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Abstract
The global stability for a stage structured predator–prey model with mutual
interference is investigated. By using the method of Lyapunov functionals, it is shown
that the system has a unique interior equilibrium, which is always globally
asymptotically stable without any additional assumptions. The results indicate that
mutual interference helps the endangered predators survive under any maturation
time delay of preys. This answers two open problems presented in (Discrete Contin.
Dyn. Syst., Ser. B 19(1):173–187, 2014).
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1 Introduction
To obtain useful predictions, mathematical models should be based on detailed observa-
tion data. One good example was the study by Hassell and Varely [9], who successfully
fitted the data in [3] with the following model:

lg10 a = lg10 Q – m lg10 p, (1.1)

where a is the area of discovery and p is the density of searching parasites in a generation,
Q indicates the level of efficiency of one parasite and m is the mutual interference con-
stant. The concept of mutual interference was first introduced by Hassell [8] to capture
the behavior between a host (a kind of bee) and parasite (a kind of butterfly). It is a mea-
sure of the degree of interference between parasites. Furthermore, mutual interference
was considered by Freedman [5, 6] to describe the phenomenon that predators have the
tendency to leave each other when they meet. Freedman [5] proposed a general Volterra
model with mutual interference m (0 < m ≤ 1) as follows:

x′(t) = xg(x) – ymp(x),

y′(t) = y
(
–s + cym–1p(x) – q(y)

)
,

(1.2)
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where g(0) > 0, g ′ ≤ 0, g(K) = 0 (for some K > 0), p(0) = 0, p′ > 0, q(0) = 0, q′ ≥ 0. The
author in [5] got the conditions for the existence of the interior equilibrium and analyzed
its stability. The special case of m = 1 and q(y) = 0 was studied in [4].

Based on the fact that some individual members of the population may go through sev-
eral stages in their whole life cycle [1], Barclay and Van den Driessche [2] exhibited two
distinct stages of the populations, immature and mature ones, with delay τ representing
the time from birth to maturity. The dynamics of stage structured predator–prey model
is investigated in several studies (see, e.g., [12, 15, 19]). Recently, a predator–prey model
with stage structure and mutual interference was proposed and investigated in [16]. The
model is given as follows:

x′
1(t) = r1x2(t) – dx1(t) – r1e–dτ x2(t – τ ),

x′
2(t) = r1e–dτ x2(t – τ ) – b1x2

2(t) – c1x2(t)ym(t),

y′(t) = y(t)
(
–r2 – b2y(t) + c2x2(t)ym–1(t)

)
,

(1.3)

where x1(t), x2(t), and y(t) denote the densities of immature prey, mature prey, and mature
predator, respectively; m with 0 < m < 1 is the mutual interference constant; τ is mature
period of prey; r1 is the birth rate of the mature prey; d and r2 represent the death of imma-
ture prey and mature predator, respectively; b1 and b2 are the intra-specific competition
among the mature prey and mature predator, respectively; c1 describes the capturing rate
of the mature predator; c2 is the conversion rate for the predator; e–dτ is the surviving rate
of each immaturity to reach maturity in prey species. Given the assumption from biology,
all of the coefficients presented in system (1.3) are positive constants.

Since the first equation of system (1.3) is uncoupled with the rest of the system, we in-
vestigate the global behavior for the subsystem of system (1.3) as follows:

x′
2(t) = r1e–dτ x2(t – τ ) – b1x2

2(t) – c1x2(t)ym(t),

y′(t) = y(t)
(
–r2 – b2y(t) + c2x2(t)ym–1(t)

)
.

(1.4)

From a biological point of view, it is reasonable to consider the following initial conditions
for system (1.4):

x2(θ ) = φ(θ ) > 0, y(0) > 0, –τ ≤ θ ≤ 0, (1.5)

where φ ∈ C{[–τ , 0],R+}, the space of continuous functions mapping [–τ , 0] into R+.
The following results are taken from [16].

Proposition 1.1 Solutions of system (1.4) with the initial conditions (1.5) are positive for
all t > 0.

Proposition 1.2 System (1.4) has two boundary equilibria E0(0, 0), E1( r1e–dτ

b1
, 0) and a

unique interior equilibrium E∗(x∗
2, y∗) (see Fig. 1), which satisfies

x2 =
r1e–dτ

b1
–

c1

b1
ym ≡ f (y),

x2 =
r2

c2
y(1–m) +

b2

c2
y(2–m) ≡ g(y).

(1.6)
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Figure 1 Existence of a unique interior equilibrium
E∗(x∗2 , y∗). Here we choose the parameters d = 0.2,
m = 0.5, r1 = 2.5, b1 = 1.8, c1 = 1, r2 = 1, b2 = 0.5,
c2 = 1.2, τ = 20 from [16]

It is easy to see that the solutions (x2(t), y(t)) of system (1.4) with the initial conditions
(1.5) exist for all t ≥ 0 and are unique.

By the analysis of the characteristic equations and the iterative schemes coupled with the
comparison principle, the dynamical properties of system (1.4) were established in [16].
That is, when (1 – m)2r2 > 2mr1, the interior equilibrium is locally asymptotically stable
and globally attractive when the following inequality holds:

mr1e–dτ (r2 + b2M) < r2
(
r1e–dτ – c1Mm)

, (1.7)

where M = ( c2r1e–dτ

b1r2
) 1

1–m .
However, numerical simulations suggest that the unique interior equilibrium E∗ of sys-

tem (1.4) is always globally stable when it exists. Hence the authors in [16] raise two worthy
problems: (i) Under some weaker conditions, or even without preconditions, whether sys-
tem (1.4) has a unique interior equilibrium, which is globally stable. (ii) In more general
situations, whether the mutual interference (0 < m < 1) can make the endangered species
become globally stable.

The object of this study is to show that the interior equilibrium of system (1.4) is al-
ways globally asymptotically stable as long as it exists and to give straightforward positive
answers to the questions above.

2 Main result
In this section, by constructing suitable Lyapunov functionals for delay differential equa-
tions system (1.4), we establish the global stability of the interior equilibrium when it exists
for any τ ≥ 0.

Lemma 1 For any positive constants w and m where 0 < m ≤ 1, the following two inequal-
ities hold:

(
1 – w1–m)(

1 – wm) ≥ 0, (2.1)
(
1 – w2–m)(

1 – wm) ≥ 0. (2.2)

Proof Let f1(w) = (1 – w1–m)(1 – wm) = 1 – wm – w1–m + w, then

f
′

1 (w) = –mwm–1 – (1 – m)w–m + 1 = –
m

w1–m –
1 – m

wm + 1.
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When 0 < w ≤ 1, we have f ′
1 (w) < 0. When w > 1, we have f ′

1 (w) > 0. Thus, it has

f1(w) ≥ f1(1) = 0,

that is to say, (1 – w1–m)(1 – wm) ≥ 0 holds for any positive constants w and 0 < m ≤ 1.
Similarly, let f2(w) = (1 – w2–m)(1 – wm) = 1 – wm – w2–m + w2, then

f
′

2 (w) = –mwm–1 – (2 – m)w1–m + 2w = m
(

w1–m –
1

w1–m

)
+ 2

(
w – w1–m)

.

When 0 < w ≤ 1, we have f ′
2 (w) < 0. When w > 1, we have f ′

2 (w) > 0. One also has

f2(w) ≥ f2(1) = 0.

It is easy to see that (1 – w2–m)(1 – wm) ≥ 0 holds for any positive constants w and
0 < m ≤ 1. �

Theorem 2.1 The interior equilibrium E∗(x∗
2, y∗) of system (1.4) is globally asymptotically

stable for any delay τ ≥ 0.

Proof Define the global Lyapunov functional for E∗,

U(t) = V1(t) + r1e–dτ x∗
2 · V+(t) +

c1

c2
· V2(t), (2.3)

where

V1(t) = x2 – x∗
2 – x∗

2 ln
x2

x∗
2

, (2.4)

V2(t) = y – y∗ –
∫ y

y∗

y∗m

σ m dσ , (2.5)

V+(t) =
∫ t

t–τ

{
x2(σ )

x∗
2

– 1 – ln
x2(σ )

x∗
2

}
dσ . (2.6)

Note that h(z) = z – 1 – ln z ≥ 0 for z > 0 and h(z) = 0 if and only if z = 1. So V1(t) =
x∗

2h( x2
x∗

2
) ≥ 0 due to x2

x∗
2

> 0 and V1(t) = 0 iff x2 = x∗
2. Similarly, V+(t) =

∫ t
t–τ

h( x2(σ )
x∗

2
) dσ ≥ 0

due to x2
x∗

2
> 0 and V+(t) = 0 iff x2 = x∗

2. Let g(y) = y – y∗ –
∫ y

y∗
y∗m

σm dσ . Then we have g(y∗) =

0, g ′(y) = 1 – ( y∗
y )

m ≥ 0 if y ≥ y∗, and g ′(y) < 0 if y < y∗. Besides, we have limy→0 g(y) =
limy→+∞ g(y) = +∞. So g(y) has minimum value at y = y∗ in [0, +∞). Hence for any y > 0,
V2(t) is nonnegative and V2(t) = 0 iff y = y∗.

The Lyapunov functional U(t) is nonnegative and defined with respect to the interior
equilibrium E∗(x∗

2, y∗), which is a global minimum. First, taking the derivative of V+ with
respect to time t, we get

dV+

dt
=

d
dt

∫ t

t–τ

{
x2(σ )

x∗
2

– 1 – ln
x2(σ )

x∗
2

}
dσ

=
x2

x∗
2

– 1 – ln
x2

x∗
2

–
x2(t – τ )

x∗
2

+ 1 + ln
x2(t – τ )

x∗
2
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= –
x2(t – τ )

x∗
2

+
x2

x∗
2

+ ln
x2(t – τ )

x2
.

Let U1 = V1(t) + r1e–dτ1 x∗
2 · V+(t), we have

dU1

dt
= x′

2

(
1 –

x∗
2

x2

)
– r1e–dτ

(
x2(t – τ ) – x2 – x∗

2 ln
x2(t – τ )

x2

)

=
(
r1e–dτ x2(t – τ ) – b1x2

2 – c1x2ym)
(

1 –
x∗

2
x2

)
– r1e–dτ x2(t – τ )

+ r1e–dτ x2 + r1e–dτ x∗
2 ln

x2(t – τ )
x2

= r1e–dτ
(
x2 – x∗

2
)

– b1x2
(
x2 – x∗

2
)

+ c1ym(
x∗

2 – x2
)

+ r1e–dτ x∗
2

(
1 –

x2(t – τ1)
x2

+ ln
x2(t – τ1)

x2

)

=
(
x2 – x∗

2
)[

r1e–dτ – b1x2 – c1ym]
+ r1e–dτ x∗

2

(
1 –

x2(t – τ )
x2

+ ln
x2(t – τ )

x2

)

= –b1
(
x2 – x∗

2
)2 + c1

(
x2 – x∗

2
)(

y∗m – ym)

+ r1e–dτ x∗
2

(
1 –

x2(t – τ )
x2

+ ln
x2(t – τ )

x2

)

and

c1

c2

dV2

dt
=

c1

c2

(
1 –

y∗m

ym

)
y′

=
(

1 –
y∗m

ym

)(
c1x2ym –

c1r2

c2
y –

c1b2

c2
y2

)

= c1x2ym –
c1r2

c2
y –

c1b2

c2
y2 – c1x2y∗m +

c1r2

c2
y

y∗m

ym +
c1b2

c2
y2 y∗m

ym .

Now, the time derivative of U(t) computed along solutions of system (1.4) is

dU
dt

=
dU1

dt
+

c1

c2

dV2

dt

= –b1
(
x2 – x∗

2
)2 + r1e–dτ x∗

2

(
1 –

x2(t – τ )
x2

+ ln
x2(t – τ )

x2

)

–
c1b2

c2

(
y2 – y2 y∗m

ym + y∗2 – y∗2 ym

y∗m

)
–

c1r2

c2

(
y – y

y∗m

ym + y∗ – y∗ ym

y∗m

)
,

and here we used c2x∗
2y∗m = r2y∗ + b2y∗2.

By factoring the last two terms, we have

dU
dt

= –b1
(
x2 – x∗

2
)2 – r1e–dτ1 x∗

2

(
x2(t – τ )

x2
– 1 – ln

x2(t – τ )
x2

)

–
c1b2

c2
y2

[
1 –

(
y∗

y

)2–m][
1 –

(
y∗

y

)m]
–

c1r2

c2
y
[

1 –
(

y∗

y

)1–m][
1 –

(
y∗

y

)m]
.
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From Lemma 1, for 0 < m < 1, we know that

[
1 –

(
y∗

y

)2–m][
1 –

(
y∗

y

)m]
≥ 0, (2.7)

[
1 –

(
y∗

y

)1–m][
1 –

(
y∗

y

)m]
≥ 0. (2.8)

Further, since the function h(z) = z(t) – 1 – ln z(t) is always nonnegative for any function
z(t) > 0, and h(z) = 0 if and only if z(t) = 1, we know that

x2(t – τ )
x2

– 1 – ln
x2(t – τ )

x2
≥ 0. (2.9)

It follows that the positive-definite functional U(t) has non-positive derivative d
dt U(t). Let

M be the largest invariant subset of {(x2(t), y(t)) | dU
dt = 0}. Since dU

dt equals zero if and
only if x2(t) = x∗

2 = x2(t – τ ), y(t) = y∗, we see that M is the singleton {E∗}. By the LaSalle
invariance principle [7], every solution of system (1.4) tends to the interior equilibrium
E∗, which is globally asymptotically stable.

The proof is completed. �

Remark The type of Lyapunov function V1 was first used for the Lotka–Volterra system,
and then it was successfully applied to epidemiological models by Korobeinikov [13, 14].
Furthermore, McCluskey [17, 18] extended it as the Lyapunov function of form V+ for
some delay differential equations models.

3 Numerical simulations and conclusions
Here we perform numerical simulations to show that parameters m and τ have no effects
on the stability of the interior equilibrium E∗(x∗

2, y∗) of system (1.4). Parameters values are
from [16] except for m and τ as follows:

d = 0.2, r1 = 2.5, b1 = 1.8, c1 = 1,

r2 = 1, b2 = 0.5, c2 = 1.2.
(3.1)

First, we fix τ = 2.5 and vary m = 0.1, 0.3, 0.7, 0.9, which correspond to four values of E∗ =
(0.346676, 0.320008), (0.444703, 0.328168), (0.62698, 0.258366), (0.741398, 0.150437). Fig-
ure 2 shows that all solutions tend to E∗. We can see that the value of x∗

2 increases as
the increase of m (see Fig. 3(a)), but the value of y∗ increases first and then decreases
as the increase of m (see Fig. 3(b)). Second, we fix m = 0.5 and vary τ = 1, 5, 10, 20,
which correspond to four values of E∗ = (0.742163, 0.505426), (0.313992, 0.125679),
(0.113186, 0.0181181), (0.0152641, 0.000335395). Figure 4 also reveals that all solutions
tend to E∗. And we found that the values of both x∗

2 and y∗ decrease with the increase of τ

(see Fig. 5). In conclusion, both m and τ can change the value of E∗, but they cannot affect
the stability of E∗.

In this study, by constructing suitable Lyapunov functional, we establish the global
asymptotic properties of the interior equilibrium of the stage structure predator–prey
model with delay. Without any additional conditions, the interior equilibrium of system
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Figure 2 All solutions converge to the interior
equilibrium E∗ for differentm. Here we fix τ = 2.5
and choose the other parameters from (3.1) with
the initial condition (x2(0), y(0)) = (0.01, 0.001)

Figure 3 The relation curves of x∗2 and y∗ versusm.
Here we fix τ = 2.5 and choose the other
parameters from (3.1)
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Figure 4 All solutions converge to the interior
equilibrium E∗ for different τ . Here we fixm = 0.5
and choose the other parameters from (3.1) with
the initial condition (x2(0), y(0)) = (0.01, 0.001)

Figure 5 The relation curves of x∗2 and y∗ versus τ .
Here we fixm = 0.5 and choose the other
parameters from (3.1)
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(1.4) always exists and is globally asymptotically stable. This essentially improves the pre-
vious stability results in [16]. On the other hand, when τ = 0, system (1.4) will be simplified
to the ordinary differential system. Theorem 2.1 indicates that mature period delay of prey
does not affect the global asymptotic properties of the model.

In the special case of m = 1 (that is, no mutual interference), system (1.4) has a positive
equilibrium if and only if

r2

c2
<

r1e–dτ

b1
. (3.2)

By using the same Lyapunov functional, it is easy to see that the positive equilibrium
is globally asymptotically stable when it exists. When we introduce mutual interference
(0 < m < 1), system (1.4) always has a positive equilibrium. That is, we do not need the
condition (3.2) to ensure the existence of positive equilibrium for 0 < m < 1. It means that
the mutual interference (0 < m < 1) helps the endangered predators survive under any
maturation time delay of preys.

We would like to point out that the Lyapunov approach in this study comes from the gen-
eralization of our previous work in Huang et al. [10, 11]. Here we applied the technology
of constructing Lyapunov functionals to the delayed predator–prey model with mutual
interference, and it can also be applied to some classes of systems similar to system (1.4).
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