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Abstract
This paper addresses the dynamic output feedback control problem for a class of
discrete-time planar switched nonlinear systems with time-varying delays and
multiple subsystems. First, the virtual state feedback control law is designed based on
adding a power integrator approach. Secondly, the nonlinear reduced-order
compensator is designed for the subsystems of the planar switched nonlinear
systems under arbitrary switchings. Then, the dynamic output feedback controller is
constructed based on the virtual state feedback control law and the nonlinear
reduced-order compensator. By introducing the new discrete Lyapunov–Krasovskii
functional, it can be seen that the solutions of the closed-loop system converge to an
adjustable bounded region. Compared with the previous works, the subsystems of
this planar switched system may contain the uncontrollable/unobservable Jacobian
linearizations. In addition, the obtained results are further extended to the general
nonlinear case and one-link manipulator case with the motor dynamics. Finally, two
simulation examples are performed to show the effectiveness of the proposed
method.

Keywords: Planar switched systems; Time-varying delays; Adding a power
integrator approach; Dynamic output feedback; Lyapunov–Krasovskii functional

1 Introduction
The planar switched nonlinear system is a challenging topic of control technology with a
number of traditional and potential applications. The planar switched systems consist of
some subsystems described by the difference or differential equations [1]. In addition, the
switching control laws are often employed to orchestrate the switching between these sub-
systems [2]. Many applications of planar switched nonlinear systems have advantages in
the practice industry. The different characteristics of switched systems, especially the sys-
tem feedback stabilization and asymptotic stability, have attracted much more attention
[3]. The Lyapunov–Krasovskii functional method is a very important technique for the
controller design of a planar switched nonlinear system, and the obtained results are often
given in the form of linear matrix inequalities (LMIs) [4]. Stability analysis of the switched
systems is often implemented with a common Lyapunov–Krasovskii functional and mul-

© The Author(s) 2018. This article is distributed under the terms of the Creative Commons Attribution 4.0 International License
(http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduction in anymedium, pro-
vided you give appropriate credit to the original author(s) and the source, provide a link to the Creative Commons license, and
indicate if changes were made.

https://doi.org/10.1186/s13662-018-1754-0
http://crossmark.crossref.org/dialog/?doi=10.1186/s13662-018-1754-0&domain=pdf
http://orcid.org/0000-0003-3669-5636
mailto:xiaoxiong19871110@163.com


Zheng et al. Advances in Difference Equations  (2018) 2018:312 Page 2 of 20

tiple Lyapunov–Krasovskii functionals [5]. A common Lyapunov–Krasovskii functional
is used to discuss the stability of switched systems under arbitrary switching; however,
the construction of the common Lyapunov–Krasovskii functional is a difficult task and
there are only few results for some special systems [5]. Multiple Lyapunov–Krasovskii
functionals method is often used in the stability analysis of slowly switched systems [6].
With the help of the proper switching signals, such as the dwell time and average dwell
time switching signals, the stability analysis can be approached by the virtue of multiple
Lyapunov–Krasovskii functionals. However, how to design a proper Lyapunov–Krasovskii
functional for the switched nonlinear systems is generally a difficult task [7]. By employing
the Lyapunov–Krasovskii method, some new results were obtained based on the sleeping
strategy optimization strategy in [8].

It is well known that the time-delay issues are encountered frequently in various en-
gineering systems and can be a cause of instabilities [9]. The information transmission
among the subsystems often induces the time-delays in the planar switched nonlinear
systems [10]. On the other hand, with the rapid development of an industrial nonlinear
system, planar switched systems play a more and more important role in the nonlinear
system, the stability analysis and controller design problem is increasingly concerned and
studied. To deal with this problem, many important techniques are presented to design
the intelligent controllers. An efficient method to tackle this problem is to use the adaptive
control scheme such as the adaptive generalized predictive and the model predictive meth-
ods in a force control scheme proposed in [11]. In [9, 10], the adaptive control theory was
employed for a class of nonlinear systems with multiple dead-zone inputs and nonlinear
uncertainties, respectively. In order to avoid the problem of “explosion of complexity”, Han
and Lee [12] proposed a dynamic surface control method for a class of planar switched
nonlinear strict-feedback systems. With the help of the neural network approximation the-
ory, a variable neural adaptive robust controller was constructed for the planar switched
nonlinear systems to deal with the dead-zone case in [13]. Then, a low-complexity global
approximation-free control scheme with prescribed performance was proposed for a class
of SISO pure-feedback nonlinear systems in [14]. Compared with the controller design for
the SISO system, the control issues for the MIMO system are more difficult and challeng-
ing. For the MIMO nonlinear dynamic systems with time-delay and dead-zone inputs, the
delay-dependent exponential stabilization criteria were proposed for a class of nonlinear
systems with mixed time-varying delays in [15]. In [16], the MIMO underactuated non-
linear system was in the form of block-triangular structure, and the novel controller was
designed based on the back-stepping method. Moreover, the state feedback stabilization of
switched nonlinear systems, which have special structures, especially in lower triangular
forms [17], has drawn much attention, but the output feedback stabilization of switched
nonlinear systems under arbitrary switchings is still a challenging task [18]. There was a
switch Lyapunov–Krasovskii functional proposed for every subsystem, and some observ-
able conditions about output feedback controllers and switching logic were presented in
[18]. However, the proposed control strategy in [18] did not mention how to construct
the Lyapunov–Krasovskii functional. Moreover, if the subsystem is not observable any
more, the above method may be unavailable. Recently, for the switched nonlinear systems,
output feedback stabilization has been achieved successfully based on the reduced-order
observers, and it was designed in a constructive manner [19]. Even though many effective
control algorithms have been proposed for the nonlinear dynamic system, only the steady-
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state performance is considered. Few control schemes consider both the transient-state
performance and the steady-state performance for the planar switched nonlinear system
with multiple time-varying delays.

The output feedback stabilization is one of the most important problems in the area
of nonlinear robust control. On the other hand, it should be pointed out that the sep-
aration principle does not hold normally for the nonlinear time-delay system anymore
[20]. Hence, compared with the global stabilization via state feedback, the output feed-
back stabilization for the planar switched nonlinear system is much more important and
challenging [20]. In addition, the output feedback control approach has been investigated
extensively and used widely in the control and applications problems, see [18, 21, 22] and
the references therein. In [21], the feedback linearization for planar switched nonlinear
systems with time-varying input and output delays was investigated. Then, in order to
obtain the better transient-state behavior of the closed-loop system, the adaptive output
feedback control was investigated in [22]. The output feedback control means that the
solutions of the resulting closed-loop system are uniformly ultimately bounded and con-
vergent towards a ball with adjustable radius, exhibiting a maximum overshoot less than
a sufficiently small constant [22]. Recently, some intelligent control strategies were pro-
posed for switched nonlinear systems via the adaptive fuzzy and output feedback design
techniques [23–25]. But the planar switched nonlinear systems are all in pure-feedback or
strict-feedback forms, rather than in non-strict-feedback forms [25]. More recently, Tong
et al. [26] proposed an adaptive fuzzy output feedback tracking control method for the
switched nonlinear systems without considering the time-delay issue. In addition, since
Tong et al. [26] employed the average dwell-time method, the switching signals in [26] are
not arbitrary and need to satisfy some restrictive conditions. Since the first approximation
of the nonlinear system is neither observable nor controllable, adding a power integrator
approach has been employed for the output feedback stabilization of the systems. Such
as the global output feedback stabilization of nonlinear systems via sampled-data control
[27], non-smooth output feedback stabilization of nonlinear system [28], and smooth out-
put feedback stabilization of planar system [29]. In general, a popular assumption in the
above-mentioned results is that the switch behaviour is required to occur at the same time
for the controllers and system modes, i.e., they switch synchronously all the time. How-
ever, this assumption rarely holds. In practical systems, some time is always spent on the
mode identification process before the application of the corresponding controller [30].
With the above observations, we consider the dynamic output feedback control problem
for a class of planar switched nonlinear systems with multiple time-varying delays under
arbitrary switchings and aim to design the smooth dynamic output feedback controller.

In this paper, the smooth dynamic output feedback control approach is proposed for a
class of planar switched nonlinear systems in the presence of multiple time-varying delays.
Different from the previous work for a planar switched nonlinear system, both transient-
state and steady-state performances are guaranteed under arbitrary switchings. And the
control design conditions are relaxed because of the developed nonlinear reduced-order
compensator. The contributions of this paper can be summarized as follows.

(1) The virtual state feedback control laws and Lyapunov–Krasovskii functional are
presented based on adding a power integrator approach. And the nonlinear
reduced-order compensator is designed for the subsystems to deal with the
nonlinear uncertainties under arbitrary switchings.
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(2) The developed dynamic output feedback controller in this paper is memoryless and
smooth, which only uses the system output. The control design conditions are
relaxed because of the developed dynamic controller.

(3) By employing the discrete Lyapunov–Krasovskii functional, it can be seen that the
solutions of the closed-loop system converge to an adjustable bounded region. The
results are further extended to the general nonlinear case and one-link manipulator
case with the motor dynamics.

This paper is organized as follows. In Sect. 2, some preliminary knowledge for the pla-
nar switched nonlinear system with multiple time-varying delays is presented. In Sect. 3,
the smooth dynamic output-feedback controller is designed and the main results are pre-
sented. In Sect. 4, two simulation examples are provided to show the effectiveness of the
proposed method. Finally, Sect. 5 concludes with a summary of the obtained results.

Notations Rn denotes the real n-dimensional space; qi denotes the power integrator pa-
rameter; max{. . .} denotes the maximum value of the parameters in {. . .}; G > 0 denotes
the positive term; �V1 denotes the forward difference of V1; |x| denotes the standard Eu-
clidean norm for vector x; the superscript “–1” denotes the inverse of the term.

2 Problem formulation
Consider a class of discrete-time planar switched nonlinear systems with time-varying
delays and multiple subsystems as follows:

⎧
⎪⎪⎨

⎪⎪⎩

x1(k + 1) = xqi
2 (k – τ2(k)) + ϕi,1(x1(k – τ1(k))),

x2(k + 1) = ui(k) + ϕi,2(x1(k – τ1(k)), x2(k – τ2(k))),

y(k) = x(k), i ∈ NS, NS = {1, 2, . . . , N},
(1)

where x(k) = [x1(k – τ1), x2(k – τ2)]T ∈ R
2, ui(k) ∈ R

2, and y(k) ∈ R
2 are the state vector,

control input, and output of the system, respectively. qi ∈ [1, 3, . . . , 2n + 1] is the power
integrator parameter with n being a nonnegative integer. xqi

2 is the qi square of the state
variable x2. ϕi,1(x1(k – τ1)) and ϕi,2(x1(k – τ1), x2(k – τ2)) are the nonlinear functions with
ϕi,1(0) = 0, ϕi,2(0, 0) = 0. NS is the number of the subsystems for system (1).

For the planar switched nonlinear time-delay system (1), there exists Assumption 1 as
follows.

Assumption 1 ([28, 29]) For the state variables x1 and x2, there exist the positive scalars
ai,1 and ai,2 such that

⎧
⎨

⎩

ai,1|x1(k – τ1)|qi ≥ |ϕi,1(x1(k – τ1))|,
ai,2(|x1(k – τ1)|qi + |x2(k – τ2)|qi ) ≥ |ϕi,2(x1(k – τ1), x2(k – τ2))|.

(2)

Remark 1 The dynamic output feedback technique is more flexible and the required con-
ditions on the considered systems are less conservative. In addition, the proposed method
is very efficient for the control design of the time-delay systems with nonlinear uncer-
tainties, and the precise time-delays are not required for the control implementation [31].
Thus, with Assumption 1, the dynamic output feedback controller will be constructed for
system (1). First, the virtual state feedback control law is designed based on adding a power
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integrator technique. Then, the nonlinear reduced-order compensators are designed to
estimate the unmeasurable state of system (1). Moreover, based on the developed virtual
state feedback control law and nonlinear reduced-order compensators, the dynamic out-
put feedback controller is constructed to stabilize system (1) under arbitrary switchings.
The detailed design process of the controller will be presented in Sect. 3.

3 Controller design
In this section, the virtual state feedback control law is designed for the nonlinear sys-
tem (Sect. 3.1). The nonlinear reduced-order compensator is designed for the subsystems
of the planar switched nonlinear systems (Sect. 3.2). Then the dynamic output feedback
controller is constructed based on the virtual state feedback control law and the nonlinear
reduced-order compensator (Sect. 3.3).

The dynamic output feedback controller is designed for system (1) with Assumption 1.
The graphical abstract of the proposed methodology is shown in Fig. 1. For system (1), the
smooth dynamic output feedback controller is designed as follows:

⎧
⎨

⎩

z(k + 1) = –G(ϕi,1(x1(k – τ1)) + (z(k) + Gx1(k – τ1))qi ) + ui(k),

ui(k) = –(1 + σi)(z(k) + (G – M)x1(k – τ1))qi ,
(3)

where G > 0, M > 0, and σi ≥ 0 (i ∈ NS) are the positive scalars such that the solutions of the
closed-loop system converge to an adjustable bounded region under arbitrary switchings.

The design scheme of controller (3) is divided into three steps (Sects. 3.1, 3.2, and 3.3).

Remark 2 It is worth pointing out that Assumption 1 is a standard assumption for the
output tracking control of nonlinear systems, and the similar assumption can be found
in other literature sources see [32, 33] and the references therein. For some other control

Figure 1 The graphical abstract of the proposed methodology
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schemes of the nonlinear systems with unmeasured states, a restrictive assumption on the
Lyapunov–Krasovskii functional stability condition is often needed [34, 35]. Therefore,
we will introduce some technical Lemmas (Lemmas 1, 2, and 3) and LMIs related to the
Lyapunov–Krasovskii functional in this paper, which will play the important roles in the
subsequent developments and will be used frequently in Sect. 3.1.

3.1 Virtual state feedback control law design
In this section, the virtual state feedback control law is designed for the planar switched
nonlinear system (1).

For system (1), choose a discrete Lyapunov–Krasovskii functional as follows:

V1(x1) =
x2

1
2

. (4)

Now, taking the forward difference of V1 along system (1) yields

�V1(x1) ≤ x1(k – τ1)
(
xqi

2 (k – τ2) – x∗qi
2 (k)

)
+ x1+qi

1 (k – τ1)ai,1 + x1(k – τ1)x∗qi
2 (k), (5)

where x∗
2 is the virtual state feedback control law.

In this paper, the virtual state feedback control law is designed as follows:

x∗
2(k) = –Mx1(k – τ1), (6)

where M > 0 is the virtual state feedback gain.
With (5), the following inequality holds:

�V1(x1) ≤ x1(k – τ1)
(
xqi

2 (k – τ2) – x∗qi
2 (k)

)
+

(
ai,1 – Mqi

)
x1+qi

1 (k – τ1). (7)

Let M ≥ maxi∈NS {(2 + ai,1)q–1
i }, one has

�V1(x1) ≤ x1(k – τ1)
(
xqi

2 (k – τ2) – x∗qi
2 (k)

)
– 2x1+qi

1 (k – τ1). (8)

For system (1), choose a new discrete Lyapunov–Krasovskii functional as follows:

V2(x1, x2) =
ζ 2

2
2

+ V1(x1), (9)

where ζ2 = x2(k – τ2) – x∗
2(k).

Then, taking the forward difference of V2 yields

�V2(x1, x2) ≤ ζ1
(
xqi

2 (k – τ2) – x∗qi
2 (k)

)
+ ζ2ui(k) + ζ2

(
M

(
xqi

2 (k – τ2) + ϕi,1
(
x1(k – τ1)

))

+ ϕi,2
(
x1(k – τ1), x2(k – τ2)

))
– 2ζ

1+qi
1 , (10)

where ζ1 = x1(k – τ1).
The aim of this paper is to develop a new approach to design the smooth dynamic output

feedback controller in the form of (3) for the planar switched nonlinear system (1). For this
purpose, Lemmas 1, 2 and 3 are introduced as follows [28, 29, 36].
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Lemma 1 For the system state variable x(k) and system output y(k), if there exists a power
integrator parameter qi ∈ [1, 3, . . . , 2n + 1] such that |x(k) + y(k)|qi ≤ 2qi–1|xqi (k) + yqi (k)|,
then the following inequality holds:

∣
∣xqi (k) – yqi (k)

∣
∣ ≤ qi

∣
∣x(k) – y(k)

∣
∣
(
xqi–1(k) + yqi–1(k)

)
.

Lemma 2 For the system state variable x(k) and system output y(k), if there exist the posi-
tive scalars a, b, and a nonlinear real-valued function �(x, y) such that �(x, y) > 0, then the
following inequality holds:

∣
∣x(k)

∣
∣a∣∣y(k)

∣
∣b ≤ a�(x, y)

a + b
∣
∣x(k)

∣
∣a+b +

b�–b–1a

a + b
(x, y)

∣
∣y(k)

∣
∣a+b.

Lemma 3 For any w ∈ R and c ∈ R, if there exists the power integrator parameter qi ∈
[1, 3, . . . , 2n + 1], then the following inequality holds:

w1+qi

2qi–1 ≤ –w
(
(c – w)qi – cqi

)
.

With Lemma 1, one has

∣
∣xqi

2 (k – τ2) – x∗qi
2 (k)

∣
∣ ≤ ∣

∣x2(k – τ2) – x∗
2(k)

∣
∣ × χi,1

(
xqi–1

1 (k – τ1) + xqi–1
2 (k – τ2)

)
, (11)

where

χi,1 ≥ max
i∈NS

{
qiMqi–1, qi

}
. (12)

With Assumption 1 and (12), inequality (10) is rewritten as follows:

�V2(x1, x2) ≤ |ζ1|
∣
∣x2(k – τ2) – x∗

2(k)
∣
∣ × χi,1

(
xqi–1

1 (k – τ1) + xqi–1
2 (k – τ2)

)
– 2ζ

1+qi
1

+ ζ2
(
ui(k) + M

(
ϕi,1

(
x1(k – τ1)

)
+ xqi

2 (k – τ2)
)

+ ϕi,2
(
x1(k – τ1), x2(k – τ2)

))
, (13)

where M(1 + ai,1) + ai,2 < δi,1.
By considering the construction of the virtual state feedback control law x∗

2, it can be
seen that the following inequality holds:

∣
∣x2(k – τ2)

∣
∣ ≤ ∣

∣x∗
2(k)

∣
∣ +

∣
∣x2(k – τ2) – x∗

2(k)
∣
∣ ≤ M

∣
∣x1(k – τ1)

∣
∣ +

∣
∣x2(k – τ2) – x∗

2(k)
∣
∣.

With the above analysis and Lemma 1, one has

�V2(x1, x2) ≤ 2qi–2|ζ1|
∣
∣x2(k – τ2) – x∗

2(k)
∣
∣

× ∣
∣x2(k – τ2) – x∗

2(k)
∣
∣qi–1

χi,1 – 2ζ
1+qi
1

+ |ζ1|
∣
∣x2(k – τ2) – x∗

2(k)
∣
∣

× (
1 + 2qi–2Mqi–1)∣∣x1(k – τ1)

∣
∣qi–1

χi,1
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+ ζ2ui + 2qi–1|ζ2|
∣
∣x2(k – τ2) – x∗

2(k)
∣
∣qiδi,1

+ |ζ2|
(
1 + 2qi–1Mqi–1)∣∣x1(k – τ1)

∣
∣qiδi,1. (14)

With Lemma 2, there exist the scalars χ̃i,1 and δ̃i,1 such that inequality (14) is rewritten as
follows:

�V2(x1, x2) ≤ ζ2ui(k) – 2ζ
1+qi
1 + χ̃i,1m1|ζ1|1+qi + |ζ2|1+qi δ̃i,1 + (χ̃i,1 + δ̃i,1)m2|ζ1|1+qi

+ χ̃i,1
qi

1 + qi

(
1

m1(qi + 1)

)q–1
i |ζ2|1+qi

+ (χ̃i,1 + δ̃i,1)
(

1
1 + qi

)(
qi

m2(1 + qi)

)qi

|ζ2|1+qi

≤ ζ
1+qi
2 σi – ζ

1+qi
1 + ζ2ui(k), (15)

where χ̃i,1 = maxi∈NS {(2qi–2Mqi–1 + 1)χi,1, 2qi–2χi,1}, δ̃i,1 = maxi∈NS {(2qi–1Mqi–1 + 1)δi,1,
2qi–1δi,1}, m1 and m2 are the positive scalars satisfying m1 > 0, m2 > 0, m1χ̃i,1 + m2(χ̃i,1 +
δ̃i,1) ≤ 1, and σi ≥ qi

1+qi
( 1

m1(1+qi)
)q–1

i × χ̃i,1 + (χ̃i,1 + δ̃i,1)( 1
1+qi

)( qi
m2(1+qi)

)qi .
With Lemma 2, the feedback control law is designed as follows:

ui(k) = –(1 + σi)

[
ζ

qi
1

ζ
qi
2

]

, (16)

where ζ1 and ζ2 are defined in (10) and (9), respectively.
Then, substituting (16) into (15) yields

�V2(x1, x2) ≤ –ζ
1+qi
1 – ζ

1+qi
2 . (17)

Remark 3 It is worth noting that the time-varying delay τi(k) in (1) depends on the sub-
system number Ns absolutely. In practice, the time-delays τi(k) are often different for each
subsystem, and many existing results are not suitable for controlling system (1) in this
paper. Thus, it is necessary to develop an effective control scheme for system (1). From
(6), it can be concluded that the virtual state feedback gain M is a large enough constant
satisfying M ≥ maxi∈NS {(2 + ai,1)q–1

i }, which will be determined by the power integrator
parameter qi. From Lemmas 1 and 3, it can be seen that qi must lie in the proper interval
forthe conditions in Lemmas 1 and 3 to hold. For the problem formulated, the nonlin-
ear reduced-order compensator will be designed in Sect. 3.2 to relax the control design
conditions and enhance the design flexibility.

3.2 Nonlinear reduced-order compensator design
In this section, the nonlinear reduced-order compensator is designed for the subsystems
of the planar switched nonlinear systems (1).

The nonlinear reduced-order compensator is designed as follows:

z(k + 1) = –G
(
ϕi,1

(
x1(k – τ1)

)
+

(
z(k) + Gx1(k – τ1)

)qi) + ui(k), (18)
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where G > 0 is a positive scalar. By letting e = –Gx1(k – τ1) + x2(k – τ2) – z(k), one has

e(k + 1) = –G
((

Gx1(k – τ1) + z(k) + e
)qi –

(
Gx1(k – τ1) + z(k)

)qi)

+ ϕi,2
(
x1(k – τ1), x2(k – τ2)

)
. (19)

For system (19), choose the discrete Lyapunov–Krasovskii functional as follows:

V3(e) = e2/2. (20)

Now, taking the forward difference of V3(e) yields

�V3(e) = e
(
G

((
Gx1(k – τ1) + z(k) + e

)qi –
(
Gx1(k – τ1) + z(k)

)qi))

+ eϕi,2
(
x1(k – τ1), x2(k – τ2)

)
. (21)

With Lemmas 1, 3 and (21), one has

⎧
⎨

⎩

�V3(e) ≤ – Ge1+qi
2qi–1 + |eϕi,2(x1(k – τ1), x2(k – τ2))|,

|x2(k – τ2)|qi ≤ 2qi–1(|x∗
2(k)|qi + |x2(k – τ2) – x∗

2(k)|qi ).
(22)

With Assumption 1 and (22), one has

�V3(e) ≤ –
Ge1+qi

2qi–1 + |e|(∣∣x1(k – τ1)
∣
∣qi +

∣
∣x2(k – τ2)

∣
∣qi)ai,2

≤ –
Ge1+qi

2qi–1 + |e|(∣∣x1(k – τ1)
∣
∣qi +

∣
∣x2(k – τ2) – x∗

2(k)
∣
∣qi)ãi,2, (23)

where ãi,2 > maxi∈NS {1 + 2qi–1ai,2Mqi , 2qi–1ai,2}.
With Lemma 2, one has

�V3(e) ≤ |e||ζ1|qi ãi,2 + |e||ζ2|qi ãi,2 –
Ge1+qi

2qi–1 ≤ (ζ 1+qi
1 + ζ

1+qi
2 )

4
–

Ge1+qi

2qi–1 + e1+qi Ji, (24)

where Ji ≥ 2
1+qi

( 4qi
1+qi

)qi ã1+qi
i,2 is a scalar.

Remark 4 The nonlinear reduced-order compensator is designed for the subsystems of
the planar switched nonlinear systems (1), and the unmeasurable states of system (1) can
be estimated effectively. In addition, from (18), one knows that the transient-state perfor-
mance of the closed-loop system is determined by the gain parameter G. To obtain better
transient-state performance, the design process of the parameter G will be presented in
Sect. 3.3.

3.3 Gain parameter G design
In this section, the gain parameter G is designed for the nonlinear reduced-order com-
pensator (18).

Since the system state variable x2 is not available for the feedback control, Gx1(k – τ1) +
z(k) can be used instead of x2(k – τ2) in the control law (16). Then the control law ui in
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(18) can be rewritten as follows:

ui,d = –(1 + σi)ζ
qi
2 = –(1 + σi)

(
Gx1(k – τ1) – x∗

2(k) + z(k)
)qi . (25)

By employing the nonlinear reduced-order compensator (18), inequality (17) is rewrit-
ten as follows:

�V2(x1, x2) ≤ –ζ
1+qi
1 + ζ2

(
ui,d – ui(k)

)
– ζ

1+qi
2

= –ζ
1+qi
1 – (1 + σi) × ζ2

((
x2(k – τ2) – x∗

2(k) – e
)qi –

(
x2(k – τ2) – x∗

2(k)
)qi)

– ζ
1+qi
2 . (26)

With Lemma 1, one has

�V2(x1, x2) ≤ ηi,1(1 +σi)×|ζ2||e|×
((

x2(k – τ2) – x∗
2(k)

)qi–1 + eqi–1)– ζ
1+qi
2 – ζ

1+qi
1 , (27)

where ηi,1 is a scalar satisfying 1 + 2qi–2 < ηi,1. Then, applying Lemma 2 to (27), one has

�V2(x1, x2) ≤ ηi,1(1 + σi) ×
(

�i,N1 |ζ2|1+qi

1 + pi
+

qi�
q–1

i
i,N1

1 + pi
|e|1+qi

)

+ ηi,1(1 + σi) ×
(

�i,N2

1 + qi
|e|1+qi +

qi�
q–1

i
i,N2

1 + qi
|ζ2|1+qi

)

– ζ
1+qi
2 – ζ

1+qi
1

≤ e1+qi Qi –
ζ

1+qi
2
2

– ζ
1+qi
1 , (28)

where �i,N1 = ηi,1+4qi
4 , �i,N2 = 4ηi,1qi

1+qi
, and Qi = ηi,1(1 + σi)(

qi�
q–1

i
i,N1

1+qi
+ �i,N2

1+qi
) ≥ 0.

Taking the sum of (24) and (28) yields

�V2(x1, x2) + �V3(e) ≤ (x1+qi
1 (k – τ1) + (x2(k – τ2) – x∗

2(k))1+qi )
4

+ e1+qi Qi

+ e1+qi Ji –
Ge1+qi

2qi–1 – ζ
1+qi
1 –

ζ
1+qi
2
2

=
(

Qi + Ji –
G

2qi–1

)

e1+qi –
3ζ

1+qi
1 + ζ

1+qi
2

4
. (29)

For system (1), choose a discrete Lyapunov–Krasovskii functional as follows:

V (x1, x2, e) = V2(x1, x2) + V3(e) =
ζ 2

1 + ζ 2
2 + e2

2
. (30)

In this section, the parameter G satisfies G ≥ maxi∈NS {2qi–1(Qi + Ji) + 2qi–2}. Then, with
(24) and (29), one has

�V (x1, x2, e) ≤ –
3ζ

1+qi
1 + ζ

1+qi
2 + 2e1+qi

4
. (31)
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Since the Lyapunov–Krasovskii functional V (x1, x2, e) is smooth and positive definite, it
can be seen that the solutions of the closed-loop switched nonlinear system converge to
an adjustable bounded region under arbitrary switchings.

Remark 5 For the smooth dynamic output feedback controller (3), adding a power integra-
tor approach is employed to design the Lyapunov–Krasovskii functional and to construct
the virtual state feedback control law for the planar switched nonlinear system. Secondly,
the nonlinear reduced-order compensator is designed for the switched nonlinear system
to measure the unavailable state vector. Then, the dynamic output feedback controller is
constructed based on the virtual state feedback control law and the nonlinear reduced-
order compensator. Compared with the previous works, the developed controller in this
paper is memoryless and smooth, which only uses the system output. The control design
conditions are relaxed because of the developed dynamic compensator. The whole design
process is a constructive way almost without any preconditions except for the structure
of the subsystems. And it should be pointed out that the structure of the subsystems is
necessary for the output feedback stabilization of the inherent nonlinear systems [28, 29].
The objective of this paper is to design the dynamic output feedback controller for a class
of discrete-time planar switched nonlinear systems with time-varying delays and multi-
ple subsystems where the solutions of the closed-loop system converge to an adjustable
bounded region. Then the obtained results are further extended to the general nonlin-
ear case and one-link manipulator case with the motor dynamics in Sect. 4 to show the
effectiveness of the proposed method.

4 Simulations
In this section, two simulation examples are provided to show the effectiveness and appli-
cability of the proposed method.

4.1 Numerical example
Consider the planar switched nonlinear system with time-varying delays and two subsys-
tems as follows:

Subsystem (1) :

⎧
⎪⎪⎨

⎪⎪⎩

x1(k + 1) = x1(k – τ1(k)) + sin(x1(k – τ1(k))),

x2(k + 1) = u1(k),

y(k) = x1(k).

Subsystem (2) :

⎧
⎪⎪⎨

⎪⎪⎩

x1(k + 1) = x3
2(k – τ2),

x2(k + 1) = u2(k) + x3
2(k – τ2),

y(k) = x1(k).

(32)

For system (32), the virtual state feedback control law is designed as follows:

x∗
2(k) = –Mx1(k – τ1), (33)

where M > 0 is the virtual state feedback gain given as M = 5.
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With Lemmas 1 and 3, the following inequalities hold:

⎧
⎪⎪⎨

⎪⎪⎩

|x(k) + y(k)|qi ≤ 2qi–1|xqi (k) + yqi (k)|,
|xqi (k) – yqi (k)| ≤ qi|x(k) – y(k)|(xqi–1(k) + yqi–1(k)),
w1+qi
2qi–1 ≤ –w((c – w)qi – cqi ),

where i ∈ NS = {1, 2}, qi ∈ [1, 3, . . . , 2n + 1] is the power integrator parameter given as q1 =
q2 = 3 in this case.

With Lemma 2, the following inequalities hold:

⎧
⎪⎪⎨

⎪⎪⎩

|x(k)|a|y(k)|b ≤ a�(x,y)
a+b |x(k)|a+b + b�–b–1a

a+b (x, y)|y(k)|a+b,

m1χ̃i,1 + m2(χ̃i,1 + δ̃i,1) ≤ 1,

σi ≥ 3
1+3 ( 1

m1(1+3) ) 1
3 × χ̃i,1 + (χ̃i,1 + δ̃i,1)( 1

1+3 )( 3
m2(1+3) )3,

where a, b, m1, and m2 are the positive scalars given as a = 1, b = 1, m1 = 1/4, and m2 = 1/4.
For system (32), the nonlinear reduced-order compensator is designed as follows:

z(k + 1) = –G
(
ϕi,1

(
x1(k – τ1)

)
+

(
z(k) + Gx1(k – τ1)

)qi) + ui(k), (34)

where G is the gain parameter of the nonlinear reduced-order compensator.
With Lemma 2, the following inequalities hold:

⎧
⎨

⎩

�V3(e) ≤ |e||ζ1|3ãi,2 + |e||ζ2|3ãi,2 – 4e1+3

23–1 ≤ (ζ1+3
1 +ζ1+3

2 )
4 – 4e1+3

23–1 + e1+3Ji,

Ji ≥ 2
1+3 ( 4×3

1+3 )3ã1+2
i,2 .

With the above analysis, for system (32), the dynamic output feedback controller is de-
signed as follows:

⎧
⎨

⎩

z(k + 1) = –G(ϕi,1(x1(k – τ1)) + (Gx1(k – τ1) + z(k))qi ) + ui(k),

ui(k) = –(1 + σi)((G – M)x1(k – τ1) + z(k))qi ,
(35)

where q1 = q2 = 3 and 1 + σi = 12.
For the simulations, the initial values of the system state variables are given as [x1, x2] =

[1.7, –4.2]T . The multiple time-varying delays are given as τ1(k) = 0.25(1+sin k) and τ2(k) =
0.1(1 + sin k). The random switching signal in this research is generated by the function
“rand” in MATLAB (R2017a). The responses of system state variables x1 and x2 are shown
in Fig. 2. The responses of system control inputs are shown in Fig. 3. The response of the
state feedback control law is shown in Fig. 4. The response of �V (x1, x2, e) is shown in
Fig. 5. In addition, the switching signal in example 1 is shown in Fig. 6. From Fig. 2, it can
be seen that the proposed method is effective and can stabilize the closed-loop system
quickly. From Figs. 3–4, it can be seen that the control inputs and state feedback control
law are bounded as well. From Fig. 5, it can be seen that �V (x1, x2, e) ≤ 0, that is, the
closed-loop system is stable.

Remark 6 In this section, the numerical example is used to show the effectiveness of the
proposed method. However, only the effectiveness of the proposed method is not enough.
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Figure 2 The responses of system state variables x1 and x2

Figure 3 The responses of system control inputs

Therefore, the one-link manipulator example is performed to show the applicability of the
proposed method.

4.2 One-link manipulator example
The aim of this example is to show the applicability of the proposed method. Consider a
class of one-link manipulators with the motor dynamics as follows [37]:

⎧
⎨

⎩

Dp̈ + Bṗ + A sin(p) = μ + μ1d,

Cμ̇ + Hμ = u – Kmṗ + μ2d,
(36)
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Figure 4 The response of the state feedback control law

Figure 5 The response of �V(x1, x2, e)

where p, ṗ, and p̈ are the position vector, velocity vector, and acceleration vector of the ma-
nipulator, respectively. μ is the driving torque of the system. μ1d and μ2d are the nonlinear
uncertainties with time-delays [37].

Let x1 = p and x2 = ṗ. Consider the unknown switching behavior and the asymmetric
saturation actuators in system (36), system (36) can be rewritten as follows [37]:

⎧
⎪⎪⎨

⎪⎪⎩

x1(k + 1) = g1,jx2 + f1,j(x1) + φ1,j(x1(k – τ1,j(k))) + d1,j, j ∈ [1, 2],

x2(k + 1) = g2,jui(k) + f2,j(x̄3) + φ2,j(x̄2(k – τ2,j(k))) + d2,j, j ∈ [1, 2],

y = x1.

(37)
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Figure 6 The switching signal in example 1

In this example, we do not consider the torque disturbances, system (37) can be rewritten
as follows:

⎧
⎪⎪⎨

⎪⎪⎩

x1(k + 1) = g1,jx2 + f1,j(x1) + φ1,j(x1(k – τ1,j(k))), j ∈ [1, 2],

x2(k + 1) = g2,jui(k) + f2,j(x̄3) + φ2,j(x̄3(k – τ2,j(k))), j ∈ [1, 2].

y = x1.

(38)

Then, system (38) is decomposed into two subsystems as follows:

Subsystem (1) :

⎧
⎪⎪⎨

⎪⎪⎩

x1(k + 1) = g1,jx2 + f1,j(x1) + φ1,j(x1(k – τ1,j(k))), j ∈ [1, 2],

x2(k + 1) = g2,ju1(k) + f2,j(x̄3) + φ2,j(x̄3(k – τ2,j(k))), j ∈ [1, 2],

y = x1.

Subsystem (2) :

⎧
⎪⎪⎨

⎪⎪⎩

x1(k + 1) = g1,jx2 + f1,j(x1) + φ1,j(x1(k – τ1,j(k))), j ∈ [1, 2],

x2(k + 1) = g2,ju2(k) + f2,j(x̄3) + φ2,j(x̄3(k – τ2,i(k))), j ∈ [1, 2],

y = x1,

(39)

where g1,1 = g1,2 = 1, f1,1 = f1,2 = φ1,1 = φ1,2 = 0, g2,1 = g2,2 = 1/C, f2,1 = – B
D x2 – A

D sin(x1),
f2,2 = – B

D x2 – A
D sin(x1x2), φ2,1 = 0.5x1(k – τ2,1(k)), and φ2,2 = 0.3x1(k – τ2,2(k))x2(k – τ2,2(k)).

The time delays are chosen as τ1,1 = 1+0.8 sin(k), τ1,2 = 1.5+1.2 sin(k), τ2,1 = 0.8+0.6 sin(k),
and τ2,2 = 1.1 + sin(k). For the simulations, the parameters in (36) are given as D = 1, B = 1,
A = 0.5, C = 0.05, H = 0.5, Km = 10 [37]. The using details of the parameters in (36) are
shown in [37].

For system (39), the virtual state feedback control law is designed as follows:

x∗
2(k) = –Mx1(k – τ1), (40)

where M > 0 is the virtual state feedback gain given as M = 1.
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With Lemmas 1 and 3, the following inequalities hold:

⎧
⎪⎪⎨

⎪⎪⎩

|x(k) + y(k)|qi ≤ 2qi–1|xqi (k) + yqi (k)|,
|xqi (k) – yqi (k)| ≤ qi|x(k) – y(k)|(xqi–1(k) + yqi–1(k)),
w1+qi
2qi–1 ≤ –w((c – w)qi – cqi ),

where i ∈ NS = {1, 2}, qi ∈ [1, 3, . . . , 2n + 1] is a power integrator parameter given as q1 =
q2 = 1 in this example.

With Lemma 2, the following inequalities hold:

⎧
⎪⎪⎨

⎪⎪⎩

|x(k)|a|y(k)|b ≤ a�(x,y)
a+b |x(k)|a+b + b�–b–1a

a+b (x, y)|y(k)|a+b,

m1χ̃i,1 + m2(χ̃i,1 + δ̃i,1) ≤ 1,

σi ≥ 1
1+1 ( 1

m1(1+1) ) × χ̃i,1 + (χ̃i,1 + δ̃i,1)( 1
1+1 )( 1

m2(1+1) ),

where a, b, m1, and m2 are positive scalars given as a = 1, b = 1, m1 = 1/2, and m2 = 1/2.
For system (39), the nonlinear reduced-order compensator is designed as follows:

z(k + 1) = –G
(
ϕi,1

(
x1(k – τ1)

)
+

(
z(k) + Gx1(k – τ1)

)qi) + ui(k), (41)

where G is the gain parameter of the nonlinear reduced-order compensator.
With Lemma 2, the following inequalities hold:

⎧
⎨

⎩

�V3(e) ≤ |e||ζ1|ãi,2 + |e||ζ2|ãi,2 – 5e1+1

21–1 ≤ (ζ1+1
1 +ζ1+1

2 )
4 – 5e1+1

21–1 + e1+1Ji,

Ji ≥ 2
1+1 ( 4×1

1+1 )ã1+1
i,2 .

With the above analysis, for system (39), the dynamic output feedback controller is de-
signed as follows:

⎧
⎨

⎩

z(k + 1) = –G(ϕi,1(x1(k – τ1)) + (Gx1(k – τ1) + z(k))qi ) + ui(k),

ui(k) = –(1 + σi)((G – M)x1(k – τ1) + z(k))qi ,
(42)

where q1 = q2 = 1 and 1 + σi = 10.
For the simulations, the initial values of the system state variables are given as [x1, x2] =

[–0.7, 0.2]T . The random switching signal is generated by the function “rand” in MATLAB
(R2017a). The responses of system state variables are shown in Fig. 7. The responses of
system control inputs are shown in Fig. 8. The response of the state feedback control law is
shown in Fig. 9. The response of �V (x1, x2, e) is shown in Fig. 10. In addition, the switching
signal in example 2 is shown in Fig. 11. From Fig. 7, it can be seen that the proposed method
is effective and can stabilize the closed-loop system quickly. From Figs. 8–9, it can be seen
that the control inputs and state feedback control law are bounded as well. From Fig. 10,
it can be seen that �V (x1, x2, e) ≤ 0, that is, the closed-loop system is stable.

Remark 7 In this paper, the nonlinear case with multiple time-varying is considered. In
fact, the proposed method can be applied to the general nonlinear case without time-
delays, while the general nonlinear case should be bounded. The detailed proof process
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Figure 7 The responses of system state variables x1 and x2

Figure 8 The responses of system control inputs

was shown in [36]. On the other hand, in this section, a class of one-link manipulator
systems with the motor dynamics is considered, and the system is decomposed into the
nonlinear switched form. The discrete Lyapunov–Krasovskii functional is designed so that
(31) holds. If the nonlinear functions satisfy some specific functions as discussed in [38],
one can employ the proposed method in [38] for the time-delay control system design.
The detailed design process and specific functions were shown in [38].

5 Conclusions
This paper addresses the stability analysis and dynamic output feedback control problem
for a class of discrete planar switched nonlinear systems with time-varying
delays and multiple subsystems. Not only the time-varying delays, but also the uncon-
trollable/unobservable Jacobian linearizations are considered in the planar switched non-
linear systems. The virtual state feedback control law is designed and the uncertainties
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Figure 9 The response of the state feedback control law

Figure 10 The response of �V(x1, x2, e)

caused by the time-varying delays are solved effectively. The introduction of adding a
power integrator approach leads to a significant relaxation on the system nonlinearities
such as feedback linearizability. The nonlinear reduced-order compensator and smooth
dynamic output feedback controller are designed, then the control design conditions are
relaxed. With the developed new Lyapunov–Krasovskii functional, it can be seen that the
solutions of the closed-loop system converge to an adjustable bounded region with the ad-
justable radius. Finally, two simulation examples are performed to show the effectiveness
and applicability of the proposed method. On the other hand, the classical Krasovskii
method often requires the time-varying delay τ (k) to satisfy some conservative condi-
tions such as 0 ≤ τ (k) < ∞ and 0 ≤ �τ (k) < 1. However, the aforementioned restrictions
of the Lyapunov–Krasovskii method can be avoided by using the Lyapunov–Razumikhin
method. Thus, the Lyapunov–Razumikhin method will be considered for the controller
design of the switched system in the future.
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Figure 11 The switching signal in example 2
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13. Lian, J.M., Hu, J., Żak, S.H.: Variable neural adaptive robust control: a switched system approach. IEEE Trans. Neural
Netw. Learn. Syst. 26(5), 903–915 (2015)

14. Bechlioulis, C.P., Rovithakis, G.A.: A low-complexity global approximation-free control scheme with prescribed
performance for unknown pure feedback systems. Automatica 50(4), 1217–1226 (2014)

15. Prasertsang, P., Botmart, T.: Novel delay-dependent exponential stabilization criteria of a nonlinear system with mixed
time-varying delays via hybrid intermittent feedback control. Adv. Differ. Equ. 2017, Article ID 199 (2017).
https://doi.org/10.1186/s13662-017-1255-6

16. Wu, T.S., Karkoub, M., Wang, H., Chen, H.S., Chen, T.H.: Robust tracking control of MIMO underactuated nonlinear
systems with dead-zone band and delayed uncertainty using an adaptive fuzzy control. IEEE Trans. Fuzzy Syst. 25(4),
905–918 (2017). https://doi.org/10.1109/TFUZZ.2016.2586970

17. Hua, C.C., Liu, G.P., Zhang, L., Guan, X.P.: Cooperative stabilization for linear switched systems with asynchronous
switching. IEEE Trans. Syst. Man Cybern. Syst. (2018). https://doi.org/10.1109/TSMC.2017.2721644

18. El-Farra, N.H., Mhaskar, P., Christofides, P.D.: Output feedback control of switched nonlinear systems using multiple
Lyapunov functions. Syst. Control Lett. 54(12), 1163–1182 (2005)

19. Hua, C.C., Liu, G.P., Li, L., Guan, X.P.: Adaptive fuzzy prescribed performance control for nonlinear switched time-delay
systems with unmodeled dynamics. IEEE Trans. Fuzzy Syst. 26(4), 1934–1945 (2018).
https://doi.org/10.1109/TFUZZ.2017.2756028

20. Ren, J., Zhu, H., Zhong, S., Zhou, X.: Robust stability of uncertain Markovian jump neural networks with
mode-dependent time-varying delays and nonlinear perturbations. Adv. Differ. Equ. 2016, Article ID 327 (2016).
https://doi.org/10.1186/s13662-016-1021-1

21. Lei, J., Khalil, H.K.: Feedback linearization for planar switched nonlinear systems with time-varying input and output
delays by using high-gain predictors. IEEE Trans. Autom. Control 61(8), 2262–2268 (2016)

22. Zhu, Y., Krstic, M., Su, H.: Adaptive output feedback control for uncertain linear time-delay systems. IEEE Trans. Autom.
Control 62(2), 545–560 (2017)

23. Tong, S.C., Zhang, L., Li, Y.M.: Observed-based adaptive fuzzy decentralized tracking control for switched uncertain
nonlinear large-scale systems with dead zones. IEEE Trans. Syst. Man Cybern. Syst. 46(1), 37–47 (2016)

24. Li, Y.M., Tong, S.C.: Adaptive fuzzy output-feedback stabilization control for a class of switched nonstrict-feedback
nonlinear systems. IEEE Trans. Syst. Man Cybern. Syst. 47(4), 1007–1016 (2017)

25. Li, Y.M., Tong, S.C., Liu, L., Feng, G.: Adaptive output-feedback control design with prescribed performance for
switched nonlinear systems. Automatica 80, 225–231 (2017)

26. Tong, S.C., Li, Y.M., Sui, S.: Adaptive fuzzy tracking control design for SISO uncertain nonstrict feedback nonlinear
systems. IEEE Trans. Fuzzy Syst. 24(6), 1441–1454 (2017)

27. Qian, C.J., Du, H.: Global output feedback stabilization of a class of nonlinear systems via linear sampled-data control.
IEEE Trans. Autom. Control 57(11), 2934–2939 (2012)

28. Qian, C.J., Lin, W.: Smooth output feedback stabilization of planar systems without controllable/observable
linearization. IEEE Trans. Autom. Control 47(12), 2068–2073 (2015)

29. Qian, C.J., Lin, W.: Recursive observer design, homogeneous approximation, and non-smooth output feedback
stabilization of nonlinear systems. IEEE Trans. Autom. Control 51(9), 1457–1471 (2006)

30. Wang, Y.E., Zhao, J., Jiang, B.: Stabilization of a class of switched linear neutral systems under asynchronous switching.
IEEE Trans. Autom. Control 58(8), 2114–2119 (2013)

31. Tong, S.C., Liu, C., Li, Y.M., Zhang, H.: Adaptive fuzzy decentralized control for large-scale nonlinear systems with
time-varying delays and unknown high-frequency gain sign. IEEE Trans. Syst. Man Cybern. Syst. 41(2), 474–485
(2011). https://doi.org/10.1109/TSMCB.2010.2059011

32. Ahn, C.K., Wu, L., Shi, P.: Stochastic stability analysis for 2-D Roesser systems with multiplicative noise. Automatica 69,
356–363 (2016)

33. Bechlioulis, C.P., Rovithakis, G.A.: Brief paper: adaptive control with guaranteed transient and steady state tracking
error bounds for strict feedback systems. Automatica 45(2), 532–538 (2009)

34. Chen, B., Lin, C., Liu, X., Liu, K.: Observer-based adaptive fuzzy control for a class of nonlinear delayed systems. IEEE
Trans. Syst. Man Cybern. Syst. 46(1), 27–36 (2016)

35. Tong, S.C., Zhang, L., Li, Y.: Observed-based adaptive fuzzy decentralized tracking control for switched uncertain
nonlinear large-scale systems with dead zones. IEEE Trans. Syst. Man Cybern. Syst. 46(1), 37–47 (2015)

36. Lin, X.Z., Chen, C.C., Qian, C.: Smooth output feedback stabilization of a class of planar switched nonlinear systems
under arbitrary switchings. Automatica 82, 314–318 (2017)

37. Yu, Z.X., Dong, Y., Li, S.G., Li, F.F.: Adaptive tracking control for switched strict-feedback nonlinear systems with
time-varying delays and asymmetric saturation actuators. Neurocomputing 238(C), 245–254 (2017)

38. Wang, Y.E., Sun, X.M., Wang, Z., Zhao, J.: Construction of Lyapunov–Krasovskii functionals for switched nonlinear
systems with input delay. Automatica 50(4), 1249–1253 (2014)

https://doi.org/10.1186/s13662-017-1255-6
https://doi.org/10.1109/TFUZZ.2016.2586970
https://doi.org/10.1109/TSMC.2017.2721644
https://doi.org/10.1109/TFUZZ.2017.2756028
https://doi.org/10.1186/s13662-016-1021-1
https://doi.org/10.1109/TSMCB.2010.2059011

	Dynamic output feedback control based on virtual feedback control law for planar switched nonlinear systems with time-varying delays and multiple subsystems
	Abstract
	Keywords

	Introduction
	Problem formulation
	Controller design
	Virtual state feedback control law design
	Nonlinear reduced-order compensator design
	Gain parameter G design

	Simulations
	Numerical example
	One-link manipulator example

	Conclusions
	Acknowledgements
	Funding
	Competing interests
	Authors' contributions
	Author details
	Publisher's Note
	References


