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Abstract
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1 Introduction
The purpose of this paper is to establish the existence and uniqueness of solutions for
the following system of fractional differential equations with Riemann–Stieltjes integral
boundary conditions (for short, FBVP):

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dα
0+u(t) + h(t)f (t, v(t)) = 0, 0 < t < 1,

Dα
0+v(t) + h(t)g(t, u(t)) = 0, 0 < t < 1,

u(0) = u′(0) = 0, u(1) =
∫ 1

0 u(τ ) dβ(τ ),

v(0) = v′(0) = 0, v(1) =
∫ 1

0 v(τ ) dβ(τ ),

(1.1)

where 2 < α ≤ 3 is a real number, Dα
0+ is the standard Riemann–Liouville differentiation,

β is right continuous on [0, 1), left continuous at t = 1, and nondecreasing on [0, 1] with
β(0) = 0,

∫ 1
0 u(τ ) dβ(τ ) denotes the Riemann–Stieltjes integral of u with respect to β . Here

the nonlinear terms f , g : [0, 1] × (–∞, +∞) → (–∞, +∞) are continuous sign-changing
functions and f , g may be unbounded from below, h : (0, 1) → [0, +∞) with 0 <

∫ 1
0 h(s) ds <

+∞ is continuous and is allowed to be singular at t = 0, 1.
Fractional differential equations play an important role in many engineering and sci-

entific disciplines such as physics, chemistry, aerodynamics, electrodynamics of complex
medium, polymer rheology, diffusive transport akin to diffusion, probability, electrical net-
works, etc. For details, see [1–3] and the references therein. By using a nonlinear alterna-

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

https://doi.org/10.1186/s13662-018-1762-0
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-018-1762-0&domain=pdf
http://orcid.org/0000-0002-8713-0988
mailto:lbm2009@cumt.edu.cn


Liu et al. Advances in Difference Equations  (2018) 2018:306 Page 2 of 15

tive of Leray–Schauder theorem and Krasnoselskii’s fixed point theorem in a cone, Bai and
Fang in [4] obtained the existence of positive solutions for the following singular coupled
system of nonlinear fractional differential equations:

⎧
⎨

⎩

Dsu = f (t, v), 0 < t < 1,

Dpv = g(t, u), 0 < t < 1,

where 0 < s < 1, 0 < p < 1, Ds, Dp are two standard Riemann–Liouville fractional deriva-
tives, f , g : (0, 1] × [0, +∞) → [0, +∞) are two given continuous functions. Su [5] estab-
lished sufficient conditions for the existence of solutions for the following coupled system
of fractional differential equations with two-point boundary conditions:

⎧
⎪⎪⎨

⎪⎪⎩

Dαu(t) = f (t, v(t), Dμv(t)), 0 < t < 1,

Dβv(t) = g(t, u(t), Dνu(t)), 0 < t < 1,

u(0) = u(1) = v(0) = v(1) = 0,

where 1 < α,β < 2, μ,ν > 0, α – ν ≥ 1, β – μ ≥ 1, f , g : [0, 1] × R × R → R are given func-
tions, and D is the standard Riemann–Liouville fractional derivative. Ahmad and Nieto
[6] extended the results of [5] to a three-point boundary value problem for the following
coupled system of fractional differential equations:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dαu(t) = f (t, v(t), Dμv(t)), 0 < t < 1,

Dβv(t) = g(t, u(t), Dνu(t)), 0 < t < 1,

u(0) = 0, u(1) = γ u(η),

v(0) = 0, v(1) = γ v(η),

where 1 < α,β < 2, μ,ν,γ > 0, α – ν ≥ 1, β – μ ≥ 1, 0 < η < 1, γ ηα–1 < 1, γ ηβ–1 < 1 f , g :
[0, 1]×R×R → R are given functions, and D is the standard Riemann–Liouville fractional
derivative. Yang [7] established sufficient conditions for the existence and nonexistence of
positive solutions to boundary values problem for a coupled system of nonlinear fractional
differential equations as follows:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

Dαu(t) + a(t)f (t, v(t)) = 0, 0 < t < 1,

Dβv(t) + b(t)g(t, u(t)) = 0, 0 < t < 1,

u(0) = 0, u(1) =
∫ 1

0 φ(t)u(t) dt,

v(0) = 0, v(1) =
∫ 1

0 ψ(t)v(t) dt,

where 1 < α,β ≤ 2, a, b ∈ C((0, 1), [0, +∞)), φ,ψ ∈ L1[0, 1] are nonnegative and f , g ∈
C([0, 1] × [0, +∞), [0, +∞)), and D is the standard Riemann–Liouville fractional deriva-
tive.

Inspired by the above papers and some known results on fractional differential equa-
tions with integral boundary conditions [8–30], this paper is to establish the existence
and uniqueness of nontrivial solutions to FBVP (1.1) under the conditions that the non-
linear terms f , g of FBVP (1.1) are allowed to be sign-changing and unbounded from be-
low. Finally, it is worth mentioning that the main technique used here is the topological
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degree theory, the theory of linear operators. As far as we know, there are few works that
deal with system of fractional differential equations with Riemann–Stieltjes integral con-
ditions where the nonlinear terms may be unbounded from below. The main results here
are different from [4–32, 35–37].

2 Preliminaries and lemmas
Let E = C[0, 1] be a Banach space with the norm ‖u‖ = max0≤t≤1 |u(t)| for u ∈ E. Let P =
{u ∈ E | u(t) ≥ 0, t ∈ [0, 1]}. Then P is a total cone in E, that is, E = P – P. Let P∗ = {g ∈ E∗ |
g(u) ≥ 0 for all u ∈ P}. Then P∗ is the dual cone of P. Let E∗ denote the dual space of E,
then by Riesz representation theorem, E∗ is given by

E∗ =
{
ν | ν is right continuous on [0, 1) and is bounded variation on

[0, 1] with ν(0) = 0
}

.

Let E2 be equipped with the norm ‖(u, v)‖1 = ‖u‖ + ‖v‖. Then E2 is also a real Banach
space and P2 = P × P is a cone in E2. Let (u1, v1) ≥ (u2, v2) denote u1 ≥ u2, v1 ≥ v2 for
(u1, v1), (u2, v2) ∈ E2 and Br = {(u, v) ∈ E2 | ‖(u, v)‖1 < r} for any r > 0.

Definition 2.1 The Riemann–Liouville fractional integral of order α > 0 of a function
y : (0, +∞) →R is given by

Iα
0+y(t) =

1

(α)

∫ t

0
(t – s)α–1y(s) ds,

provided the right-hand side is defined on (0, +∞) pointwisely.

Definition 2.2 The Riemann–Liouville fractional derivative of order α > 0 of a function
y : (0, +∞) →R is given by

Dα
0+y(t) =

1

(n – α)

(
d
dt

)n ∫ t

0

y(s)
(t – s)α–n+1 ds,

where n = [α] + 1, [α] denotes the integer part of the number α, provided that the right-
hand side is defined on (0, +∞) pointwisely.

Lemma 2.1 Let α > 0. If we assume u ∈ C(0, 1) ∩ L(0, 1), then the fractional differential
equation

Dα
0+u(t) = 0

has u(t) = c1tα–1 + c2tα–2 + · · · + cN tα–N , ci ∈R, i = 1, 2, . . . , N , as unique solutions, where N
is the smallest integer greater than or equal to α.

Lemma 2.2 Assume that u ∈ C(0, 1) ∩ L(0, 1) with a fractional derivative of order α > 0
that belongs to C(0, 1) ∩ L(0, 1). Then

Iα
0+Dα

0+u(t) = u(t) + c1tα–1 + c2tα–2 + · · · + cN tα–N

for some ci ∈ R, i = 1, 2, . . . , N , N is the smallest integer greater than or equal to α.
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Lemma 2.3 ([31]) Given y ∈ L(0, 1) and 2 < α ≤ 3, then the unique solution of

⎧
⎨

⎩

Dα
0+u(t) + y(t) = 0, 0 < t < 1,

u(0) = u′(0) = 0, u(1) = 0,

is u(t) =
∫ 1

0 G0(t, s)y(s) ds, where

G0(t, s) =

⎧
⎨

⎩

[t(1–s)]α–1–(t–s)α–1


(α) , 0 ≤ s ≤ t ≤ 1,
[t(1–s)]α–1


(α) , 0 ≤ t ≤ s ≤ 1.

Lemma 2.4 ([31]) The Green function G0(t, s) has the following properties:
(1) 
(α)k(t)q(s) ≤ G0(t, s) ≤ (α – 1)q(s) for t, s ∈ [0, 1],
(2) 
(α)k(t)q(s) ≤ G0(t, s) ≤ (α – 1)k(t) for t, s ∈ [0, 1],

where

k(t) =
tα–1(1 – t)


(α)
, q(s) =

s(1 – s)α–1


(α)
.

By Lemma 2.1, the unique solution of the problem

⎧
⎨

⎩

Dα
0+u(t) = 0, 0 < t < 1,

u(0) = u′(0) = 0, u(1) = 1,

is u(t) = tα–1. Then it is easy to verify, as a consequence of Lemma 2.3, that FBVP (1.1) is
equivalent to the system of perturbed integral equations

⎧
⎨

⎩

u(t) =
∫ 1

0 G0(t, s)h(s)f (s, v(s)) ds + tα–1 ∫ 1
0 u(τ ) dβ(τ ),

v(t) =
∫ 1

0 G0(t, s)h(s)g(s, u(s)) ds + tα–1 ∫ 1
0 v(τ ) dβ(τ ).

(2.1)

Define 
 =
∫ 1

0 tα–1 dβ(t), gβ (s) =
∫ 1

0 G0(t, s) dβ(t). Then we have the following lemma.

Lemma 2.5 Given y(t) ∈ C(0, 1) ∩ L(0, 1) and 2 < α ≤ 3, then

⎧
⎨

⎩

Dα
0+u(t) + y(t) = 0, 0 < t < 1,

u(0) = u′(0) = 0, u(1) =
∫ 1

0 u(τ ) dβ(τ ),

has the unique solution

u(t) =
∫ 1

0
G(t, s)y(s) ds,

where the Green function G(t, s) is given by

G(t, s) =
tα–1

1 – 

gβ (s) + G0(t, s), t, s ∈ [0, 1]. (2.2)
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Proof Multiply (2.1) by dβ(t) on both sides and integrate over [0, 1] to obtain

∫ 1

0
u(t) dβ(t) =

∫ 1

0

∫ 1

0
G0(t, s)y(s) ds dβ(t) +

∫ 1

0
tα–1

∫ 1

0
u(τ ) dβ(τ ) dβ(t)

=
∫ 1

0

∫ 1

0
G0(t, s)y(s) ds dβ(t) +

∫ 1

0
tα–1 dβ(t)

∫ 1

0
u(τ ) dβ(τ ).

Consequently,

∫ 1

0
u(t) dβ(t) =

1
1 – 


∫ 1

0

∫ 1

0
G0(t, s)y(s) ds dβ(t).

Replacing
∫ 1

0 u(τ ) dβ(τ ) in (2.1) with the above equality, we obtain

u(t) =
∫ 1

0
G0(t, s)y(s) ds +

tα–1

1 – 


∫ 1

0

(∫ 1

0
G0(t, s) dβ(t)

)

y(s) ds

=
∫ 1

0

(

G0(t, s) +
tα–1

1 – 

gβ (s)

)

y(s) ds

=
∫ 1

0
G(t, s)y(s) ds.

Reversely, if u(t) =
∫ 1

0 G(t, s)y(s) ds, then u(0) = 0 and u(1) =
∫ 1

0 u(τ ) dβ(τ ) via (2.1). Ac-
cording to Definition 2.2, Lemma 2.3, and Lemma 2.4, Dα

0+u(t) + y(t) = 0 holds. �

By Lemma 2.5, (u, v) ∈ E2 is a solution of FBVP (1.1) if and only if

⎧
⎨

⎩

u(t) =
∫ 1

0 G(t, s)h(s)f (s, v(s)) ds,

v(t) =
∫ 1

0 G(t, s)h(s)g(s, u(s)) ds.

Define

(A1v)(t) =
∫ 1

0
G(t, s)h(s)f

(
s, v(s)

)
ds,

(A2u)(t) =
∫ 1

0
G(t, s)h(s)g

(
s, u(s)

)
ds,

A(u, v)(t) =
(
(A1v)(t), (A2u)(t)

)
.

It is easy to show that A : E2 → E2 is a completely continuous nonlinear operator, and if
(u, v) ∈ E2 is a fixed point of A, then (u, v) is a solution of FBVP (1.1) by Lemma 2.5.

For any u ∈ E, define K : E → E as follows:

(Ku)(t) =
∫ 1

0
G(t, s)h(s)u(s) ds, u ∈ E. (2.3)

Then K : E → E is a completely continuous linear operator and K(P) ⊂ P holds. Since
h ∈ C(0, 1) ∩ L(0, 1) with

∫ 1
0 h(t) dt > 0, by [32], the spectral radius r(K) of K is positive.
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The Krein–Rutman theorem [33] asserts that there exist φ ∈ P \ {0} and ω ∈ P∗ \ {0} cor-
responding to the number λ1 = 1/r(K) relative to K such that

λ1Kφ = φ (2.4)

and

λ1K∗ω = ω, ω(1) = 1. (2.5)

Here K∗ : E∗ → E∗ is the dual operator of K given by

(
K∗v

)
(s) =

∫ s

0

∫ 1

0
G(t, τ )h(τ ) dv(t) dτ , v ∈ E∗.

Now we testify that K∗ : E∗ → E∗ is the dual operator of K . In fact,

〈
K∗v(s), u(s)

〉
=

∫ 1

0
u(s) dK∗v(s) =

∫ 1

0
u(s)

∫ 1

0
G(t, s)h(s) dv(t) ds

=
∫ 1

0

(∫ 1

0
G(t, s)h(s)u(s) ds

)

dv(t)

=
∫ 1

0
(Ku)(t) dv(t) =

〈
v(t), (Ku)(t)

〉
.

So K∗ : E∗ → E∗ is the dual operator of K .
The continuity of G, the integrability of h, and the representation of K∗ induce that

ω ∈ C1[0, 1]. Let e(t) := ω′(t). Then e ∈ P \ {0}, and (2.5) can be rewritten equivalently as

r(K)e(s) =
∫ 1

0
G(t, s)h(s)e(t) dt,

∫ 1

0
e(t) dt = 1. (2.6)

Lemma 2.6 Let 0 ≤ 
 =
∫ 1

0 tα–1 dβ(t) < 1 and gβ (s) =
∫ 1

0 G0(t, s) dβ(t) ≥ 0 for s ∈ [0, 1],
then there exists δ > 0 such that P0 = {u ∈ P | ∫ 1

0 u(t)e(t) dt ≥ δ‖u‖} is a subcone of P and
K(P) ⊂ P0.

Proof Let δ =
∫ 1

0
(1–t)tα–1

α–1 e(t) dt. It is obvious that G(t, s) > 0 holds for t, s ∈ (0, 1). By
Lemma 2.4 and (2.2),

G(t, s) = G0(t, s) +
tα–1

1 – 

gβ (s) ≤ G0(t, s) +

1
1 – 


gβ (s) ≤ s(1 – s)α–1


(α – 1)
+

gβ (s)
1 – 


and

G(t, s) = G0(t, s) +
tα–1

1 – 

gβ (s) ≥ (1 – t)s[t(1 – s)]α–1

(α – 1)
(α – 1)
+

(1 – t)tα–1gβ (s)
(α – 1)(1 – 
)

=
(1 – t)tα–1

α – 1

(
s(1 – s)α–1


(α – 1)
+

gβ (s)
1 – 


)

.

For any u ∈ P,

max
t∈[0,1]

∣
∣(Ku)(t)

∣
∣ = max

t∈[0,1]

∣
∣
∣
∣

∫ 1

0
G(t, s)h(s)u(s) ds

∣
∣
∣
∣ ≤

∫ 1

0

(
s(1 – s)α–1


(α – 1)
+

gβ (s)
1 – 


)

h(s)u(s) ds.
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Then we have

∫ 1

0
(Ku)(t)e(t) dt =

∫ 1

0

∫ 1

0
G(t, s)h(s)u(s) dse(t) dt

≥
∫ 1

0

∫ 1

0

(1 – t)tα–1

α – 1

(
s(1 – s)α–1


(α – 1)
+

gβ (s)
1 – 


)

h(s)u(s) dse(t) dt

=
∫ 1

0

(1 – t)tα–1

α – 1
e(t) dt ·

∫ 1

0

(
s(1 – s)α–1


(α – 1)
+

gβ (s)
1 – 


)

h(s)u(s) ds

≥
∫ 1

0

(1 – t)tα–1

α – 1
e(t) dt · ‖Ku‖

= δ‖Ku‖.

That means K(P) ⊂ P0. �

Lemma 2.7 ([34]) Let E be a real Banach space and � ⊂ E be a bounded open set with
0 ∈ �. Suppose that A : �̄ → E is a completely continuous operator. (1) If there is y0 ∈ E
with y0 �= 0 such that u �= Au + μy0, for all u ∈ ∂� and μ ≥ 0, then deg(I – A,�, 0) = 0.
(2) If Au �= μu for all u ∈ ∂� and μ ≥ 1, then deg(I – A,�, 0) = 1. Here deg stands for the
Leray–Schauder topological degree in E.

Lemma 2.8 Assume that the following assumptions are satisfied:
(C1) There exist φ ∈ P \ {0}, ω ∈ P∗ \ {0} such that (2.4), (2.5) hold and K maps P into P0.
(C2) There exists a continuous operator H : E → P such that

lim‖u‖+‖v‖→+∞
‖Hu‖ + ‖Hv‖

‖u‖ + ‖v‖ = 0.

(C3) There exist two bounded continuous operators F , G : E → E and u0, v0 ∈ E such that
(Fv + v0 + Hv, Gu + u0 + Hu) ∈ P2 for all (u, v) ∈ E2.

(C4) There exist m0, n0 ∈ E and ζ > 0 such that (KFv, KGu) ≥ (λ1(1 + ζ )Kv – KHv –
m0,λ1(1 + ζ )Ku – KHu – n0) for all (u, v) ∈ E2.

Let A1 = KF , A2 = KG, A(u, v)(t) = ((A1v)(t), (A2u)(t)), then there exists R > 0 such that

deg(I – A, BR, 0) = 0,

where Br = {(u, v) ∈ E2 | ‖(u, v)‖1 < r} for any r > 0.

Proof Choose a constant l0 = (δλ1)–1(1 + ζ –1) + ‖K‖ > 0. By (C2), for 0 < ε0 < l–1
0 , there

exists R1 > 0 such that ‖u‖ + ‖v‖ > R1 implies

‖Hu‖ + ‖Hv‖ < ε0
(‖u‖ + ‖v‖). (2.7)

Now we shall show

(u, v) �= A(u, v) + μ(φ,φ) for any (u, v) ∈ ∂BR and μ ≥ 0, (2.8)

provided that R is sufficiently large.
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In fact, if (2.8) is not true, then there exist (u1, v1) ∈ ∂BR and μ1 ≥ 0 satisfying

(u, v) = A(u, v) + μ(φ,φ), (2.9)

that is,

(u1, v1) = (KFv1 + μ1φ, KGu1 + μ1φ). (2.10)

Since φ ∈ P \ {0}, e(t) ∈ P \ {0},
∫ 1

0 φ(t)e(t) dt > 0. Multiply (2.10) by e(t) on both sides
and integrate respectively on [0, 1]. Then by (C4), (2.6), we get

∫ 1

0
u1(t)e(t) dt =

∫ 1

0
(KFv1)(t)e(t) dt + μ1

∫ 1

0
φ(t)e(t) dt

≥ λ1(1 + ζ )
∫ 1

0

∫ 1

0
G(t, s)h(s)v1(s)dse(t) dt

–
∫ 1

0
(KHv1)(t)e(t) dt –

∫ 1

0
m0(t)e(t) dt

= λ1(1 + ζ )
∫ 1

0

∫ 1

0
G(t, s)h(s)v1(s)e(t) ds dt

–
∫ 1

0

∫ 1

0
G(t, s)h(s)(Hv1)(s)e(t) ds dt –

∫ 1

0
m0(t)e(t) dt

= λ1(1 + ζ )
∫ 1

0

[∫ 1

0
G(t, s)h(s)e(t) dt

]

v1(s) ds

–
∫ 1

0

[∫ 1

0
G(t, s)h(s)e(t) dt

]

(Hv1)(s) ds –
∫ 1

0
m0(t)e(t) dt

= λ1(1 + ζ )r(K)
∫ 1

0
e(s)v1(s) ds

– r(K)
∫ 1

0
(Hv1)(s)e(s) ds –

∫ 1

0
m0(t)e(t) dt

= (1 + ζ )
∫ 1

0
v1(t)e(t) dt

– r(K)
∫ 1

0
(Hv1)(t)e(t) dt –

∫ 1

0
m0(t)e(t) dt,

and

∫ 1

0
v1(t)e(t) dt =

∫ 1

0
(KGu1)(t)e(t) dt + μ1

∫ 1

0
φ(t)e(t) dt

≥ (1 + ζ )
∫ 1

0
u1(t)e(t) dt – r(K)

∫ 1

0
(Hu1)(t)e(t) dt –

∫ 1

0
n0(t)e(t) dt.
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According to the two above inequalities, we obtain

∫ 1

0

[
u1(t) + v1(t)

]
e(t) dt ≥ (1 + ζ )

∫ 1

0

[
u1(t) + v1(t)

]
e(t) dt

– r(K)
∫ 1

0

[
(Hu1)(t) + (Hv1)(t)

]
e(t) dt

–
∫ 1

0

[
m0(t) + n0(t)

]
e(t) dt.

Then we derive

∫ 1

0

[
u1(t) + v1(t)

]
e(t) dt ≤ ζ –1

[

r(K)
∫ 1

0

[
(Hu1)(t) + (Hv1)(t)

]
e(t) dt

+
∫ 1

0

[
m0(t) + n0(t)

]
e(t) dt

]

. (2.11)

By computation, we obtain

∫ 1

0
(KHu1)(t)e(t) dt = r(K)

∫ 1

0
(Hu1)(t)e(t) dt,

∫ 1

0
(KHv1)(t)e(t) dt = r(K)

∫ 1

0
(Hv1)(t)e(t) dt.

(2.12)

By (2.6), (2.7), (2.11), and (2.12), we get

∫ 1

0

[
u1(t) + v1(t) + (KHv1)(t) + (KHu1)(t) + (Ku0)(t) + (Kv0)(t)

]
e(t) dt

≤ ζ –1
[

r(K)
∫ 1

0

[
(Hv1)(t) + (Hu1)(t)

]
e(t) dt +

∫ 1

0

[
m0(t) + n0(t)

]
e(t) dt

]

+ r(K)
∫ 1

0
(Hu1)(t)e(t) dt + r(K)

∫ 1

0
(Hv1)(t)e(t) dt

+
∫ 1

0
(Ku0)(t)e(t) dt +

∫ 1

0
(Ku0)(t)e(t) dt

= ζ –1(1 + ζ )r(K)
∫ 1

0

[
(Hu1)(t) + (Hv1)(t)

]
e(t) dt

+ ζ –1
∫ 1

0

[
m0(t) + n0(t)

]
e(t) dt +

∫ 1

0

[
(Ku0)(t) + (Kv0)(t)

]
e(t) dt

≤ ζ –1(1 + ζ )r(K)
(‖Hu‖ + ‖Hv‖) + ζ –1

∫ 1

0

[
m0(t) + n0(t)

]
e(t) dt

+
∫ 1

0

[
(Ku0)(t) + (Kv0)(t)

]
e(t) dt

≤ ζ –1(1 + ζ )r(K)ε0
(‖u‖ + ‖v‖) + l1, (2.13)

where l1 = ζ –1 ∫ 1
0 [m0(t) + n0(t)]e(t) dt +

∫ 1
0 [(Ku0)(t) + (Kv0)(t)]e(t) dt is a constant.
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(C3) shows (Fv1 + v0 + Hv1, Gu1 + u0 + Hu1) ∈ P2 and (C1) implies μ1φ = μ1λ1Kφ ∈ P0.
Then (C1), (2.10), and Lemma 2.6 tell us that

u1 + KHv1 + Kv0 = KFv1 + μ1φ + KHv1 + Kv0 = K(Fv1 + Hv1 + v0) + μ1φ ∈ P0,

v1 + KHu1 + Ku0 = KGu1 + μ1φ + KHu1 + Ku0 = K(Gv1 + Hu1 + u0) + μ1φ ∈ P0.

The definition of P0 yields

∫ 1

0
(u1 + KHv1 + Kv0)(t)e(t) dt ≥ δ‖u1 + KHv1 + Kv0‖ ≥ δ‖u1‖ – δ‖KHv1‖ – δ‖Kv0‖,

∫ 1

0
(v1 + KHu1 + Ku0)(t)e(t) dt ≥ δ‖v1 + KHu1 + Ku0‖ ≥ δ‖v1‖ – δ‖KHu1‖ – δ‖Ku0‖,

where δ is given in Lemma 2.6. By adding the above two inequalities, we obtain

∫ 1

0
(u1 + v1 + KHu1 + KHv1 + Ku0 + Kv0)(t)e(t) dt

≥ δ
(‖v1‖ + ‖u‖) – δ

(‖KHu1‖ + ‖KHv1‖
)

– δ
(‖Ku0‖ + ‖Kv0‖

)
. (2.14)

It follows from (2.7), (2.13), and (2.14) that

‖u1‖ + ‖v1‖ ≤ δ–1
∫ 1

0
(u1 + v1 + KHu1 + KHv1 + Ku0 + Kv0)(t)e(t) dt

+ ‖KHu1‖ + ‖KHv1‖ + ‖Ku0‖ + ‖Kv0‖
≤ ε0(δλ1)–1(1 + ζ –1)(‖u1‖ + ‖v1‖

)
+ l1δ

–1

+ ε0‖K‖ · (‖u1‖ + ‖v1‖
)

+ ‖Ku0‖ + ‖Kv0‖
= ε0l0

(‖u1‖ + ‖v1‖
)

+ l2, (2.15)

where l2 = l1δ
–1 + ‖Ku0‖ + ‖Kv0‖ is a constant.

Since 0 < ε0l0 < 1, then (2.15) deduces that (2.8) holds provided that R is sufficiently large
such that R > max{l2/(1 – ε0l0), R1}. By (2.15) and Lemma 2.7, we have

deg(I – A, BR, 0) = 0. �

3 Existence
Theorem 3.1 Assume that the following conditions are satisfied:

(A1) f , g : [0, 1] ×R →R are continuous.
(A2) There exist nonnegative functions bi(t), ci(t) ∈ C[0, 1] with ci(t) �≡ 0 and two contin-

uous even functions Bi : R →R
+ such that

f (t, x) ≥ –b1(t) – c1(t)B1(x) for all x ∈R,

g(t, y) ≥ –b2(t) – c2(t)B2(y) for all y ∈R.

Moreover, Bi is nondecreasing on R
+ and satisfies limx→+∞ Bi(x)

x = 0, (i = 1, 2).
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(A3) lim infx→+∞ f (t,x)
x > λ1, lim infx→+∞ g(t,y)

y > λ1, uniformly on t ∈ [0, 1].
(A4) lim supx→0 | f (t,x)

x | < λ1, lim supx→0 | g(t,y)
y | < λ1, uniformly on t ∈ [0, 1].

Here λ1 = 1/r(K) is a number and the operator K is defined by (2.3).
Then FBVP (1.1) has at least one nontrivial solution.

Proof We first show that all conditions in Lemma 2.8 are satisfied. By Lemma 2.6, con-
dition (C1) of Lemma 2.8 is satisfied. (Tiu)(t) = Bi(u(t)) (i = 1, 2) for any u ∈ E. Obviously
T1, T2 : E → P are continuous operators. By (A2), for any ε > 0, there is L > 0 such that
when z > L, Bi(z) < εz holds. Thus, for w ∈ E with ‖w‖ > L, Bi(‖w‖) < ε‖w‖ holds. The fact
that Bi is nondecreasing on R

+ yields (Tiw)(t) ≤ Ti(‖w‖) for any w ∈ P, t ∈ [0, 1]. Since
Bi : R→ R

+ is an even function, ‖Tiw‖ ≤ Ti(‖w‖) holds for w ∈ E. Therefore,

‖Tiw‖ ≤ Ti
(‖w‖) < ε‖w‖, ∀w ∈ E with ‖w‖ > L,

that is, lim‖w‖→+∞ ‖Tiw‖
‖w‖ = 0.

Define (Hw)(t) = max{C1(T1w)(t), C2(T2w)(t)} for any w ∈ E, t ∈ [0, 1], where Ci =
maxt∈[0,1] ci(t), i = 1, 2. By lim‖w‖→+∞ ‖Tiw‖

‖w‖ = 0, lim‖u‖+‖v‖→+∞ ‖Tiu‖+‖Tiv‖
‖u‖+‖v‖ = 0 holds. There-

fore lim‖u‖+‖v‖→+∞ ‖Hu‖+‖Hv‖
‖u‖+‖v‖ = 0 holds. Then we obtain that H satisfies condition (C2) in

Lemma 2.8.
Take v0(t) ≡ b1 = maxt∈[0,1] b1(t) > 0, u0(t) ≡ b2 = maxt∈[0,1] b2(t) > 0, and (Fv)(t) =

f (t, v(t)), (Gu)(t) = g(t, u(t)) for t ∈ [0, 1], (u, v) ∈ E2, then it follows from (A1) that

(Fv + v0 + Hv, Gu + u0 + Hu) ∈ P2 for all (u, v) ∈ E2,

which shows that condition (C3) in Lemma 2.8 holds.
By (A3), there exist ε1 > 0 and a sufficiently large number L1 > 0 such that

f (t, x) ≥ λ1(1 + ε1)x, g(t, y) ≥ λ1(1 + ε1)y, ∀x, y ≥ L1. (3.1)

Combining (3.1) with (A2), the above constants b1, b2 satisfy

f (t, x) ≥ λ1(1 + ε1)x – b1 – c1B1(x),

g(t, y) ≥ λ1(1 + ε1)y – b2 – c2B1(y) for all x, y ∈R,

and so

(Fv, Gu) ≥ (
λ1(1 + ε1)v – b1 – Hv,λ1(1 + ε1)u – b2 – Hu

)
for all (u, v) ∈ E2. (3.2)

Since K is a positive linear operator, from (3.2), we have

(
(KFv)(t), (KGu)(t)

) ≥ (
λ1(1 + ε1)(Kv)(t) – Kb1 – (KHv)(t),

λ1(1 + ε1)(Ku)(t) – Kb2 – (KHu)(t)
) ∀t ∈ [0, 1], (u, v) ∈ E2.

Let m0(t) = (Kb1)(t), n0(t) = (Kb2)(t). Then condition (C4) in Lemma 2.8 is satisfied.



Liu et al. Advances in Difference Equations  (2018) 2018:306 Page 12 of 15

According to Lemma 2.8, we derive that there exists a sufficiently large number R > 0
such that

deg(I – A, BR, 0) = 0. (3.3)

From (A4), it follows that there exist 0 < ε2 < 1 and 0 < r < R such that

∣
∣f (t, x)

∣
∣ ≤ (1 – ε2)λ1|x|, ∣

∣g(t, y)
∣
∣ ≤ (1 – ε2)λ1|y|,

∀t ∈ [0, 1], x, y ∈R with |x| ≤ r, |y| ≤ r.

Thus

∣
∣(A1u)(t)

∣
∣ ≤ (1 – ε2)λ1

(
K |v|)(t), (A2v)(t)| ≤ (1 – ε2)λ1

(
K |u|)(t),

∀t ∈ [0, 1], u, v ∈ E with ‖u‖ ≤ r,‖v‖ ≤ r. (3.4)

Next we will prove that

(u, v) �= μA(u, v) for all (u, v) ∈ ∂Br and μ ∈ [0, 1]. (3.5)

If there exist (u1, v1) ∈ ∂Br and μ1 ∈ [0, 1] such that (u1, v1) �= μA(u1, v1), that is,

u1(t) = (A1v1)(t) = μ1

∫ 1

0
G(t, s)h(s)f

(
s, v1(s)

)
ds,

v1(t) = (A2u1)(t) = μ1

∫ 1

0
G(t, s)h(s)g

(
s, u1(s)

)
ds.

Let z(t) = |u1(t)| + |v1(t)|. Then z ∈ P and by (3.4),

z(t) ≤ (1 – ε2)λ1
[(

K |u1|
)
(t) +

(
K |v1|

)
(t)

]

= (1 – ε2)λ1
(
K

(|u1| + |v1|
))

(t) = (1 – ε2)λ1(Kz)(t).

The nth iteration of this inequality shows that z(t) ≤ (1 – ε2)nλn
1(Knz)(t) (n = 1, 2, . . .), so

‖z‖ ≤ (1–ε2)nλn
1‖Kn‖·‖z‖, that is, 1 ≤ (1–ε2)nλn

1‖Kn‖. This yields 1–ε2 = (1–ε2)λ1r(K) =
(1 – ε2)λ1 limn→∞ n√‖Kn‖ ≥ 1, which is a contradictory inequality. Hence, (3.5) holds.

It follows from (3.5) and Lemma 2.7 that

deg(I – A, Br , 0) = 1. (3.6)

By (3.3), (3.6), and the additivity of Leray–Schauder degree, we obtain

deg(I – A, BR \ Br , 0) = deg(I – A, BR, 0) – deg(I – A, Br , 0) = –1.

So A has at least one fixed point on BR \ Br , namely FBVP (1.1) has at least one nontrivial
solution. �
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4 Uniqueness
Theorem 4.1 Assume that (A1)–(A4) are satisfied. Moreover, the following conditions are
satisfied:

(A5) 0 <
∫ 1

0 gβ (s)h(s) ds < +∞ and there exists a constant k < [
∫ 1

0 ( s(1–s)α–1


(α–1) + gβ (s)
1–


)h(s) ds]–1

such that

∣
∣f (t, x) – f (t, y)

∣
∣ ≤ k|x – y|, ∣

∣g(t, x) – g(t, y)
∣
∣ ≤ k|x – y| for any x, y ∈R.

Then FBVP (1.1) has a unique solution.

Proof It follows from |f (t, x) – f (t, y)| ≤ k|x – y|, |g(t, x) – g(t, y)| ≤ k|x – y| for any x, y ∈ R

that (A1) holds. Then by Theorem 3.1, FBVP (1.1) has at least one nontrivial solution.
Suppose that FBVP (1.1) has two different solutions (u1(t), v1(t)) and (u2(t), v2(t)). By
Lemma 2.6, G(t, s) ≤ s(1–s)α–1


(α–1) + gβ (s)
1–


. Then from (A5) it follows that

‖u1 – u2‖ = max
t∈[0,1]

∣
∣(A1v1)(t) – (A1v2)(t)

∣
∣

≤ max
t∈[0,1]

∫ 1

0
G(t, s)h(s)

∣
∣f

(
s, v1(s)

)
– f

(
s, v2(s)

)∣
∣ds

≤ k‖v1 – v2‖ max
t∈[0,1]

∫ 1

0
G(t, s)h(s) ds

≤ k‖v1 – v2‖
∫ 1

0

(
s(1 – s)α–1


(α – 1)
+

gβ (s)
1 – 


)

h(s) ds

< ‖v1 – v2‖,

‖v1 – v2‖ = max
t∈[0,1]

∣
∣(A2u1)(t) – (A2u2)(t)

∣
∣

≤ max
t∈[0,1]

∫ 1

0
G(t, s)h(s)

∣
∣f

(
s, u1(s)

)
– f

(
s, u2(s)

)∣
∣ds

≤ k‖u1 – u2‖ max
t∈[0,1]

∫ 1

0
G(t, s)h(s) ds

≤ k‖u1 – u2‖
∫ 1

0

(
s(1 – s)α–1


(α – 1)
+

gβ (s)
1 – 


)

h(s) ds

< ‖u1 – u2‖.

By adding the above two inequalities, we obtain ‖v1 –v2‖+‖u1 –u2‖ < ‖v1 –v2‖+‖u1 –u2‖,
which is a contradictory inequality. Therefore (u1(t), v1(t)) = (u2(t), v2(t)) and FBVP (1.1)
has a unique solution. �

5 Examples
Example 5.1 Consider FBVP (1.1) with

β(t) =

⎧
⎪⎪⎨

⎪⎪⎩

0, [0, 1
3 ),

1
8 , [ 1

3 , 2
3 ),

1
2 , [ 2

3 , 1],
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h(t) = 1√
t(1–t) and

f (t, x) =

⎧
⎨

⎩

∑n
i=1(–1)iai – (1 + t2)|x| 1

3 ln(|x| + 1) + (1 + t2) ln 2, x ∈ (–∞, –1),
∑n

i=1 aixi, x ∈ [–1, +∞),

g(t, y) =

⎧
⎨

⎩

∑n
i=1(–1)iai – (1 + t4)|y| 1

3 ln(|y| 1
3 + 1) + (1 + t4) ln 2, y ∈ (–∞, –1),

∑n
i=1 aiyi, y ∈ [–1, +∞),

where 0 < a1 < λ1, an > 0. Obviously, 
 =
∫ 1

0 tα–1 dβ(t) = 1
8 ( 1

3 )α–1 + 3
8 ( 2

3 )α–1 < 7
24 < 1. Then h

is singular at t = 0, 1 and f , g are unbounded from below. Take c1(t) = 1 + t2, c2(t) = 1 + t4,
b1(t) =

∑n
i=1 ai + (1 + t2) ln 2, b2(t) =

∑n
i=1 ai + (1 + t4) ln 2, B1(x) = |x| 1

3 ln(|x| + 1), B2(x) =
|x| 1

3 ln(|x| 1
3 + 1). Then all the conditions in Theorem 3.1 are satisfied. Therefore, FBVP

(1.1) with the above β(t), h(t), f (t, x), g(t, y) has at least one nontrivial solution.

Example 5.2 Consider FBVP (1.1) with

β(t) =

⎧
⎨

⎩

0, [0, 1
3 ),

1
3 , [ 1

3 , 1],

f (t, x) = g(t, x) =

⎧
⎪⎪⎨

⎪⎪⎩

–a1 – (1 + t2) ln(|x| + 1) + (1 + t2) ln 2, x ∈ (–∞, –1),

a1x, x ∈ [–1, 1),

a2 + a2 ln(x + 1) + a1 – a2 – a2 ln 2, x ∈ [1, +∞).

h(t) = 
(α–1)
2(5a2+2)

√
t(1–t)α–1 , where 0 < a1 < λ1 < a2.

Take ci(t) = 1 + t2, bi(t) = a1 + (1 + t2) ln 2, Bi(x) = ln(|x|+ 1), i = 1, 2. Then (A2) is satisfied.
The choice of a1, a2 guarantees that (A3) and (A4) are satisfied. By some simple compu-
tation, we obtain that 
 =

∫ 1
0 tα–1 dβ(t) = 1

3α < 1, |f (t, x) – f (t, y)| ≤ (a1 + 3
2 a2 + 1)|x – y|,

|g(t, x)–g(t, y)| ≤ (a1 + 3
2 a2 +1)|x–y| for any x, y ∈R and

∫ 1
0 ( s(1–s)α–1


(α–1) + gβ (s)
1–


)h(s) ds < 4
3(5a2+2) .

Hence (A5) holds. So FBVP (1.1) with the above β(t), h(t), f (t, x), g(t, y) has a unique solu-
tion.
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