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Abstract
The computation of the viability kernel provides the guarantee for the security
evolution of the systems. In this paper, we focus on the computation of the viability
kernel for discrete-time and continuous-time switched systems. A connection
between the backward reachable set and the viability kernel for switched systems is
established. The methods of computing the viability kernel for switched systems are
constructed by using this connection. First, a method of computing the viability
kernel for discrete-time switched systems is proposed. Then, taking into account the
special structure of switched linear systems, a simple algorithm that is easy to
implement is developed. Moreover, the methods of dealing with the discrete systems
are extended to the continuous systems, and the algorithms of computing the
viability kernel for continuous-time switched systems and switched linear systems are
proposed. Finally, examples are listed to illustrate the effectiveness of the main results.
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1 Introduction
The problem of viability [1] concerns the dynamic evolutions governed by complex sys-
tems under uncertainty that are found in many domains involving living beings, from bi-
ological evolution to economics [2], from environmental sciences to financial markets [3,
4], from control theory to cognitive sciences [5–7]. It aims at controlling dynamical sys-
tems with the goal to maintain the state of the systems inside a given set which we called
the constraint set or safe region. Determining the viability on a constraint set has been
researched in the references [8–12]. When faced with the constraint set that is not viable,
one would like to establish a subset of the constraint set that is viable. This subset is said
to be the viability kernel (or the maximal invariant set).

Computation of the viability kernel for dynamical systems is a fundamental problem in
the viability theory. It has traditionally been computed using the viability kernel algorithm
[13] and level set approach [14]. However, these methods require gridding the state space,
and hence their time and memory complexity grow exponentially with the state dimen-
sion. Thus, these methods are feasible only for dynamical systems with low dimension. To
overcome this limitation, researchers considered the same problem by using dynamic pro-
gramming [15] and support vector machines [16]. Recently, Maidens in [17] proposed an
algorithm of computing the viability kernel by using backward reachable set for dynamical
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systems. Since there are some efficient techniques for computing the maximal reachable
set in [18, 19], these methods can be used to compute the viability kernel [17].

Switched systems, which consist of two or more subsystems and a switching signal or-
chestrating switching between these subsystems, have attracted a growing interest in re-
cent years. The viability kernel for switched systems has been largely studied, and several
results have been reported in [20–28]. Aubin and Lygeros introduced a notion of hybrid
strategy and proved convergence of the iterative algorithm by using non-smooth analysis
tools in [23]. Margellos and Lygeros proposed a method of computing the viable set for hy-
brid systems [24] in the context of optimal control, and a complete characterization of the
computation of the viable set was provided based on dynamic programming. Haimovich
et al. in [25] also developed a method of computing the invariant set for continuous-time
switched linear systems with disturbances and arbitrary switching. Abate and Prandini
in [26] studied probabilistic reachability over a finite horizon for a class of discrete time
stochastic hybrid systems. Lygeros et al. in [27] presented some simple properties of the
invariant sets for hybrid automata, and the invariance principle was extended to hybrid
automata. By establishing a link between reachability, viability, and invariance problems
and viscosity solutions of a special form of the Hamilton–Jacobi equation, the numeri-
cal algorithm developed for the approximation of viscosity solutions to partial differential
equations was extended to viability and invariance computation in [28].

It should be noted that all the methods in [23–25, 28] have certain limitations when they
are executed. The first is that many conditions must be satisfied in the implementation of
the algorithms. In order to guarantee the convergence of these algorithms, we need to
compute the maximal fixed point of a monotone operator on a complete lattice of closed
sets in [24] and determine the transformation matrix satisfying certain properties in [25].
The given set must be open and the partial differential equation must have a special form
(standard Hamilton–Jacobi form, continuity of the Hamiltonian, and simple boundary
conditions) in [28]. Thus, the convergence conditions are too strong. Moreover, because of
the large amount of computation and considerable time consumption, the implementation
of the algorithms is difficult. To overcome these limitations, we restrict our attention to
switched linear systems. Since they have a special structure, the limitations of [23–25, 28]
can be solved effectively. Thus, we try to design a simple method of computing the viability
kernel for switched linear systems.

The organization of the paper is as follows. In Sect. 2 we introduce some necessary pre-
liminaries. Section 3 discusses the computation of the viability kernel for discrete-time
switched systems and develops a simple algorithm for discrete-time switched linear sys-
tems. Furthermore, we compute the viability kernel for continuous-time switched systems
and propose an algorithm for switched linear systems in Sect. 4. We provide several ex-
amples in Sect. 5.

2 Preliminaries
Consider the following switched system:

⎧
⎨

⎩

L(x(t)) = fσ (t)(x(t), u(t)),

u(t) ∈ U ,
(2.1)

where the state x ∈ Rn, the control u ∈ U , U ⊂ Rm, the function fσ : Rn × U → Rn, and the
time t ranges over a time domain T , which can be either continuous (T = [0, τ ] ∩ R+)
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or discrete (T = [0, τ ] ∩ Z+). If 0 < τ < ∞, problem (2.1) is said to have a finite hori-
zon; if τ = ∞, it is said to have an infinite horizon. L(·) denotes the derivative operator
for continuous-time switched systems or the difference operator for the case of discrete-
time. σ (t) : [t0, +∞) → � is a switching signal that is a piecewise constant function of time
t and takes values at the sampling times in a finite set � = {1, . . . , N}, where N > 1 is the
number of subsystems. σ (t) = i (i ∈ �) denotes that the subsystem fi is activated. We as-
sume that the functions fi (i ∈ �) are sufficiently smooth to guarantee the existence and
uniqueness of solutions to the corresponding initial value problems. We refer to the se-
quence t0, t1, . . . , ts as a switching time sequence, and the sequence σ (t0),σ (t1), . . . ,σ (ts) as
a switching index sequence. It is clear that these two sequences can uniquely determine
the switching path, and vice versa.

In order to discuss the method of computing the viability kernel conveniently, we present
some important features of switched systems. Switched systems are dynamical systems
that consist of a finite number of subsystems and a logical rule that orchestrates switching
between these subsystems. Therefore, one of the features of switched systems is multi-
subsystem. In addition, switched systems could not be guaranteed to be stable even if all
subsystems are stable. Switching rule may be designed to stabilize switched systems even
if all subsystems are unstable. According to the discussion above, the computation of the
viability kernel is affected by the switching rules and subsystems.

We start with some notions, which will be used later on.

Definition 1 Let K ⊂ Rn. The viability kernel of system (2.1) on the set K over the time
horizon T is defined as follows:

ViabT (K) =
{

x0 ∈ K |∃u0 : T → U ,∀t ∈ T , x(t) ∈ K
}

. (2.2)

Obviously, ViabT (K) contains all initial states in K for which there exists an input such
that the trajectories starting from those states remain within K for all time t ∈ T .

Definition 2 The backward reachable set from K at time t is defined as follows:

Reacht(K) =
{

x0 ∈ Rn|∃u0 ∈ U , x(t) ∈ K
}

. (2.3)

In fact, the backward reachable set contains all initial states for which there exists an input
such that the trajectories emanating from those states reach K exactly at time t.

The viability theory is concerned with ensuring that the state of a system remains within
the given set for the duration of a known (possibly infinite) time horizon. Any trajectory
of a system that leaves the given set at some point in time is considered to be no longer
viable. The reachability analysis provides us a method of simulating all possible trajectories
of a dynamical system under all possible inputs. In fact, the reachability is concerned with
determining if any trajectories of a system that begin in a set of initial conditions can reach
a set of terminal states. Both of them study the evolution of dynamical systems under the
inputs and the state constraints. Thus, there is a close connection between the viability
theory and the constrained reachability. The connection was used to compute the viability
kernel for dynamical systems in [17]. In the rest of the paper, we extend the method to
switched systems for approximating the viability kernel.
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3 The viability kernel of discrete-time switched systems
In this section, we establish a connection between the viability kernel and the reachable set
for discrete-time switched systems. Then, we discuss algorithms of computing the viability
kernel in terms of the reachable set.

3.1 Discrete-time switched systems
We consider the discrete-time switched systems as follows:

x(t + 1) = fσ (t)
(
x(t), u(t)

)
, (3.1)

where the time t ∈ T = [0, τ ]∩Z+ and switching signal σ ∈ � = {1, . . . , N}. We next discuss
how to compute the viability kernel on the given region K by using the maximal reachable
set. As we know, the viability kernel for discrete-time dynamical systems can be computed
using Saint-Pierre’s viability kernel algorithm (see [13]). In the light of Saint-Pierre’s via-
bility kernel algorithm, we give an iterative formula of the viability kernel Kn+1 := ViabT (K)
for system (3.1) on the finite horizon T = [0, n + 1] ∩ Z+:

⎧
⎨

⎩

K0 = K ,

Kn+1 = {x ∈ Kn|Kn ∩ F(x) 	= ∅},
(3.2)

where F(x) = {fσ (x, u)|u ∈ U ,σ ∈ �}. We replace the finite horizon viability kernel Kn in
(3.2) by the backward reachable set. Then we obtain the following theorem.

Theorem 1 The viability kernel over a finite horizon T = [0, n + 1] ∩ Z+ for system (3.1)
on the set K can be computed by the following recursive formula:

⎧
⎨

⎩

K0 = K ,

Kn+1 = K0 ∩ Reach1(Kn).
(3.3)

Proof System (3.1) can be written as the difference inclusion

x(t + 1) ∈ F
(
x(t)

)
, t = 0, 1, . . . , n,

where F(x) = {fσ (x, u)|u ∈ U ,σ ∈ �}. First, we prove the following formula:

ViabT (K) = Kn ∩ Reach1(Kn). (3.4)

By the definition of ViabT (K) and (3.2), we have x ∈ Kn and Kn ∩ F(x) 	= ∅ when x ∈
ViabT (K). It means that there exists y such that y ∈ Kn and y ∈ F(x). Then there exist u ∈ U
and σ ∈ � such that y = fσ (x, u). Thus, we have u ∈ U and σ ∈ � such that fσ (x, u) ∈ Kn.
According to (2.3) and x ∈ Kn, we have x ∈ Reach1(Kn). Moreover, we obtain that x ∈
Kn ∩ Reach1(Kn). Similarly, we concluded that x ∈ ViabT (K) form x ∈ Kn ∩ Reach1(Kn).
This means that

ViabT (K) = Kn ∩ Reach1(Kn).



Lv and Gao Advances in Difference Equations  (2018) 2018:297 Page 5 of 17

Therefore, we only need to prove that

Kn ∩ Reach1(Kn) = K0 ∩ Reach1(Kn).

According to (3.4), we have

Kn+1 = Kn ∩ Reach1(Kn),

which implies that

Kn+1 ⊆ Kn ⊆ · · · ⊆ K1 ⊆ K0

and

Reach1(Kn) ⊆ Reach1(Kn–1) ⊆ · · · ⊆ Reach1(K1) ⊆ Reach1(K0).

Thus, we get

Kn+1 = K0 ∩ Reach1(K0) ∩ Reach1(K1) ∩ · · · ∩ Reach1(Kn)

= K0 ∩ Reach1(Kn).

This completes the proof of the theorem. �

Theorem 1 gives us a method of constructing a finite horizon viability kernel for
discrete-time switched systems (3.1). In (3.3), we compute the viability kernel by K0 ∩
Reach1(Kn) instead of Kn ∩ Reach1(Kn), though they are equivalent when the reachable
set and the operation of intersections can be computed exactly. In fact, K0 is simpler and
more precise in implementation than Kn. Thus, we construct the viability kernel by recur-
sive formula (3.3). In what follows, the key problem we need to solve is the computation
of the reachable set for switched systems.

The computation of the reachable set for dynamical systems is given in [17]. The reach-
able states of dynamical systems are affected by the system and the control input. Since
switched systems have many subsystems, the trajectories of switched systems are re-
stricted by multiple subsystems and the reachability is also affected by the switching rules.
Different switching rules lead to different reachable states. Thus, the computation of the
reachable set for switched systems is more complex than for dynamical systems. We as-
sume that the switching rules are arbitrary switches. In this case, we need to compute
the possible reachable region for every subsystem. Then the reachable set for switched
systems is obtained by taking the union of all the reachable regions.

We next illustrate the computation process of the reachable set Reach1(K) for system
(3.1) on the set K over a unit time step in detail. First, we need to compute the reachable
set of K for every subsystem fσ (x, u), σ ∈ �, and the obtained set is denoted by Reachσ

1 (K),
σ ∈ �. So we get N reachable sets. Then the set Reach1(K) can be got by intersecting these
N reachable sets

Reach1(K) =
N⋃

i=1

Reachi
1(K).
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Algorithm 1 The viability kernel of discrete-time switched systems
Let K0 ← K

l ← 0
while l ≤ n do

if Kl = ∅ then
Kn ← ∅

break
endif
if Kl = Kl–1 then

Kn ← Kl

break
endif
L ← ⋃N

i=1 Reachi
1(Kl)

Kl+1 ← K0 ∩ L
l ← l + 1

end while
return Kn

The amount of the computation is proportional to the number of the subsystems. When
the number of the subsystems is higher, the amount of the computation is greater.

According to Theorem 1, an algorithm of computing the viability kernel for system (3.1)
over a finite horizon T = [0, n] ∩ Z+ is proposed (see Algorithm 1).

Algorithm 1 transforms the computation of the viability kernel on a finite horizon into
the computation of the reachable set for finite times. The main advantages of Algorithm 1
are as follows: The first is that the key problem in the iteration is the computation of
the reachable set. Many researchers are devoted to the computation of the reachable set
for dynamical systems, and many methods of computing the reachable set are proposed.
Since the methods of computing the reachable set for dynamical systems are extended to
switched systems, Algorithm 1 is available in practice. The second is that the set obtained
from Algorithm 1 is the exact viability kernel of system (3.1) on the given set.

3.2 Discrete-time switched linear systems
Algorithm 1 can be applied to switched nonlinear systems in theory. However, the com-
putation process of nonlinear systems is rather complex and troublesome. The complexity
of computing the reachable set lies in the part of nonlinear continuous evolution. Thus,
we consider the viability kernel for switched linear systems. Due to the special structure
of linear systems, which have some special properties, we discuss a simple algorithm of
computing the viability kernel for switched linear systems. In this subsection, we consider
the following discrete-time switched linear systems:

x(t + 1) = Aσ x(t) + Bσ u(t), (3.5)

where the state x ∈ Rn, the time t ∈ T = [0, n] ∩ Z+, the control input u ∈ U , U is a com-
pact set, and switching signal σ takes values in a finite set � = {1, . . . , N}. Aσ ∈ Rn×n is
an invertible matrix and Bσ ∈ Rn×m. As we know, any region can be approximated by a
polytope. Thus, we suppose that both the sets K and U are polytopes. In the following, we
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develop an efficient algorithm of computing the backward reachable set for system (3.5)
on the constraint set K .

Due to the special structure of linear systems, (3.5) can be rewritten as

x(t + 1) = Aσ x(t) – v(t),

where v(t) ∈ Vσ = {–Bσ u|u ∈ U}. In the case of discrete-time, the backward reachable set
of subsystem A1 over a unit time step is computed as follows:

Reach(K) = A–1
1 (K ⊕ V1). (3.6)

The operator ⊕ means the Minkowski sum of two sets. A–1
1 (·) denotes the preimage of a

set under the map A1. Similarly, the backward reachable set of subsystem Al(l = 2, . . . , N)
over a unit time step is obtained by

Reach(K) = A–1
l (K ⊕ Vl). (3.7)

According to the discussion above, we get the reachable set of system (3.5) on the set K as
follows:

Reach(K) = A–1
1 (K ⊕ V1) ∪ · · · ∪ A–1

N (K ⊕ VN )

=
N⋃

i=1

A–1
i (K ⊕ Vi), (3.8)

where Vi = {–Biu|u ∈ U}, i ∈ �.
Formula (3.8) gives us a method of computing the reachable set in the case of linear

systems. In this method, the computation of the reachable set is transformed into several
operations on the sets. As long as the matrices of all the subsystems are invertible, the
reachable set can be expressed by (3.8). It is true for linear systems, but not for nonlinear
systems. From (3.8), the computation of the reachable set involves the operations per-
formed on sets including Minkowski sum, linear transformation, and union. In addition,
it is easy to see that the operation of intersection on sets is required in the computation
of the viability kernel. In the following, we illustrate the processes of these operations per-
formed on sets of polytopes.

Let

K =
{

x ∈ Rn|H1x ≤ b1
}

,

V =
{

x ∈ Rn|H2x ≤ b2
}

.
(3.9)

We can compute the preimage of K under the linear transformation Ai as follows:

A–1
i K =

{
x ∈ Rn|H1A–1

i x ≤ b1
}

.



Lv and Gao Advances in Difference Equations  (2018) 2018:297 Page 8 of 17

The intersection and union of K and V can also be easily computed, respectively.

K ∩ V =

{

x ∈ Rn

∣
∣
∣
∣
∣

[
H1

H2

]

x ≤
[

b1

b2

]}

,

K ∪ V =
{

x ∈ Rn|H1x ≤ b1 or H2x ≤ b2
}

.

However, the Minkowski sum is difficult to compute using the representations as (3.9).
We need to convert them to another form. In fact, a polytope can also be expressed by its
vertices (see [29])

P = co{v1, . . . , vs} =

{ s∑

i=1

λivi

∣
∣
∣
∣λi ≥ 0,

s∑

i=1

λi = 1

}

,

where v1, v2, . . . , vs are vertices of P. Similarly, K and V have the following representations:

K = co{w1, . . . , wm},
V = co{v1, . . . , vn},

(3.10)

where w1, . . . , wm and v1, . . . , vn are vertices of K and V , respectively.
In fact, (3.10) is equivalent to (3.9). This is a well-studied problem, and many algorithms

have been proposed to solve it. Then the Minkowski sum of K and V is given as follows
[29]:

K ⊕ V = co
{

wi + vj|i = 1, . . . , m; j = 1, . . . , n
}

.

Moreover, the set K ⊕ V is also a polytope.
According to the discussion above, we can give a method of computing the reachable

set on the polyhedral constraint set and the polyhedral input set. Applying (3.8) to Algo-
rithm 1, we obtain an algorithm of computing the viability kernel for system (3.5) on the
finite horizon T (see Algorithm 2).

It should be noted that the formula of computing the reachable set can be expressed by
the operations on the constraint set and the control input set. Moreover, we get the via-
bility kernel by implementing the operations on sets including intersection, union, linear
transformation, and Minkowski sum. These operations are easy to implement when both
the constraint set and the control input set are polytopes. Therefore, the algorithm has a
small amount of computation.

3.3 Analysis of the algorithms
We next give some basic properties of Algorithms 1, 2.

Theorem 2 If Algorithm 1 terminates with l < n and Kl = ∅, then Viab[0,n]∩Z+ (K) =
∅ and Viab[0,∞)∩Z+ (K) = ∅. If Algorithm 1 terminates with l < n and Kl = Kl–1, then
Viab[0,n]∩Z+ (K) = Kl and Viab[0,∞)∩Z+ (K) = Kl .

Proof The viability kernel over a finite horizon T = [0, n] ∩ Z+ is empty when Algorithm 1
terminates with l < n and Kl = ∅. It means that all the trajectories of system (3.1) starting at
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Algorithm 2 The viability kernel of discrete-time switched linear systems
Let K0 ← K

l ← 0
while l ≤ n do

if Kl = ∅ then
Kn ← ∅

break
endif
if Kl = Kl–1 then

Kn ← Kl

break
endif
L ← ⋃N

i=1 A–1
i (Kl ⊕ Vi)

Kl+1 ← K0 ∩ L
l ← l + 1

end while
return Kn

the given region K will leave K at the kth (k ≥ l) step of the algorithm. Thus, the viability
kernel over an infinite horizon is also empty, that is, Viab[0,∞)∩Z+ (K) = ∅.

If Algorithm 1 terminates with l < n and Kl = Kl–1, according to Theorem 1, the viability
kernel over a finite horizon T is Viab[0,n]∩Z+ (K) = Kl . In fact, at the kth (k > l) step of the
algorithm, we have

Kk = Kl. (3.11)

Equation (3.11) still holds when k tends to infinity. This tells us that Viab[0,∞)∩Z+ (K) = Kl .
This completes the proof of the theorem. �

Algorithm 2 is a special case of Algorithm 1, thus it has the same conclusion.

4 The viability kernel of continuous-time switched systems
In this section, we discuss the computation of the viability kernel for continuous-time
switched systems. By discretizing continuous-time systems, two efficient algorithms of
approximating the viability kernel are developed by using the result of Sect. 3.

4.1 Continuous-time switched systems
Consider the following system:

ẋ(t) = fσ (t)
(
x(t), u(t)

)
, (4.1)

where the function fσ is bounded by M > 0 on the constraint set K ⊆ Rn. It means that for
all x ∈ K and u ∈ U , we have ‖fσ (x(t), u(t))‖ ≤ M,σ ∈ �. We define a distance of a point
x ∈ Rn from a nonempty set S ⊂ Rn as follows:

dS(x) = inf
s∈S

‖x – s‖. (4.2)
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In the following, we compute an under-approximation of the viability kernel for system
(4.1) on the finite horizon T = [0, τ ]. Given a discretization time step δ, define an under-
approximation of the viability constraint set

Kδ =
{

x ∈ K |dKc (x) ≥ δM
}

. (4.3)

Kδ approximates to K by the distance δM because we only consider the state at discrete
times tk = kδ. For any interval [tk , tk+1], the solution of (4.1) does not leave K at any time
t ∈ [tk , tk+1]. In fact, a solution x(t) of (4.1) can travel a distance of at most δM from its
initial state x(tk).

∥
∥x(tk) – x(t)

∥
∥ ≤

∫ t

tk

∥
∥ẋ(τ )

∥
∥dτ ≤ M(t – tk) ≤ δM.

Thus, we define the recursive formula as follows:

⎧
⎨

⎩

K0(δ) = Kδ ,

Kn+1(δ) = K0(δ) ∩ Reachδ(Kn(δ)).
(4.4)

At each step, we compute the set of states from which Kn(δ) is reachable, and then intersect
this set with K0(δ). Each computed set Kn(δ) is an approximation of the finite horizon
viability kernel Viab[0,τ ](K) for τ = nδ.

Theorem 3 Assume that fσ is bounded by M > 0 on the set K for all σ ∈ �. For any time
step δ, the set {Kn(δ)} produced by (4.4) satisfies

Kn(δ) ⊆ Viab[0,nδ](K). (4.5)

Proof In order to obtain the reachable set of Kn(δ) for system (4.1), we first compute the
reachable set of Kn(δ) for every subsystem fσ (x, u), σ ∈ {1, . . . , N}. Thus, we get N reachable
sets. So the reachable set Reachδ(Kn(δ)) can be obtained by intersecting these N reachable
sets. The rest of the proof is similar to that of Theorem 2 in [17]. This completes the proof
of the theorem. �

Theorem 4 Suppose that fσ is bounded by M > 0 on the set K for all σ ∈ �. For any time
step δ, the set {Kn(δ)} produced by (4.4) satisfies

Viab[0,τ ]
(
int(K)

) ⊆
⋃

n∈N

Kn(δ) ⊆ Viab[0,τ ](K). (4.6)

Proof According to (4.5) and Theorem 3 in [17], the set {Kn(δ)} produced by (4.4) satisfies
(4.6). This completes the proof of the theorem. �

According to (4.5) and (4.6), the set Kn(δ) produced by (4.4) is an under-approximation
of the finite horizon viability kernel Viab[0,τ ](K) for τ = nδ. Then we get an algorithm of
computing a finite horizon viability kernel for system (4.1) on the constraint set K (see
Algorithm 3).
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Algorithm 3 The viability kernel of continuous-time switched systems
Choose δ > 0
n ← τ

δ

K0 ← Kδ

l ← 0
while l ≤ n do

if Kl = ∅ then
Kn ← ∅

break
endif
if Kl = Kl–1 then

Kn ← Kl

break
endif
L ← Reach[0,δn](Kl)
Kl+1 ← K0 ∩ L
l ← l + 1

end while
return Kn

Algorithm 3 gives us a method of computing the viability kernel over a finite horizon
for continuous-time switched systems. The main iterative process of the algorithm is as
follows. First, we define an under-approximation K0(δ) of the given set and compute the
set of backward reachable states from K0(δ). Next, we intersect the backward reachable
set with K0(δ) to get K1(δ) and compute the reachable set from K1(δ). Then, we intersect
the reachable set with K0(δ) to get a new set K2(δ). By repeating this process, we eventually
reach an under-approximation of the viability kernel.

4.2 Continuous-time switched linear systems
Since linear systems have special structure and some special properties, it is more con-
venient to compute the reachable set. Thus, we consider a simple algorithm of approxi-
mating the viability kernel for switched linear systems. Let us restrict our attention to the
following system:

ẋ(t) = Aσ x(t) + Bσ u(t), (4.7)

where the state x ∈ Rn, the time t ∈ T = [0, τ ]∩R+, the control input u ∈ U , U is a compact
and convex set, and switching signal σ takes values in a finite set � = {1, . . . , N}. Aσ ∈ Rn×n

is an invertible matrix and bounded by M and Bσ ∈ Rn×m. Before computing the backward
reachable set of system (4.7) on the constraint set K , we introduce a notion of Hausdorff
distance.

Definition 3 Let X, Y be nonempty compact convex subsets of Rn. The Hausdorff dis-
tance of X and Y is defined as follows:

dH (X, Y ) = max
{

sup
x∈X

inf
y∈Y

‖x – y‖, sup
y∈Y

inf
x∈X

‖x – y‖
}

. (4.8)
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We next compute an approximation of the reachable set by discretizing system (4.7).
By choosing a time step δ, the number of time steps is n = τ

δ
. Suppose that the control

u(t) = ũ(ti) is constant over the time interval [ti, ti+1], i = 0, 1, . . . , n–1. We discretize system
(4.7) by using Eulerian method, then we have

⎧
⎨

⎩

x̃(ti+1) = x̃(ti) + δ(Aσ x̃(ti) + Bσ ũ(ti)),

ũ(ti) ∈ U , i = 0, 1, . . . , n – 1.
(4.9)

Applying Theorem 1 of [30] to system (4.7) and the corresponding discretization system
(4.9), we obtain the following result.

Theorem 5 Suppose that Reach[0,δn](Kl) and R̃each[0,δn](Kl) are the backward reachable
sets of systems (4.7) and (4.9) on the set Kl over the time interval [tl, tl+1], respectively. Then
there exists a constant C such that

dH
(
Reach[0,δn](Kl), R̃each[0,δn](Kl)

) ≤ Cδ, (4.10)

where δ is a discretization time step.

Proof The conclusion can be established by following Theorem 1 in [30]. This completes
the proof of the theorem. �

Theorem 5 shows us that the Hausdorff distance between the reachable sets
Reach[0,δn](Kl) and R̃each[0,δn](Kl) has an upper bound, and the distance is proportional
to the size of δ. Moreover, when δ is smaller, the upper bound of the associated Hausdorff
distance is smaller. Theorem 5 provides us a theoretical basis for using R̃each[0,δn](Kl) ap-
proximating to Reach[0,δn](Kl), that is, we can obtain an approximation of the reachable
set for a continuous-time system by computing the reachable set for the corresponding
discretization system. Thus, we only need to compute the reachable set for system (4.9),
which is equivalent to the following system:

x̃(t + 1) = (I + δAσ )x̃(t) + δBσ ũ(t). (4.11)

I is an identity matrix. Setting Vσ = –δBσ U = {–δBσ ũ(t)|ũ(t) ∈ U}, the reachable set over
a single time step can be computed as follows:

R̃each[0,δn](Kl) = (I + δAσ )–1(Kl ⊕ Vσ ). (4.12)

Since Aσ is non-singular, we assume that λ1, . . . ,λnN are the eigenvalues of the matrices
A1, . . . , AN , respectively. When the time step δ satisfies the following condition

δ < min

{
1
λ1

, . . . ,
1

λnN

}

, (4.13)

then the matrix I + δAσ is non-singular for any σ ∈ �. Thus, (4.12) is meaningful.
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Algorithm 4 The viability kernel of continuous-time switched linear systems
Choose δ > 0
n ← τ

δ

K0 ← Kδ

l ← 0
while l ≤ n do

if Kl = ∅ then
Kn ← ∅

break
endif
if Kl = Kl–1 then

Kn ← Kl

break
endif
L ← ⋃N

σ=1(I + δAσ )–1(Kl ⊕ Vσ )
Kl+1 ← K0 ∩ L
l ← l + 1

end while
return Kn

Based on Algorithm 3 and (4.12), we propose an algorithm of computing an approxima-
tion of the viability kernel for system (4.7) (see Algorithm 4).

Algorithm 4 is the development of Algorithm 3 in the case of linear systems. The compu-
tation of the reachable set has been simplified. Moreover, an approximation of the viability
kernel can be obtained by computing the viability kernel of the corresponding discretiza-
tion system. The approximation error can be made arbitrarily small by choosing δ small
enough.

Algorithms 3 and 4 have the same properties as listed in Theorem 2. The proof is similar
to that of Theorem 2, and we do not illustrate it in detail.

5 Illustrative examples
5.1 Example 1
Consider the following discrete-time switched linear system:

A1 =

(
0 1

–1 0

)

, A2 =

(
–1 1
0 1

)

, B1 =

(
1 0
0 1

)

, B2 =

(
0 1
1 0

)

, (5.1)

where the state x ∈ R2, the time t ∈ T = [0, n] ∩ R+, the control input u ∈ U ⊂ R2. We
assume that the control input set

U =
{

u = (u1, u2)T|–0.3 ≤ ui ≤ 0.3, i = 1, 2
}

, (5.2)

and the state constraint set

K =
{

x = (x1, x2)T|–0.5 ≤ xi ≤ 0.5, i = 1, 2
}

. (5.3)
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Figure 1 Viability constraint (5.3) (red) and the corresponding viability kernel (green) for (5.1) by using
Algorithm 2

We next compute the viability kernel for system (5.1) on the state constraint set (5.3) with
a horizon of 40 steps. The viability kernel can be obtained by using Algorithm 2, the result
shows in Fig. 1.

Figure 1 shows us that the red region is the viability constraint set, and the green region
is the viability kernel for system (5.1).

5.2 Example 2
Consider the following continuous-time switched linear system:

A1 =

(
–1 –1
1 –1

)

, A2 =

(
–1 –10
0.1 –1

)

,

B1 =

(
1 0
0 1

)

, B2 =

(
0 1
1 0

)

.

(5.4)

The control input set and the state constraint set are given by (5.2) and (5.3), respec-
tively. We compute the viability kernel of system (5.4) on the region (5.3) with the time
horizon [0, 4]. Choosing the time step δ = 0.1, we discretize system (5.4). Then we obtain
an approximation of the viability kernel by using Algorithm 4. The result shows in Fig. 2.

5.3 Example 3
Consider the following discrete-time switched linear system:

A1 =

⎛

⎜
⎝

–1 0 0
0 1 0
1 0 1

⎞

⎟
⎠ , A2 =

⎛

⎜
⎝

1 0 1
0 1 0
0 0 1

⎞

⎟
⎠ , B1 = B2 = I, (5.5)
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Figure 2 Viability constraint (5.3) (red) and the corresponding viability kernel (green) for (5.4) by using
Algorithm 4

where I is an identity matrix, the state x ∈ R3, the time t ∈ T = [0, n] ∩ R+, the control
input u ∈ U ⊂ R3. We assume that the control input set

U =
{

u = (u1, u2, u3)T|–0.03 ≤ ui ≤ 0.03, i = 1, 2, 3
}

, (5.6)

and the state constraint set

K =
{

x = (x1, x2, x3)T|–0.5 ≤ xi ≤ 0.5, i = 1, 2, 3
}

. (5.7)

We next compute the viability kernel for system (5.5) on the state constraint set (5.7) with
a horizon of 10 steps. The viability kernel can be obtained by using Algorithm 2, the result
shows in Fig. 3.

6 Conclusions
We established a connection between the viability and the reachability, which enables us to
compute the viability kernel for switched systems in terms of the backward reachable sets.
For the discrete-time switched systems, the viability kernel over a finite horizon can be
computed exactly by using the algorithm we proposed. According to the special structure
of switched linear systems, we obtained a simple algorithm that is easy to implement.
For the continuous-time switched systems, we got an approximation of the true viability
kernel by computing the viability kernel of the corresponding discretization system. The
approximation error can be made arbitrarily small by choosing the time step small enough.
The method is simple when the systems are linear. The effectiveness of the obtained results
has been verified through numerical examples.
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Figure 3 Viability constraint (5.7) (grey) and the corresponding viability kernel (green) for (5.5) by using
Algorithm 2
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