche’s finite element method [6], the immersed
interface method [9, 13], the immersed finite element/volume method [1, 7, 12, 16, 17, 19]
and the augmented finite difference/element method [8, 11, 14, 15]. The extended finite
element method (XFEM) enriches standard finite element space by adding extra func-
tions near the interface to treat the jumps of the exact solution. The degrees of freedom
of the XFEM often change with moving interfaces. In the unfitted Nitsche’s finite element
method, the function in finite element spaces is discontinuous across the interface and the
interface conditions are absorbed in the bilinear form. A penalty is also added into the bi-
linear form to deal with the discontinuous of the finite element functions. The immersed
finite element methods (IFEMs) are a class of unfitted mesh methods that modify the basis
function on interface elements according to the interface conditions to capture the jumps
of the exact solution. The bilinear form and the degrees of freedom are the same as if there
was no interface. If the coefficient is a constant without jumps, then the stiffness matrix is
the same as that obtained by traditional finite element for the problem without interfaces.
And only the right-hand side needs to be modified according to the interface conditions.
The augmented method is developed based on the above observations. In the augmented
method, an augmented variable is introduced along the interface so that the original in-
terface problem can be transferred to a new interface problem without discontinuous co-
efficients. Thus, the efficient method can be used by only modifying the right-hand side.
The augmented variable should be chosen such that the original interface conditions are
satisfied. Extensive numerical examples in [8] show that the augmented method achieves
optimal convergence in the L2, H1 and L∞ norms. In this work, we derive the optimal
error estimates for the augmented method for one-dimensional interface problems. The
dependence of the discontinuous coefficient is included. Numerical results show that the
estimate is sharp.

The rest of the paper is organized as follows. In Sect. 2, we describe the model prob-
lem and some preliminaries. We choose the augmented variable and rewrite the inter-
face problem. In Sect. 3, we analyze the method for interface problems only with singular
sources where the augmented variable is assumed to be given. The augmented method
and the error estimates are provided in Sect. 4. Finally, some numerical examples are pre-
sented in Sect. 5 to confirm the theoretical analysis.

2 Preliminaries
Let � = (a, b) be a finite interval. Assume that the domain � is separated into two sub-
domains �1 = (a,α) and �2 = (α, b) by an interface point α ∈ �. Consider the following
one-dimensional second-order interface problem:

⎧
⎨

⎩

–(β(x)̃u′(x))′ = f (x), x ∈ �1 ∪ �2,

ũ(a) = ũ(b) = 0,
(2.1)

where the diffusion coefficient β(x) is assumed to have a finite jump across the interface α.
We also assume that the coefficient β(x) > 0 is a piecewise constant, i.e.,

β(x) =

⎧
⎨

⎩

β1, x ∈ �1,

β2, x ∈ �2.
(2.2)
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At the interface α, the solution is assumed to satisfy the interface conditions

�̃u�α = ũ
(
α+)

– ũ
(
α–)

= w,
�
βũ′�

α
= β2ũ′(α+)

– β1(α)̃u′(α–)
= q, (2.3)

where the notation �v�α = v(α+) – v(α–) denotes the jump of the quantity v across α. We
assume that f (x) ∈ C0(a,α)∩C0(α, b). Thus, we have the exact solution ũ(x) ∈ C2(a,α) and
ũ(x) ∈ C2(α, b).

Define u(x) = β(x)̃u(x). Then the original interface problem (2.1)–(2.3) can be written as

–u′′ = f in �1 ∪ �2,
�

u
β

�

α

= w,
�

u′�
α

= q,

u(a) = u(b) = 0.

(2.4)

If we choose g = �u�α as an augmented variable, then we need to seek the solution u of the
following problem:

–u′′ = f in �1 ∪ �2,

�u�α = g,
�

u′�
α

= q,

u(a) = u(b) = 0.

(2.5)

The augmented variable g should be chosen such that the augmented equation

�
u
β

�

α

= w (2.6)

is satisfied.
The augmented method is to discretize (2.5) and (2.6), respectively. In the next section,

we present the method to discretize (2.5) and give corresponding error analysis. The dis-
cretization of (2.6) is discussed in Sect. 4.

3 The method for interface problems only with singular sources
In this section, we discuss the method for the interface problem without discontinuous
coefficients (2.5). Note that the jump conditions in the problem can be written using sin-
gular sources (see [13]). In this section, we assume that the augmented variable g is known.
The weak formulation of the interface problem (2.5) is: find u ∈ H1(a,α) ∪ (α, b) such that

a(u, v) = (f , v) – qv(α) ∀v ∈ H1
0 (a, b),

�u�α = g,

u(a) = u(b) = 0,

(3.1)

where

a(u, v) =
∫ α

a
u′(x)v′(x) dx +

∫ b

α

u′(x)v′(x) dx, (f , v) =
∫ b

a
f (x)v(x) dx.
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Let a = x0 < x1 < · · · < xk < xk+1 < · · · < xN = b be a partition of [a, b] independent of
the interface point α. Assume that there exists a number k such that α ∈ [xk , xk+1). We
call the element [xk , xk+1] the interface element. The rest of the elements [xi, xi+1], i �= k are
called non-interface elements. Let h := max0≤i≤N–1(xi+1 – xi). We assume that the partition
is quasi-uniform, i.e., there exists a generic constant C independent of h such that h ≤
C min0≤i≤N–1(xi+1 – xi).

Let V L
h be the usual conforming linear finite element space which is defined as

V L
h =

{
vh ∈ C0(a, b) | vh(x) is linear on [xk , xk+1]

for 0 ≤ k ≤ N – 1, vh(a) = vh(b) = 0
}

. (3.2)

We also define the standard nodal interpolation operator IL
h by

IL
h u ∈ V L

h , IL
h u(xi) = u(xi), i = 0, 1, . . . , N . (3.3)

Define

χ (x) =

⎧
⎨

⎩

1, x > α,

0, x ≤ α,
and ue(x) = (x – α)q + g. (3.4)

Thus, we can define

uJ
h(x) = û – IL

h û, where û(x) = χ (x)ue(x). (3.5)

By the definition, we conclude that

û(x) =

⎧
⎨

⎩

(x – α)q + g, x > α,

0, x ≤ α,
and �̂u�α = g,

�
(̂u)′

�
α

= q.

It is easy to verify that

uJ
h(x) = 0, x ∈ [a, xk] ∪ [xk+1, b], (3.6)

and

uJ
h(x) �= 0, x ∈ (xk , xk+1),

�
uJ

h
�

α
= g,

�(
uJ

h
)′�

α
= q. (3.7)

The immersed finite element (IFE) space V J
h is defined by

V J
h =

{
vh ∈ L2(a, b) | vh = vL

h + uJ
h, vL

h ∈ V L
h
}

. (3.8)

The method for the interface problem (2.5) is: find uh ∈ V J
h such that

uh = uL
h + uJ

h,

a
(
uL

h, vh
)

= (f , vh) – qvh(α) – a
(
uJ

h, vh
)
, ∀vh ∈ vL

h.
(3.9)

The following lemma gives the bounds of interpolation error in the L∞ norm.
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Lemma 3.1 There exists a generic constant C > 0 independent of h, α and β such that

∥
∥IL

h u + uJ
h – u

∥
∥

L∞(a,b) ≤ Ch2∥∥u′′∥∥
L∞(�1∪�2). (3.10)

Proof On non-interface elements [xi, xi+1], i �= k, using (3.6), we have

∥
∥IL

h u + uJ
h – u

∥
∥

L∞(xi ,xi+1) =
∥
∥IL

h u – u
∥
∥

L∞(xi ,xi+1) ≤ C
∥
∥u′′∥∥

L∞(xi ,xi+1). (3.11)

On the interface element [xk , xk+1], we have

IL
h u + uJ

h – u = IL
h u + χ (x)ue(x) – IL

h
(
χ (x)ue(x)

)
– u

= IL
h
(
u – χ (x)ue(x)

)
–

(
u – χ (x)ue(x)

)
. (3.12)

Define θ := u – χ (x)ue(x), then we have �θ �α = 0 and �θ ′�α = 0. Thus, we conclude that
θ ∈ W 2,∞(a, b). Using the standard interpolation error estimate, we obtain

∥
∥IL

h θ – θ
∥
∥

L∞(a,b) ≤ Ch2|θ |W 2,∞(a,b) ≤ Ch2∥∥u′′∥∥
L∞(�1∪�2), (3.13)

where we have used (ue(x))′′ = 0 in the last inequality. Combining (3.12)–(3.13), we get the
desired result. �

Theorem 3.2 Assume that the augmented variable g is given exactly. We have the error
estimate

‖uh – u‖L∞(a,b) ≤ Ch2∥∥u′′∥∥
L∞(�1∪�2), (3.14)

where the constant C > 0 is independent of h, α and β .

Proof For any vh ∈ V L
h , from (3.1) and (3.9), we have

a
(
u – uL

h – uJ
h, vh

)
= 0. (3.15)

Thus, we get

a
(
uL

h – IL
h u, vh

)
= a

(
u – IL

h u – uJ
h, vh

)

=
N–1∑

i=0

∫ xi+1

xi

(
u – IL

h u – uJ
h
)′(vh)′ dx. (3.16)

Since vh is piecewise linear, using (3.6), we have, for i �= k,

∫ xi+1

xi

(
u – IL

h u – uJ
h
)′(vh)′ dx = (vh)′

∫ xi+1

xi

(
u – IL

h u
)′ dx

= (vh)′
(
u – IL

h u
)∣
∣xi+1
xi

= 0. (3.17)
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On the interface element (xk , xk+1), we have

∫ xk+1

xk

(
u – IL

h u – uJ
h
)′(vh)′ dx

= (vh)′
(∫ α

xk

(
u – IL

h u – uJ
h
)′ dx +

∫ xk+1

α

(
u – IL

h u – uJ
h
)′ dx

)

= (vh)′
((

u – IL
h u – uJ

h
)∣
∣α
xk

+
(
u – IL

h u – uJ
h
)∣
∣xk+1
α

)

= (vh)′
(
–�u�α +

�
IL

h u
�

α
+

�
uJ

h
�

α

)
= 0. (3.18)

Then we have

a
(
uL

h – IL
h u, vh

)
= 0. (3.19)

Taking vh = uL
h – IL

h u, we conclude that

a
(
uL

h – IL
h u, uL

h – IL
h u

)
= 0, (3.20)

which implies that

uL
h = IL

h u. (3.21)

Thus,

uh – u = uL
h + uJ

h – u = IL
h u + uJ

h – u, (3.22)

which, together with Lemma 3.1, completes the proof. �

Next, we consider that the augmented variable is given with errors, i.e., G = g + E(G).
Then, by the method (3.9), we need to replace g by G in (3.4). Now the function uJ

h becomes
UJ

h and the numerical solution of the method is

Uh = UL
h + UJ

h. (3.23)

Theorem 3.3 Assuming the augmented variable is given with the error E(G) = G – g , then
there exists a generic constant C > 0 independent of h, α and β such that

‖Uh – u‖L∞(a,b) ≤ Ch2∥∥u′′∥∥
L∞(�1∪�2) + 2

∣
∣E(G)

∣
∣. (3.24)

Proof Obviously, we have

uJ
h – UJ

h = –χ (x)
(
E(G)

)
+ IL

h
(
χ (x)E(G)

)
(3.25)

and

a
(
uL

h – UL
h , vh

)
= –a

(
uJ

h – UJ
h, vh

)
. (3.26)
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From (3.25), we get

(
uJ

h – UJ
h
)′ = E(G)/(xk+1 – xk), x ∈ [xk ,α) ∪ (α, xk+1], (3.27)

and
∥
∥uJ

h – UJ
h
∥
∥

L∞(a,b) = max
{∣
∣
(
uJ

h – UJ
h
)(

α–)∣
∣,

∣
∣
(
uJ

h – UJ
h
)(

α+)∣
∣
}

≤ max

{∣
∣
∣
∣
(xk+1 – α)E(G)

xk+1 – xk

∣
∣
∣
∣,

∣
∣
∣
∣
(α – xk)E(G)

xk+1 – xk

∣
∣
∣
∣

}

≤ ∣
∣E(G)

∣
∣. (3.28)

Thus, (3.26) becomes

a
(
uL

h – UL
h , vh

)
=

–E(G)
xk+1 – xk

∫ xk+1

xk

(vh)′ dx =
–E(G)(vh(xx+1) – vh(xk))

xk+1 – xk

= –
∫ b

a

E(G)
xk+1 – xk

δ(x – xk+1)vh(x) dx

+
∫ b

a

E(G)
xk+1 – xk

δ(x – xk)vh(x) dx, (3.29)

which leads to

–
(
uL

h – UL
h
)′′ = –

E(G)
xk+1 – xk

δ(x – xk+1) +
E(G)

xk+1 – xk
δ(x – xk),

(
uL

h – UL
h
)
(a) =

(
uL

h – UL
h
)
(b) = 0.

(3.30)

For the problem

–u′′ = δ(x – xi), x ∈ (a, b)

u(a) = u(b) = 0,
(3.31)

the solution is the well-known Green’s function G(x; xi), which is defined as

G(x; xi) =

⎧
⎨

⎩

–(xi – b)(x – a)/(b – a), a ≤ x ≤ xi,

–(x – b)(xi – a)/(b – a), xi ≤ x ≤ b.
(3.32)

Hence, we have

uL
h – UL

h =
E(G)

xk+1 – xk

(
–G(x; xk+1) + G(x; xk)

)
. (3.33)

Obviously,

∥
∥G(x; xk+1) – G(x; xk)

∥
∥

L∞(a,b)

= max
{
G(xk ; xk+1) – G(xk ; xk),G(xk+1; xk+1) – G(xk+1; xk)

}

≤ xk+1 – xk . (3.34)
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Thus, we obtain

∥
∥uL

h – UL
h
∥
∥

L∞(a,b) ≤ ∣
∣E(G)

∣
∣.

Using (3.28), (3.34) and Theorem (3.2), we get

‖Uh – u‖L∞(a,b) ≤ ‖uh – u‖L∞(a,b) + ‖Uh – uh‖L∞(a,b)

≤ ‖uh – u‖L∞(a,b) +
∥
∥UL

h – uL
h
∥
∥

L∞(a,b) +
∥
∥UJ

h – uJ
h
∥
∥

L∞(a,b)

≤ Ch2∥∥u′′∥∥
L∞(�1∪�2) + 2

∣
∣E(G)

∣
∣, (3.35)

which completes the proof. �

4 Augmented method for discontinuous coefficients and error estimates
In continuous cases, the augmented variable g needs to be chosen such that the interface
condition (2.6) is satisfied. In the augmented method, the numerical augmented variable
G should be chosen such that

�
Uh

β

�

α

=
Uh(α+)

β2
–

Uh(α–)
β1

= w, (4.1)

where Uh (see (3.23)) is the solution of method for (3.9) with g replaced by G. Note that
(4.1) is a discretization of the augmented equation (2.6).

The matrix-vector form of (3.9) and (4.1) can be written as (see [8])

[
A B
E H

][
Uh

G

]

=

[
F1

F2

]

. (4.2)

Eliminating Uh from (4.2), we get the Schur complement system for G

(
H – EA–1B

)
G = F2 – EA–1F1. (4.3)

To simplify the notation, we denote the Schur complement system by

SG = F , where S = H – EA–1B, F = F2 – EA–1F1.

For one-dimensional problems, the Schur complement S is a number. Note that the ma-
trices such as A, B, E, H are not formed explicitly in implementations and are only used
for theoretical analysis.

Define the truncation error of the augmented equation by

T := S
(
E(G)

)
= S(G – g) = SG – Sg. (4.4)

Then we have the following estimation of the truncation error.
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Lemma 4.1 We have

|T | = S
(
E(G)

)
= S(G – g) ≤ C

(
β1 + β2

β1β2

)

h2∥∥u′′∥∥
L∞(�1∪�2), (4.5)

where the constant C > 0 is independent of h, α and β .

Proof First, we have

T = S
(
E(G)

)
= SG – Sg =

(
uh(α+)

β2
–

uh(α–)
β1

)

– w

=
(

uh(α+)
β2

–
uh(α–)

β1

)

–
(

u(α+)
β2

–
u(α–)
β1

)

=
(

uh(α+)
β2

–
u(α+)
β2

)

–
(

uh(α–)
β1

–
u(α–)
β1

)

. (4.6)

Then, using Theorem 3.2, we conclude

|T | =
∣
∣S

(
E(G)

)∣
∣ =

∣
∣S(G – g)

∣
∣ ≤ C

(
β1 + β2

β1β2

)

h2∥∥u′′∥∥
L∞(�1∪�2), (4.7)

which completes the proof of this lemma. �

Given a guess augmented variable G0, the residual of the Schur complement is defined
as

Res
(
G0) = F – SG0 (matrix vector form) or

Res
(
G0) = w –

�
uG0

h
β

�

α

(function form),
(4.8)

where uG0
h is the solution of the method (3.9) with the augmented variable given as g = G0.

Thus, we have

S = Res(0) – Res(1)

Next, we show that the Schur complement satisfying |S| is independent of the mesh size
h and |S| �= 0.

Lemma 4.2 We have

S =
β1k1 + β2k2

β1β2
, (4.9)

where k1 = (b – α)/(b – a) > 0, k2 = (α – a)/(b – a). It is obvious that k1 > 0, k2 > 0 and
k1 + k2 = 1.

Proof Let u0
h = uL,0

h + uJ ,0
h be the solution of the method (3.9) with the augmented vari-

able given as g = 0. And let u1
h = uL,1

h + uJ ,1
h be the solution of the method (3.9) with the
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augmented variable given as g = 1. From (4.8), we have

S = Res(0) – Res(1) =
(

w –
�

u0
h

β

�

α

)

–
(

w –
�

u1
h

β

�

α

)

=
�

u1
h – u0

h
β

�

α

=
�

(uL,1
h – uL,0

h ) + (uJ ,1
h – uJ ,0

h )
β

�

α

. (4.10)

From (3.4) and (3.5), we find

uJ ,1
h – uJ ,0

h = χ (x)ue(x) – IL
h
(
χ (x)ue(x)

)
with ue(x) = 1. (4.11)

In other words, the function uJ ,1
h – uJ ,0

h is obtained by (3.4) and (3.5) by setting q = 0 and
g = 1. From (3.9), we get

ah
(
uL,1

h – uL,0
h , vh

)
= –ah

(
uJ ,1

h – uJ ,0
h , vh

)
, ∀vh ∈ V L

h . (4.12)

Combining (4.11) and (4.12), we conclude that u1
h – u0

h is the solution of the method for
the interface problem (2.5) with f = 0, q = 0 and g = 1, i.e.,

–ψ(x)′′ = 0, x ∈ (a,α) ∪ (α, b),

�ψ �α = 1,
�
ψ ′�

α
= 0,

ψ(a) = ψ(b) = 0.

(4.13)

It is easy to check that the exact solution is

ψ(x) =

⎧
⎨

⎩

(a – x)/(b – a), x ∈ [a,α),

(b – x)/(b – a), x ∈ (α, b].
(4.14)

Using the result (3.21), which is proved in Theorem 3.2, we have

uL,1
h – uL,0

h = IL
h ψ . (4.15)

Using the fact �uJ ,1
h – uJ ,0

h �α = 1, �(uJ ,1
h – uJ ,0

h )′�α = 0 and ψ is piecewise linear, we conclude

u1
h – u0

h = ψ . (4.16)

Combining (4.10), (4.14) and (4.16), we have

S =
�

ψ

β

�

α

=
1

b – a

(
b – α

β2
+

α – a
β1

)

, (4.17)

which completes the proof of this lemma. �
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Theorem 4.3 Let G and Uh be the solution of the augmented method (3.9) and (4.1). There
exists a constant C > 0 independent of h, α and β such that

|G – g| ≤ C
1

min{k1, k2}h2∥∥u′′∥∥
L∞(�1∪�2), (4.18)

and

‖Uh – u‖L∞(a,b) ≤ C
1

min{k1, k2}h2∥∥u′′∥∥
L∞(�1∪�2), (4.19)

where k1 = (b – α)/(b – a) > 0, k2 = (α – a)/(b – a).

Proof Using Lemma 4.2 and Lemma 4.1, we have

∣
∣E(G)

∣
∣ = |G – g| =

∣
∣S–1T

∣
∣ ≤ C

β1 + β2

k1β1 + k2β2
h2∥∥u′′∥∥

L∞(�1∪�2). (4.20)

Note that k1 > 0, k2 > 0, k1 + k2 = 1 and β(x) > 0. If β2 ≥ β1, then we get

β1 + β2

k1β1 + k2β2
≤ 2β2

β2k2
=

2
k2

. (4.21)

If β1 > β2, then we have

β1 + β2

k1β1 + k2β2
≤ 2β1

β1k1
=

2
k1

. (4.22)

Thus,

∣
∣E(G)

∣
∣ ≤ C

1
min{k1, k2}h2∥∥u′′∥∥

L∞(�1∪�2), (4.23)

which, together with Theorem 3.3 completes the proof of this theorem. �

Remark 4.4 The numerical solution of the original interface problem (2.1)–(2.3) is Ũh =
Uh/β . We have

‖Ũh – ũ‖L∞(a,b) ≤ C
1

min{β1,β2}
1

min{k1, k2}h2∥∥u′′∥∥
L∞(�1∪�2)

≤ C
1

min{β1,β2}
1

min{k1, k2}h2‖f ‖L∞(�1∪�2), (4.24)

where we have used the fact –u′′ = f in the last inequality.

5 Numerical examples
In this section, we present numerical examples to confirm our theoretical results. In the
following examples, we consider an unit interval [0, 1] with uniform partitions. The inter-
face point is given as α = π/10.

Let eh = ũ – Ũh. The method achieves convergence order r if we can show ‖eh‖L∞ ≈ Chr .
The convergence order r is the slope of the line y = rx + log C with y = log‖eh‖L∞ and
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Figure 1 The exact solution of Example 1

x = log h. For the interface problem, the constant C depends on the relative location of the
interface and the mesh. Thus, we compute the slope of least squares fitting which can be
regarded as the average convergence order.

Example 1 The analytic solution ũ(x) is given as

ũ(x) =

⎧
⎨

⎩

sin(2πx), 0 ≤ x < α,

ex, α < x ≤ 1.

Thus, the corresponding jump conditions are

�̃u�α = eα – sin(2πα),
�
βũ′�

α
= β2eα – 2πβ1 cos(2πα).

We consider β1 = 1, β2 = 5 in this example. The exact solution is shown in Fig. 1. Numerical
results are reported in Fig. 2. We can see that the augmented method achieves optimal
convergence.

Example 2 The analytic solution ũ(x) is given as

ũ(x) =

⎧
⎨

⎩

sin(2πx)/β1, 0 ≤ x < α,

sin(2πx)/β2 – (1/β2 – 1/β1) sin(2πα), α < x ≤ 1.

Thus, we have

�̃u�α = 0,
�
βũ′�

α
= 0,
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Figure 2 Numerical results obtained by the augmented method for Example 1 with β1 = 1 and β2 = 5

Figure 3 The exact solution of Example 2

which are homogeneous jump conditions. We consider β1 = 1, β2 = 20 in this example.
The corresponding source function is

f (x) = 4π2 sin(2πx), 0 < x < 1.

The exact solution is shown in Fig. 3. Similar results are reported in Fig. 4.
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Figure 4 Numerical results obtained by the augmented method for Example 2 with β1 = 1 and β2 = 20

Figure 5 Numerical results obtained by the augmented method for Example 2 with β1 = 1, N = 512

Next, we consider the dependence of the discontinuous coefficient β . We solve the
problem with β1 = 1 and varying β2. Errors are obtained by the augmented method with
N = 512. Note that ‖f ‖L∞(�1∪�2) = 4π2 is independent of β in this example. If β2 ≤ 1, then
the error should be O(β–1

2 ) according to the estimate (4.24). If β2 ≥ 1, then the error should
be O(1). Numerical results reported in Fig. 5 confirm the theoretical results. The estimate
(4.24) is sharp.
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6 Conclusion
This article gives rigorous error estimates for the augmented method for one-dimensional
interface problems. The influence of the discontinuous coefficient and the location of the
interface is considered in the error estimation. Numerical results show that the estimate is
sharp. In future work, we will extend the results to high-dimensional interface problems.
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