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Abstract
In this paper, a new three-level implicit method is developed to solve linear and
non-linear third order dispersive partial differential equations. The presented method
is obtained by using exponential quartic spline to approximate the spatial derivative
of third order and finite difference discretization to approximate the first order spatial
and temporal derivative. The developed method is tested on four examples and the
results are compared with other methods from the literature, which shows the
applicability and feasibility of the presented method. Furthermore, the truncation
error and stability analysis of the presented method are investigated, and graphical
comparison between analytical and approximate solution is also shown for each
example.
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1 Introduction
In [4] Boussinesq and Korteweg-de Vries (KdV) equations described the problem of water
waves and the long waves in which dispersive effects are present. We use an exponential
quartic spline function to develop a numerical method to approximate the solution of
third order homogeneous and non-homogeneous linear dispersive equation in one space
dimension with f (x, t) as a source term:

∂y(x, t)
∂t

+ μ
∂3y(x, t)

∂x3 = f (x, t), a ≤ x ≤ b, t > 0,μ > 0, (1.1)

with

y(x, 0) = g1(x), a ≤ x ≤ b, (1.2)

and

y(a, t) = γ0(t), t > 0,
yx(a, t) = γ1(t), t > 0,
yxx(a, t) = γ2(t), t > 0,

⎫
⎪⎬

⎪⎭
(1.3)
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where γ0(t), γ1(t), γ2(t), and g1(x) are assumed to be continuous functions, t is time and x
is space variable [1, 7].

In [1] theorems for the existence and uniqueness of solution of such dispersive equations
are given. In [20, 21], the criteria for deriving stability conditions of difference method were
considered for the numerical solution of a third order linear dispersive equation. In [25],
the analytical solution was obtained of such equations by using Adomian decomposition
method, and in [19], such equations were solved numerically. The authors in [17] solved
fourth order parabolic partial differential equation numerically by using parametric septic
spline. Djidjeli and Twizell [7] developed numerical method for solution of third order
linear dispersive equation with time-dependent boundary conditions.

We have also solved the third order non-linear dispersive equation named as Korteweg-
de Vries (KdV) equation:

∂y(x, t)
∂t

+ εy(x, t)
∂y(x, t)

∂x
+ μ

∂3y(x, t)
∂x3 = 0, a ≤ x ≤ b, t > 0,μ > 0 (1.4)

with

y(x, 0) = g2(x), a ≤ x ≤ b, (1.5)

and

y(x, t) = γ3(t), x ∈ ∂�, t > 0,
yx(b, t) = γ4(t), t > 0,

}

(1.6)

where � = [a, b] ⊂ R, ε and μ are positive parameters, and g2(x), γ3(t), γ4(t) are known
functions. This equation shows both dispersion and non-linearity [4, 23, 27].

The solution of Eq. (1.4) may exhibit solitons. Solitons are localized waves that propagate
without change in their shape and velocity and are stable in mutual interaction just like the
phenomenon of totally elastic collision in kinetics. The KdV type equations have been an
important class of non-linear evolution equations with numerous applications in physical
sciences and engineering fields see [5, 8, 12, 18, 23, 24, 26].

The existence and uniqueness of solutions of the KdV equation for appropriate condi-
tions have shown in [11] . Many well-known numerical methods, such as finite difference
scheme, finite element schemes, Fourier spectral methods and mesh-free radial basis func-
tions (RBF), collocation method, multiquadric (MQ), multiquadric quasi-interpolation [3,
5, 10, 13–15, 22, 23, 27, 28], have been used to solve the KdV equation. Authors in [16]
also used decomposition method for solution of KdV equation. The numerical solution
was presented in [6] for the first and fifth order KdV equations. In [2], authors solved cou-
pled Burgers’ equations using non-polynomial spline method. In [9], authors presented
non-polynomial spline method for solving the generalized regularized long wave (GRLW)
equations.

The purpose of this paper is to present a new method to solve third order linear and non-
linear dispersive partial differential equations based on spline function approximation. In
our method, the third order spatial and first order temporal derivatives are approximated
by exponential quartic spline and finite difference respectively. Besides, we have used the
first order central difference discretization to approximate the first order spatial derivative
in a non-linear term.
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Here, we obtain a derivation of exponential quartic spline and its relations in Sect. 2.
In Sect. 3, we present the formulation of our methods along with boundary equations for
both the linear and non-linear dispersive equations. In Sect. 4, a class of methods and
truncation error are given. Stability analysis is discussed in Sect. 5. Numerical evidences
and comparison with other available methods are included in Sect. 6 to show the accuracy
of our method. The presented method is tested on four examples. Finally, conclusion is
presented in Sect. 7.

2 Exponential quartic spline
Let a set of grid points in the interval [a, b] be such that

xj = a + jh, j = 0(1)n, h =
b – a

n
. (2.1)

We also denote the function value y(xj) by yj.
Let Ej(x, t) be the exponential quartic spline at the grid point (xj, t) given by

Ej(x, t) = a1j(t)eτ (x–xj) + a2j(t)e–τ (x–xj) + a3j(t)(x – xj)2 + a4j(t)(x – xj) + a5j(t) (2.2)

for each j = 0, 1, . . . , n, where a1j, a2j, a3j, a4j, a5j are unknown coefficients and τ is a free
parameter. We determine the unknown coefficients in (2.2) from the interpolatory condi-
tions Ej(xj, t) = yj(t), Ej(xj+1, t) = yj+1(t), E′

j(xj, t) = mj(t), E(3)
j (xj, t) = Tj(t), and E(3)

j (xj+1, t) =
Tj+1(t) as given below:

a1j(t) =
1
τ 3

(Tj+1 – Tje–θ )
(eθ – e–θ )

,

a2j(t) =
1
τ 3

(Tj+1 – Tjeθ )
(eθ – e–θ )

,

a3j(t) =
1
h2 (yj+1 – yj) –

1
h

Mj –
1
h2 a1j(t)

(
eθ – θ – 1

)
–

a2j(t)
h2

(
e–θ + θ – 1

)
, (2.3)

a4j(t) = mj – a1j(t)τ + a2j(t)τ ,

a5j(t) = yj – a1j(t) – a2j(t).

Applying the continuity conditions of first and second derivatives of Ej(x, t) at the knots,
that is, E′

j(xj) = E′
j–1(xj), E′′

j (xj) = E′′
j–1(xj), and using (2.3) yields the following relations:

mj + mj–1 = h2(α1Tj + α1Tj–1) +
2
h

(yj – yj–1), (2.4)

mj – mj–1 = h2(β1Tj+1 + β2Tj + β3Tj–1) +
1
h

(yj+1 – 2yj + yj–1), (2.5)
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where

α1 =
θ (eθ – e–θ ) – 2(eθ + e–θ ) + 4

θ3(eθ – e–θ )
,

β1 =
θ2 – (eθ + e–θ ) + 2

θ3(eθ – e–θ )
,

β2 =
θ (eθ – e–θ ) – θ2(eθ + e–θ )

θ3(eθ – e–θ )
,

β3 =
θ2 – θ (eθ – e–θ ) + (eθ + e–θ ) – 2

θ3(eθ – e–θ )
.

(2.6)

Using Eqs. (2.4) and (2.5), we obtain the following method:

h3(pTj+1 + qTj + qTj–1 + pTj–2) = –yj+1 + 3yj – 3yj–1 + yj–2, j = 2(1)(n – 1), (2.7)

where the coefficients p = β1 and q = –α1 + β1 + β2. As τ → 0 that is θ → 0, we have
(p, q) −→ (– 1

24 , – 11
24 ). Now, the operator 
x for any function W is supposed to have the

following form according to Eq. (2.7):


xWj = pWj+1 + qWj + qWj–1 + pWj–2. (2.8)

3 Derivation of the method
Let the region R = [a ≤ x ≤ b] × [t > 0] be discretized by a set of points Rh,k which are
the vertices of grid points (xj, tm), where xj = jh, j = 0(1)n, nh = b – a, and tm = mk, m =
0, 1, 2, 3, . . . . The quantities h in space and k in time directions are mesh sizes.

3.1 Spline solution for linear dispersive equation
In this section we develop an approximation for (1.1) in which the time and space deriva-
tives are replaced by a finite difference and exponential quartic spline respectively. Equa-
tion (1.1) is discretized as:

k–1

2
δt

(
1 + σδ2

t
)–1ym

j + μTm
j = f m

j , (3.1)

where Tm
j = E(3)

� (xj, tm) is the third order spline derivative at (xj, tm) w.r.t. the space variable,
f m
j = f (xj, tm), ym

j is the approximate solution of (1.1) at (xj, tm), δt is the central difference
operator w.r.t. t and σ is a parameter such that finite difference approximation to the time
derivative is of O(k) for arbitrary σ .

Operating 
x on both sides of (3.1) and after some simplifications, we obtain the fol-
lowing method:

δt
(
pym

j+1 + qym
j + qym

j–1 + pym
j–2

)
+

2kμ

h3

(
1 + σδ2

t
)(

–ym
j+1 + 3ym

j – 3ym
j–1 + ym

j–2
)

= 2k
(
1 + σδ2

t
)(

pf m
j+1 + qf m

j + qf m
j–1 + pf m

j–2
)
, j = 2(1)(n – 1). (3.2)
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The final method (3.2) may be written in the schematic form as follows:

P Q R S

–N 3N –3N N

–S –R –Q –P

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

ym
j =

K1p K1q K1q K1p

K2p K2q K2q K2p

K1p K1q K1q K1p

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

f m
j ,

where

r = k
h3 , P = p – 2σ rμ, Q = q + 6σ rμ,

R = q – 6σ rμ, S = p + 2σ rμ,
N = 2rμ(1 – 2σ ), K1 = 2σk, K2 = 2k(1 – 2σ ).

⎫
⎪⎬

⎪⎭
(3.3)

Relation (3.2) gives (n – 2) equations in (n – 1) unknowns yj, j = 1(1)(n – 1). We require
one more equation at j = 1, i.e., at the end of the range of integration in order to have a
closed form solution for yj. We discretize the boundary conditions in (1.3) and develop
the following boundary equation of accuracy O(k + h2):

–21ym
0 + 24ym

1 – 3ym
2 – 18h

(
ym

0
)′ – 6h2(ym

0
)′′ = 0, j = 1, (3.4)

where

ym
0 = y(a, tm),

(
ym

0
)′ =

∂y
∂x

(a, tm),
(
ym

0
)′′ =

∂2y
∂x2 (a, tm).

3.2 Spline solution for non-linear dispersive equation
In the similar manner, Eq.(1.4) is discretized as follows:

k–1

2
δt

(
1 + σδ2

t
)–1ym

j +
δx

2h
Fm

j + μTm
j = 0, (3.5)

where F = ε
2 y2.

Operating 
x on both sides of (3.5) and after some simplifications, we obtain the fol-
lowing method:

δt
(
pym

j+1 + qym
j + qym

j–1 + pym
j–2

)
+

2kμ

h3

(
1 + σδ2

t
)(

–ym
j+1 + 3ym

j – 3ym
j–1 + ym

j–2
)

+
k
h
(
1 + σδ2

t
)(

pFm
j+2 + qFm

j+1 – (p – q)Fm
j + (p – q)Fm

j–1 – qFm
j–2 – pFm

j–3
)

= 0, j = 3(1)(n – 2). (3.6)

The schematic form of method (3.6) is given by

P Q R S

–N 3N –3N N

–S –R –Q –P

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

ym
j
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=

–K ′
1p –K ′

1q K ′
1(p – q) –K ′

1(p – q) K ′
1q K ′

1p

–K ′
2p –K ′

2q K ′
2(p – q) –K ′

2(p – q) K ′
2q K ′

2p

–K ′
1p –K ′

1q K ′
1(p – q) –K ′

1(p – q) K ′
1q K ′

1p

⎫
⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎭

Fm
j ,

where

K ′
1 =

k
h
σ , K ′

2 =
k
h

(1 – 2σ ). (3.7)

Relation (3.6) gives (n – 4) equations in (n – 1) unknowns yj, j = 1(1)(n – 1). We require
three more equations each at j = 1, 2, (n – 1), i.e., at the ends of the range of integration in
order to have a closed form solution for yj. We discretize the boundary conditions in (1.6)
and develop the following boundary equation of accuracy O(k + h2):

–ym
0 + 4ym

1 – 6ym
2 + 4ym

3 – ym
4 = 0, j = 1,

–ym
1 + 4ym

2 – 6ym
3 + 4ym

4 – ym
5 = 0, j = 2,

– 4
3 ym

n–3 + 6ym
n–2 – 12ym

n–1 + 22
3 ym

n – 4h(ym
n )′ = 0, j = (n – 1),

⎫
⎪⎬

⎪⎭
(3.8)

where

ym
0 = y(a, tm), ym

n = y(b, tm),
(
ym

n
)′ =

∂y
∂x

(b, tm).

4 Truncation error and a class of methods
Expanding (3.2) or (3.6) in a Taylor series in terms of y(xj, tm) and its derivatives and using
(1.1) or (1.4) respectively, we obtain the truncation error as follows:

TEm
j =

[

2(p + q)kDt – (p + q)khDtDx +
1
2

(5p + q)kh2DtD2
x

–
1
6

(7p + q)kh3DtD3
x +

(
1
3

– σ

)

2(p + q)k3D3
t –

(
1
3

– σ

)

(p + q)k3hD3
t Dx

+
1
2

(
1
3

– σ

)

(5p + q)k3h2D3
t D2

x –
1
6

(
1
3

– σ

)

(7p + q)k3h3D3
t D3

x

– 2(p + q)kD3
x + (p + q)khD4

x +
1
2

(5p + q)kh2D5
x +

1
6

(7p + q)kh3D6
x

– 2(p + q)σk3D2
t D3

x + (p + q)σk3hD2
t D4

x –
1
2

(5p + q)σk3h2D2
t D5

x

+
1
6

(7p + q)σk3h3D2
t D6

x – kh2D3
x +

1
2

kh3D4
x – σk3h2D2

t D3
x

+
1
2
σk3h3D2

t D4
x + · · · · · ·

]

ym
j ,

where Dt ≡ ∂
∂t , Dx ≡ ∂

∂x , D2
t ≡ ∂2

∂t2 , D2
x ≡ ∂2

∂x2 , and so on.
Here, the following class of methods are obtained:
Case 1: If p + q 	= 0, then various methods of O(k + h) for arbitrary values of σ are ob-

tained.
Case 2: If p + q = 0, then various methods of O(k + h2) for arbitrary values of σ are ob-

tained.
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5 Stability analysis and convergence
Theorem Methods (3.3) and (3.7) are conditionally stable for σ ≥ ( 1

2 – 1
2r ), where r > 0,

p + q = 0, and φ = θ
2 .

Proof Here the stability analysis of any one of methods (3.3) or (3.7) will be investigated,
and it can be investigated for other method in the same manner. For this, we use the Von
Neumann method. Let the solution of (3.3) at the point (xj, tm) is

ym
j = ξmejiθ , (5.1)

where i =
√

–1, θ is real and ξ in general is complex.
We get the following equation after putting (5.1) in the homogeneous part of (3.3):

Uξ 2 + Vξ + W = 0, (5.2)

where

U = Peiθ + Q + Re–iθ + Se–2iθ ,

V = N
(
eiθ + 3 – 3e–iθ + e–2iθ ),

W = –
(
Seiθ + R + Qe–iθ + Pe–2iθ ).

The necessary and sufficient condition for method (3.3) to be stable is |ξ | ≤ 1. For this, we
obtain the following condition:

(
4N sin3 φ

)
/
(
(p + q)2 – 4

(
10pq + 9p2 + q2 + 12σ 2r2) sin2 φ

+ 16
(
4p2 + 2(3p – q)σ r + 8σ 2r2) sin4 φ

– 32
(
pq – p2 – (3p – q)σ r – 2σ 2r2) sin6 φ

)1/2 ≤ 1.

Simplifying and putting p + q = 0, we deduce that method (3.3) is conditionally stable for
σ ≥ ( 1

2 – 1
2r ), where r > 0 and φ = θ

2 . �

The present method is convergent by Lax theorem as the stability criterion is satisfied.

6 Numerical simulation and comparison
In this section, the presented three-level implicit method based on exponential quartic
spline is tested on four examples. The following norms are used in this paper:

L∞ = max
1≤i≤n

∣
∣yana(i) – yapp(i)

∣
∣,

L2 =

√
√
√
√

n∑

i=1

(
yana(i) – yapp(i)

)2,

RMS =

√
√
√
√

( n∑

i=1

(
yana(i) – yapp(i)

)2
)

/
n,

(6.1)
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where yana is analytical and yapp is approximate solution of third order dispersive equation
for our method.

Example 1 (Linear homogeneous case) Consider the following linear homogeneous dis-
persive equation [7]

∂y
∂t

+ μ
∂3y
∂x3 = 0, 0 ≤ x ≤ 1, t ≥ 0,μ > 0

with

y(x, 0) = cos x, 0 ≤ x ≤ 1

and

y(0, t) = cosμt,
∂y
∂x

(0, t) = – sinμt,
∂2y
∂x2 (0, t) = – cosμt, t ≥ 0.

The analytical solution is

y(x, t) = cos(x + μt).

The computational results of this example for μ = 1 are tabulated in Tables 1 and 2.
Table 1 shows L∞, L2 and RMS errors for h = 1

20 , 1
40 ; r = 1

100 ,
√

7
60 ; σ = 1

12 and time
steps = 50, 100 for different values of parameters p and q. The comparison of L∞ error
between our method and in [7] with p = 30, 75; r = 1; h = 0.1; σ = 1

12 ; time steps = 100
for x = 0.1, 0.2, . . . , 0.9 is tabulated in Table 2. Also the comparison between analytical and
approximate solution for h = 1

32 , r = 1√
6

, and time steps = 100 is shown graphically in Fig. 1.

Example 2 (Linear non-homogeneous case) Consider the following linear non-homo-
geneous dispersive equation [25]

∂y
∂t

+ μ
∂3y
∂x3 = –π3 cos(πx) cos t – sin(πx) sin t, 0 ≤ x ≤ 1, t ≥ 0,μ > 0

Table 1 L∞ , L2 and RMS errors for Example 1

(p,q,σ ) r Time steps h = 1
20 h = 1

40

L∞ L2 RMS L∞ L2 RMS

(25, –25, 1
12 )

1
100 50 1.0462(–6) 2.7700(–6) 6.3549(–7) 5.8011(–7) 2.5112(–6) 4.0211(–7)
√

7
60 3.5860(–5) 1.0775(–4) 2.4719(–5) 1.9822(–5) 8.7003(–5) 1.3932(–5)

1
100 100 1.0462(–6) 2.7704(–6) 6.3557(–7) 5.8012(–7) 2.5112(–6) 4.0211(–7)
√

7
60 3.5989(–5) 1.0815(–4) 2.4810(–5) 1.9823(–5) 8.7044(–5) 1.3938(–5)

(30, –30, 1
12 )

1
100 50 8.4689(–7) 2.1899(–6) 5.0240(–7) 4.8030(–7) 2.0718(–6) 3.3175(–7)
√

7
60 2.9030(–5) 8.7176(–5) 1.9999(–5) 1.6412(–5) 7.2067(–5) 1.1540(–5)

1
100 100 8.4699(–7) 2.1902(–6) 5.0246(–7) 4.8031(–7) 2.0718(–6) 3.3175(–7)
√

7
60 2.9134(–5) 8.7499(–5) 2.0074(–5) 1.6420(–5) 7.2101(–5) 1.1545(–5)
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Table 2 Comparison of L∞ error with [7] for Example 1

Time steps r h x (p,q,σ )
(30, –30, 1

12 )
(p,q,σ )
(75, –75, 1

12 )
[7]

100 1 0.1 0.1 2.14(–6) 7.22(–5) 1.70(–3)
0.2 4.99(–5) 2.49(–5) 5.00(–4)
0.3 4.50(–5) 2.88(–5) 4.00(–4)
0.4 8.42(–5) 4.20(–5) 7.00(–4)
0.5 6.71(–5) 4.00(–5) 8.00(–4)
0.6 9.30(–5) 4.63(–5) 9.00(–4)
0.7 5.91(–5) 3.62(–5) 1.00(–3)
0.8 6.73(–5) 3.35(–5) 1.10(–3)
0.9 1.28(–5) 1.35(–5) 1.10(–3)

Figure 1 Comparison between analytical and approximate solution

with

y(x, 0) = sin(πx), 0 ≤ x ≤ 1

and

y(0, t) = 0,
∂y
∂x

(0, t) = π cos t,
∂2y
∂x2 (0, t) = 0, t ≥ 0.

The analytical solution is

y(x, t) = sin(πx) cos t.

The computational results of this example for μ = 1 are tabulated in Tables 3 and 4. The
L∞, L2 and RMS errors are tabulated in Table 3 for the same values of parameters as taken
in Table 1 of Example 1. Also Table 4 shows L∞ error with p = 25, 50; r = 1; h = 0.05, 0.1; σ =
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Table 3 L∞ , L2 and RMS errors for Example 2

(p,q,σ ) r Time steps h = 1
20 h = 1

40

L∞ L2 RMS L∞ L2 RMS

(25, –25, 1
12 )

1
100 50 6.4058(–6) 1.4539(–5) 3.3356(–6) 5.2848(–6) 2.0991(–5) 3.3613(–6)
√

7
60 1.4202(–4) 3.5828(–4) 8.2196(–5) 1.8686(–4) 7.2452(–4) 1.1601(–4)

1
100 100 6.4058(–6) 1.4539(–5) 3.3356(–6) 5.2848(–6) 2.0991(–5) 3.3613(–6)
√

7
60 1.4202(–4) 3.5828(–4) 8.2196(–5) 1.8686(–4) 7.2452(–4) 1.1601(–4)

(30, –30, 1
12 )

1
100 50 9.3013(–6) 2.1326(–5) 4.8926(–7) 3.9930(–6) 1.5921(–5) 2.5494(–6)
√

7
60 2.4187(–4) 6.1364(–4) 1.4078(–4) 1.4128(–4) 5.4912(–4) 8.7930(–5)

1
100 100 9.3013(–6) 2.1326(–5) 4.8926(–7) 3.9930(–6) 1.5921(–5) 2.5494(–6)
√

7
60 2.4187(–4) 6.1364(–4) 1.4078(–4) 1.4128(–4) 5.4912(–4) 8.7930(–5)

Table 4 L∞ error for Example 2

Time steps r h x (p,q,σ )
(25, –25, 1

12 )
(p,q,σ )
(50, –50, 1

12 )

100 1 0.05 0.1 2.19(–4) 6.94(–4)
0.3 2.72(–4) 8.63(–4)
0.5 1.28(–6) 1.58(–6)
0.7 2.74(–4) 8.66(–4)
0.9 2.20(–4) 6.96(–4)

0.1 0.1 1.20(–3) 1.37(–3)
0.3 2.81(–3) 3.29(–3)
0.5 6.59(–3) 7.21(–3)
0.7 1.60(–2) 1.77(–2)
0.9 1.43(–2) 1.57(–2)

1
12 ; time steps = 100 for x = 0.1, 0.3, 0.5, 0.7, 0.9. Figure 2 shows the graphical comparison
between analytical and approximate solution for h = 1

64 , r = 1
100 and time steps = 100.

Example 3 (Non-linear single soliton case) Consider a propagation of single solitary wave
of non-linear KdV Eq. (1.4) with ε = 6, μ = 1 [5, 15, 23, 27] and

y(x, 0) =
κ

2
sec h2

(√
κ

2
x – L

)

, a ≤ x ≤ b.

The analytical solution is

y(x, t) =
κ

2
sec h2

(√
κ

2
(x – κt) – L

)

.

The functions γ3(t) and γ4(t) are extracted from the analytical solution. The computa-
tional results are tabulated in Tables 5–7. The L∞, L2 and RMS errors with L = 7; κ = 0.5;
[a, b] = [0, 40]; p = 25; k = 0.001, 0.0001; n = 40, 80, 120, 160, 200; σ = 1

12 and t = 1, and the
comparison of L∞ error with [15, 23, 27] with changes p = 30; k = 0.01, 0.001; n = 200;
t = 1, 2, . . . , 5 are tabulated in Table 5 and Table 6, respectively. Table 7 shows L∞, L2

and RMS errors and comparison with [5] with L = 10; κ = 0.14; [a, b] = [30, 80]; p = 100;
k = 0.001; h = 0.2; σ = 1

12 and t = 1, 3, 5, 7, 10. Figure 3 shows the graphical comparison
between analytical and approximate solution for n = 200, k = 0.001, p = 25, and t = 5.
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Figure 2 Comparison between analytical and approximate solution

Table 5 L∞ , L2 and RMS errors for p = 25, σ = 1
12 , t = 1, κ = 0.5, L = 7, [a,b] = [0, 40] for Example 3

n k = 0.001 k = 0.0001

L∞ L2 RMS L∞ L2 RMS

40 6.1192(–5) 1.1111(–4) 1.7793(–5) 6.7755(–6) 1.3143(–5) 2.1045(–6)
80 7.3626(–5) 1.7866(–4) 2.0101(–5) 7.3800(–6) 1.7870(–5) 2.0106(–6)
120 6.5572(–5) 1.9993(–4) 1.8327(–5) 6.5602(–6) 1.9994(–5) 1.8328(–6)
160 5.1806(–5) 2.1081(–4) 1.6718(–5) 5.1798(–6) 2.1082(–5) 1.6719(–6)
200 4.8556(–5) 2.5697(–4) 1.8216(–5) 4.8559(–6) 2.5697(–5) 1.8216(–6)

Table 6 Comparison of L∞ error with [5, 15, 23, 27] for p = 30, σ = 1
12 , κ = 0.5, L = 7, n = 200,

[a,b] = [0, 40] for Example 3

t Our method IMQQI [23] Our method [5] MQQI [27] MQ [15] IMQ [15]

k = 0.01 k = 0.001

1 4.2123(–4) 1.6728(–4) 4.2120(–5) 1.8048(–5) 1.5259(–3) 1.7923(–5) 6.9584(–5)
2 4.2238(–4) 2.3758(–4) 4.2235(–5) 3.0373(–5) 2.8677(–3) 3.0151(–5) 1.9553(–4)
3 4.2123(–4) 2.3758(–4) 4.2120(–5) 4.0088(–5) 4.1428(–3) 3.9839(–5) 3.8286(–3)
4 4.2237(–4) 3.1348(–4) 4.2234(–5) 4.8347(–5) 5.3859(–3) 4.7835(–5) 5.9098(–3)
5 4.2126(–4) 3.4136(–4) 4.2122(–5) 5.6090(–5) 6.8141(–3) 5.4599(–5) 8.3667(–3)

Example 4 (Non-linear soliton interaction case) Consider a propagation of two solitary
waves of non-linear KdV Eq. (1.4) with ε = 6, μ = 1 [5, 15, 23, 27] and

y(x, 0) = 12
[

3 + 4 cos h(2x) + cos h(4x)
{3 cos h(x) + cos h(3x)}2

]

, –5 ≤ x ≤ 15.

The analytical solution is

y(x, t) = 12
[

3 + 4 cos h(2x – 8t) + cos h(4x – 64t)
{3 cos h(x – 28t) + cos h(3x – 36t)}2

]

.
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Table 7 L∞ , L2 and RMS errors for p = 100, σ = 1
12 , k = 0.001, κ = 0.14, L = 10, n = 250, [a,b] = [30, 80]

and comparison of L∞ error with [5] for Example 3

t Our method [5]

L∞ L2 RMS L∞
1 1.8313(–6) 1.4082(–5) 8.9242(–7) 6.8860(–6)
3 1.8310(–6) 1.4082(–5) 8.9243(–7) 8.5988(–6)
5 1.8308(–6) 1.4082(–5) 8.9244(–7) 8.3958(–6)
7 1.8306(–6) 1.4083(–5) 8.9244(–7) 9.2090(–6)
10 1.8314(–6) 1.4082(–5) 8.9243(–7) 8.5625(–6)

Figure 3 Comparison between analytical and approximate solution

Table 8 Errors for p = 10, σ = 1
12 , k = 0.00001, h = 0.1 and comparison of L∞ error with [5, 15, 27] for

Example 4

t Our method [5] MQQI [27] MQ [15] IMQ [15]

L∞ L2 RMS L∞
0.01 3.9805(–4) 1.6355(–3) 1.1594(–4) – 7.7405(–3) 9.2114(–4) 2.2071(–2)
0.05 1.7221(–3) 4.4270(–3) 3.1382(–4) – 6.3762(–2) 2.9608(–2) 7.2316(–2)
0.1 2.8226(–3) 6.8615(–3) 4.8640(–4) 5.6353(–3) 1.6196(–1) 1.2806(–2) 1.0121(–1)
0.2 3.5029(–3) 8.2930(–3) 5.8787(–4) 2.3376(–2) – – –
0.3 3.5726(–3) 8.4542(–3) 5.9930(–4) 5.9437(–2) – – –

Similarly, the functions γ3(t) and γ4(t) are extracted from the analytical solution. The com-
putational results are tabulated in Tables 8–10. Table 8 and Table 9 show the comparison
of L∞, L2 and RMS errors with [5, 15, 23, 27] with p = 10; k = 0.0001, 0.00001; n = 200;
σ = 1

12 and t = 0.01, 0.05, 0.10, 0.15, 0.20, 0.3. Also, the L∞, L2 and RMS errors with p = 100;
k = 0.0001; n = 40, 80, 120, 160, 200; σ = 1

12 and t = 1 are tabulated in Table 10. Figure 4
shows the graphical comparison between analytical and approximate solution for n = 200,
k = 0.0001, p = 25, and t = 3.
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Table 9 Comparison of L∞ , L2 and RMS errors with [23] for p = 10, σ = 1
12 , k = 0.0001, n = 200 for

Example 4

t Our method [23]

L∞ L2 RMS L∞ L2 RMS

0.01 4.0120(–3) 1.6335(–4) 1.1579(–3) 4.0579(–3) 9.9105(–3) 6.9903(–4)
0.05 1.7249(–2) 4.4265(–2) 3.1378(–3) 4.1003(–2) 1.0295(–1) 7.2619(–3)
0.10 6.5572(–2) 6.8612(–2) 4.8638(–3) 9.1691(–2) 2.3373(–1) 1.6486(–2)
0.15 5.1806(–2) 7.9154(–2) 5.6111(–3) 1.3257(–1) 3.4201(–1) 2.4124(–2)
0.20 4.8556(–2) 8.2929(–2) 5.8786(–3) 1.6644(–1) 4.3607(–1) 3.0758(–2)

Table 10 L∞ , L2 and RMS errors for p = 100, σ = 1
12 , k = 0.0001, t = 1 for Example 4

n L∞ L2 RMS

40 5.4535(–2) 2.0145(–4) 3.2258(–2)
80 8.9607(–3) 4.8109(–2) 5.4127(–3)
120 3.5368(–3) 2.3639(–2) 2.1670(–3)
160 2.5034(–3) 1.8749(–2) 1.4869(–3)
200 2.3476(–3) 1.8440(–2) 1.3072(–3)

Figure 4 Comparison between analytical and approximate solution

7 Conclusion
The class of a new three-level implicit methods has been obtained using exponential quar-
tic spline for numerical approximation of third order linear and non-linear dispersive
partial differential equations and is tested on four examples using MATLAB. The perfor-
mance of these methods have been examined for different values of parameters. Having
compared the solutions with available results in the literature, we found them to be better.
The comparison between analytical and approximate solutions is also shown graphically
in Figs. 1–4. Tables and figures show the feasibility and applicability of our method.
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