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Abstract
In this paper, a two species amensalism model with Michaelis–Menten type
harvesting and a cover for the first species that takes the form

dx(t)
dt

= a1x(t) – b1x2(t) – c1(1 – k)x(t)y(t) –
qE(1 – k)x(t)

m1E +m2(1 – k)x(t)
,

dy(t)
dt

= a2y(t) – b2y2(t)

is investigated, where ai , bi , i = 1, 2, and c1 are all positive constants, k is a cover
provided for the species x, and 0 < k < 1. The stability and bifurcation analysis for the
system are taken into account. The existence and stability of all possible equilibria of
the system are investigated. With the help of Sotomayor’s theorem, we can prove that
there exist two saddle-node bifurcations and two transcritical bifurcations under
suitable conditions.
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1 Introduction

Amensalism and commensalism are common relations between the species. Here, amen-
salism is an interaction where a species inflicts harm on the other species without any
costs or benefits received by the other, and commensalism is a relationship which is only
favorable to the one side and has no influence on the other side.

During the last decade, many scholars investigated the dynamic behaviors of a com-
mensalism model [1–13], while only recently did scholars pay attention to the dynamic
behaviors of an amensalism model [1, 14–21].
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Sun [14] for the first time proposed the two species amensalism model as follows:

dx
dt

= r1x
(

k1 – x – αy
k1

)
,

dy
dt

= r2y
(

k2 – y
k2

)
.

The stability of all equilibria of the system is investigated. Zhu and Chen [15] studied the
qualitative property of the following amensalism model which is a general form of the
previous system:

dx
dt

= x(r1 – a11x – a12y),

dy
dt

= y(r2 – a22y).

After that, some scholars focused on an amensalism model. Han et al. [16] investigated
the two species non-autonomous amensalism model. Wu [17] investigated the dynamic
behaviors of the two species amensalism symbiosis model with non-monotonic function
response as follows:

dx
dt

= x
(
a1(t) – b1(t)x – c1(t)y

)
,

dy
dt

= y
(
a2(t) – b2(t)y

)
.

With more works on the amensalism mode published, some scholars paid attention to
the influence of refuge on the amensalism model. Xie et al. [18] considered a two species
amensalism model with a partial cover for the first species to protect it from the second
species, the model is as follows:

dx
dt

= a1x – b1x2 – c1(1 – k)xy,

dy
dt

= a2y – b2y2,
(1.1)

where ai, bi, i = 1, 2, and c1 are all positive constants, k is a cover provided for the species x,
and 0 < k < 1. They showed that system (1.1) has four possible equilibria E0(0, 0), E1( a1

b1
, 0),

E2(0, a2
b2

), and E3(x∗, y∗), where x∗ = a1b2–a2c1(1–k)
b1b2

, y∗ = a2
b2

. They showed that E0(0, 0) and
E1( a1

b1
, 0) are unstable, if 0 < k < 1 – a1b2

a2c1
, then E3(x∗, y∗) is globally stable, if 1 – a1b2

a2c1
< k < 1,

then E3(x∗, y∗) is globally stable. More precisely, the conditions which ensure the local sta-
bility of E2(0, a2

b2
) are enough to ensure its global stability, and once the positive equilibrium

exists, it is globally stable. After that, Wu et al. [19] proposed a two species amensalism
model with Holling II functional response and a cover for the first species and investigated
the local and global stability property of possible equilibria of the system.

On the other hand, to obtain the resource for the development of a human being, consid-
ering the harvesting of species is necessary. During the last decade, many scholars inves-
tigated the influence of the harvesting to predator–prey or competition system [22–24].
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Recently, some scholars started to focus on the influence of the harvesting on the amen-
salism or commensalism model [20, 25]. Chen [20] proposed a non-selective harvesting
Lotka–Volterra amensalism model incorporating partial closure for the populations, in-
vestigated the existence, local stability, and the global stability property of the equilibrium
solutions of the system and discussed the influence of the parameter m. Liu et al. [25] pro-
posed a non-autonomous non-selective harvesting Lotka–Volterra commensalism model
incorporating partial closure for the populations and investigated the extinction, partial
survival, persistent property, and the global stability property of the solutions of the sys-
tem.

There are three types of harvesting: (1) constant harvesting [26, 27]; (2) linear harvesting
[28–32]; and (3) nonlinear harvesting [22–24, 33]. As we know, nonlinear harvesting is
more realistic from biological and economical points of view [22]. Clark [23] first proposed
a harvesting term h = qEx

cE+lx , which is named Michaelis–Menten type functional form of
catch rate. Hu and Cao [24] studied the stability and bifurcation of the system with the
Michaelis–Menten type harvesting in predator.

It brings to our attention that in [18] the dynamic behaviors of the amensalism model
with a partial cover are simple and interesting; at the same time, the influence of a human
actor to the nature is rising. No one has ever considered the amensalism model with a
cover and nonlinear harvesting. Hence, studying the dynamic behavior of the amensalism
model with cover and nonlinear harvesting is meaningful. Stimulated by the works of [18,
20], and [24], we propose the following two species amensalism model with Michaelis–
Menten type harvesting and a cover for the first species:

dx
dt

= a1x – b1x2 – c1(1 – k)xy –
qE(1 – k)x

m1E + m2(1 – k)x
,

dy
dt

= a2y – b2y2,
(1.2)

where ai, bi, mi, i = 1, 2, q, E, and c1 are all positive constants, where ai represents the
intrinsic growth rate of the ith species, bi describes the intraspecific competition of the
ith species, k is a cover provided for the species x, and 0 < k < 1, E is the combined fishing
effort used to harvest.

We take the following transformations as [26] to simplify system (1.2):

t̄ = lt, x̄ = nx, ȳ = my,

dropping the bars, system (1.2) can be written as

dx
dt

= x(1 – x) – xy –
αx

γ + x
,

dy
dt

= y
(

δ –
y
β

)
,

(1.3)

where

δ =
a2

a1
, α =

b1qE
a2

1m2
, β =

c1(1 – k)
b2

, γ =
m1b1E

m2a1(1 – k)
.
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The aim of this paper is to investigate the local stability property of the possible equilibria
and bifurcation of system (1.3). We arrange the paper as follows: in the next section, we
investigate the existence and local stability property of the equilibria of system (1.3). In
Sect. 3, we discuss the saddle-node bifurcation and transcritical bifurcation of the system.
Numeric simulations are presented in Sect. 4 to show the feasibility of the main results.
We end this paper with a brief discussion.

2 The existence and stability of equilibria
2.1 The existence of equilibria
The equilibria of system (1.3) are determined by the system

x(1 – x) – xy –
αx

γ + x
= 0,

y
(

δ –
y
β

)
= 0.

(2.1)

The system always admits the boundary equilibria E0(0, 0), E1(0, δβ), while for other
possible boundary equilibria and positive equilibria, we need to consider the following
situations:

(i) If x �= 0, y = 0, we may have another boundary equilibrium E2(x2, 0), where x2 is the
root of the following equation:

x2 + (γ – 1)x + α – γ = 0. (2.2)

Let the discriminant of Eq. (2.2) be denoted by �1 and express �1 in terms of α, i.e.,

�1(α) = –4α + (γ – 1)2 + 4γ

= –4α + (γ + 1)2, (2.3)

let α1 be the root of �1(α). After calculating, we have

α1 =
(γ + 1)2

4
.

(ii) If x �= 0, y �= 0, we may have a positive equilibrium E3(x3, δβ), where x3 is the root of
the following equation:

x2 + (δβ + γ – 1)x + γ δβ + α – γ = 0. (2.4)

Let �2 denote the discriminant of Eq. (2.4) and express it as follows:

�2(α) = –4α + (δβ + γ – 1)2 + 4γ – 4γ δβ

= –4α + (δβ – γ – 1)2, (2.5)

let α2 be the root of �2(α). After calculating, we have

α2 =
(δβ – γ – 1)2

4
.
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Concerned with the number of equilibria of system (1.3), we have the following theo-
rem.

Theorem 2.1 For all positive parameters, there are two boundary equilibria E0(0, 0),
E1(0, δβ). In system (1.3), for other possible boundary equilibria and positive equilibria,
we have:

(i) For other possible boundary equilibria:
(a) If α > α1, then system (1.3) has no other boundary equilibrium;
(b) If α = α1 and γ < 1, then there exists another boundary equilibrium E21(x21, 0),

where x21 = 1–γ

2 ;
(c) If γ < α < α1 and γ < 1, then there exist two boundary equilibria E22(x22, 0),

E23(x23, 0), where x22,23 = 1–γ∓√�1
2 ;

(d) If α = γ and γ < 1, then E22 coincides with E0 and there exists another boundary
equilibrium E23(x23, 0), where x23 = 1 – γ ;

(e) If 0 < α < γ , then there exists another boundary equilibrium E23(x23, 0), where x23

is the same as in case (c);
(ii) For the possible positive equilibria:

(a) If α > α2, then system (1.3) has no positive equilibria;
(b) If α = α2 and γ < 1 – δβ , then there exists a unique positive equilibrium

E31(x31, δβ), where x31 = 1–δβ–γ

2 ;
(c) If γ – γ δβ < α < α2 and γ < 1 – δβ , then there exist two distinct positive

equilibria E32(x32, δβ), E33(x33, δβ), where x32,33 = 1–δβ–γ∓√�2
2 ;

(d) If α = γ – γ δβ and γ < 1 – δβ , then E32 coincides with E1 and there exists a
unique positive equilibrium E33(x33, δβ), where x33 = 1 – δβ – γ ;

(e) If 0 < α < γ – γ δβ , then there exists a unique positive equilibrium E33(x33, δβ),
where x33 is the same as in case (c).

Proof Let f (x) = x2 + (γ + 1)x + α – γ , we can get that if α > α1, then �1 < 0, which means
that the function has no zero point.

If α = α1, then �1 = 0, which means that the function has a unique positive zero point
x21 = 1–γ

2 , where γ < 1.
If 0 < α < α1, then �1 > 0, which means that the function has two distinct zero points

x22,23 = 1–γ∓√�1
2 , and we have to discuss the symbol of them.

If f (0) > 0 and the symmetry is positive, we have x22,23 > 0, as the conditions mention
above, it follows that γ < α < α1 and γ > 1. If f (0) > 0 and the symmetry is negative, we
have x22,23 < 0. If f (0) = 0 and the symmetry is positive, that is, α = γ and γ > 1, we have
x22 = 0, x23 = 1 – γ , that is to say, E22 coincides with E0 and there exists another boundary
equilibrium E23 where α = γ and γ > 1. If f (0) = 0 and the symmetry is negative, we have
x22 < 0, x23 = 0. If f (0) < 0, no matter what the symbol of symmetry is, we have x22 < 0,
x23 > 0. In other words, there exists another boundary equilibrium E23 where 0 < α < γ .

To discuss the possible positive equilibria, we use similar methods and get the results as
in Theorem 2.1(ii).

This ends the proof of Theorem 2.1. �

2.2 Stability of the equilibria E0, E1

Then, we analyze the stability of the equilibrium of system (1.3).
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Theorem 2.2 For all positive parameters, there are two boundary equilibria E0(0, 0),
E1(0, δβ), then:

(1) E0(0, 0) is always unstable;
(2) For E1(0, δβ), we have:

(i) If 1 – δβ – α/γ > 0, then E1(0, δβ) is a saddle;
(ii) If 1 – δβ – α/γ < 0, then E1(0, δβ) is a stable node;

(iii) If 1 – δβ – α/γ = 0, then: If α = γ 2, then E1(0, δβ) is a stable node; If α �= γ 2, then
E1(0, δβ) is a saddle node.

Proof The Jacobian matrix of system (1.3) is calculated as

J(x, y) =

(
1 – 2x – y – αγ

(γ +x)2 –x
0 δ – 2y

β

)
. (2.6)

(i) Then the Jacobian matrix of system (1.3) about the equilibrium E0(0, 0) is given by

J(E0) =

(
1 – α

γ
0

0 δ

)
. (2.7)

The characteristic equation of Jacobian matrix (2.7) is
(

λ – 1 +
α

γ

)
(λ – δ) = 0,

from which it follows that two eigenvalues of J(E0) are λ1 = 1 – α
γ

, λ2 = δ > 0. It is obvious
that E0(0, 0) is always unstable.

(ii) The Jacobian matrix of system (1.3) about the equilibrium E1(0, δβ) is given by

J(E1) =

(
1 – δβ – α

γ
0

0 –δ

)
. (2.8)

The characteristic equation of Jacobian matrix (2.8) is
(

λ – 1 + δβ +
α

γ

)
(λ + δ) = 0,

from which it follows that two eigenvalues of J(E1) are λ1 = 1 – δβ – α
γ

, λ2 = –δ < 0. One
could easily see that if 1 – δβ – α

γ
> 0, then E1(0, δβ) is a saddle; if 1 – δβ – α/γ < 0, then

E1(0, δβ) is a stable node; if 1 – δβ – α
γ

= 0, i.e., λ1 = 0,λ2 = –δ, we cannot draw the conclu-
sion easily.

In this case, Theorem 7.1 in Chap. 2 in [34] is used to determine the stability of the
equilibrium E1. We transform the equilibrium E1 to the origin by translation (X, Y ) = (x, y–
δβ) at first, and then expand in power series up to the forth order around the origin, which
makes the system to be of the following form:

dX
dt

= –
γ 2 – α

γ 2 X2 – XY –
α

γ 3 X3 +
α

γ 4 X4 + P1(X, Y ),

dY
dt

= –δY –
1
β

Y 2,
(2.9)

where P1(X, Y ) is a power series in (X, Y ) with terms XiY j satisfying i + j ≥ 5.
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Let x = X, y = Y , τ = –δt, where τ is a new time variable, then we have

dx
dτ

=
γ 2 – α

δγ 2 x2 +
1
δ

xy +
α

δγ 3 x3 –
α

δγ 4 X4 + P2(x, y),

dy
dτ

= y +
1
δβ

y2,
(2.10)

where P2(x, y) is a power series in (x, y) with terms xiyj satisfying i + j ≥ 5.
From y + 1

δβ
y2 = 0, we get the implicit function y = 0, then

dx
dτ

=
γ 2 – α

δγ 2 x2 +
α

δγ 3 x3 –
α

δγ 4 X4 + · · · .

According to Theorem 7.1 in Chap. 2 in [34], if the coefficient of x2 is γ 2 – α �= 0, i.e.,
m = 2, then the equilibrium E1 is a saddle node. If γ 2 – α = 0, then we have m = 3, am =

α

δγ 3 > 0, by Theorem 7.1 in Chap. 2 in [34], E1 is an unstable node. Note that we have used
the transform τ = –δt, which means the orbits with time going in the opposite direction.
That is, E1 is a stable node.

This ends the proof of Theorem 2.2. �

2.3 Stability of the equilibria E21, E22, E23

Theorem 2.3 Assume that E21, E22, E23 exist, then they are all unstable.

Proof Note that E21(x21, 0) satisfies the equation

1 – x21 –
α

γ + x21
= 0.

The Jacobian matrix about the equilibrium E21 is given by

(
–x21 + αx21

(γ +x21)2 –x21

0 δ

)
. (2.11)

The eigenvalues of the above matrix are λ1 = –x21 + αx21
(γ +x21)2 , λ2 = δ > 0. Hence, E21 is un-

stable. The stability of E22, E23 can be proved by the same method. Obviously, E22, E23 are
unstable too.

This ends the proof of Theorem 2.3. �

2.4 Stability of the equilibrium E31

Theorem 2.4 Assume that α = α2 and γ < 1 – δβ hold, system (1.3) has a unique positive
equilibrium E31(x31, δβ), where x31 = 1–δβ–γ

2 , then E31 is a saddle node.

Proof Note that E31(x31, δβ) satisfies the equation

1 – x31 – δβ –
α

γ + x31
= 0,

where α = α2 = (δβ–γ –1)2

4 .
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Then the Jacobian matrix about the equilibrium E31 is given by
(

0 –x31

0 –δ

)
. (2.12)

The eigenvalues of the above matrix are λ1 = 0, λ2 = –δ < 0.
Then Theorem 7.1 in Chap. 2 in [34] is used to determine the stability of the equilibrium

E31. Now we transform the equilibrium E31 to the origin by translation (X, Y ) = (x – x31, y –
δβ) and then expand in power series up to the forth order around the origin, which makes
the system to be of the following form:

dX
dt

= a01Y + a20X2 – XY + a30X3 + a40X4 + Q1(X, Y ),

dY
dt

= –δY –
1
β

Y 2,
(2.13)

where

a01 = –x31, a20 = –
2x31

1 + γ – δβ
, a30 = –

γ

x2
31

, a40 = –
γ

x3
31

and Q1(X, Y ) is a power series in (X, Y ) with terms XiY j satisfying i + j ≥ 5.
In order to make the Jacobian matrix into a standard form, we use the transformation

(
X
Y

)
=

(
1 x31

2δ

0 1

)(
x
y

)
,

then system (2.13) becomes

dx
dt

= b20x2 + b11xy + b02y2 + b30x3 + b21x2y + b12xy2 + b03y3 + Q2(x, y),

dy
dt

= –δy –
1
β

y2,
(2.14)

where

b20 = –
x31

1 + γ – δβ
, b11 = –

4x2
31 + δ + δγ – βγ 2

δ(1 + γ – δβ)
,

b02 = –
x31(–β2δ2 + βδ2 + γ δβ + 2βx2

31 + δβ – δγ – δ)
δ2β(1 + γ – δβ)

,

b30 = –
γ

x2
31

, b21 = –
3γ

x31δ
, b12 = –

3γ

δ2 , b03 = –
3γ x31

δ3 ,

and Q2(x, y) is a power series in (x, y) with terms xiyj satisfying i + j ≥ 4.
Let τ = –δt, where τ is a new time variable, then we have

dx
dτ

= c20x2 + c11xy + c02y2 + c30x3 + c21x2y + c12xy2 + c03y3 + Q3(x, y),

dy
dτ

= y +
1
δβ

y2,
(2.15)

where cij = – 1
δ
bij and P2(x, y) is a power series in (x, y) with terms xiyj satisfying i + j ≥ 4.
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From y + 1
δβ

y2 = 0, we get the implicit function y = 0, then

dx
dτ

=
x31

δ(1 + γ – δβ)
x2 +

4γ

δ(1 + γ – δβ)
x3 + · · · .

Because of x31 > 0, 1 + γ – δβ > 2γ > 0, the coefficient of x2 is x31
δ(1+γ –δβ) > 0 holding for all

positive parameters, i.e., m = 2, am > 0. Hence, by Theorem 7.1 in Chap. 2 in [34], E31 is a
saddle node.

This ends the proof of Theorem 2.4. �

2.5 Stability of the equilibria E32, E33

Theorem 2.5
(1) Assume that

γ – γ δβ < α < α2, γ < 1 – δβ

holds, then E32 is unstable, E33 is locally asymptotically stable;
(2) Assume that

α = γ – γ δβ , γ < 1 – γ δβ

holds, then E33 is locally asymptotically stable;
(3) Assume that

0 < α < γ – γ δβ

holds, then E33 is locally asymptotically stable if γ < 1 – δβ , E33 is unstable if
γ > 1 – δβ .

Proof Note that E32,33(x32,33, δβ) satisfies the equation

1 – x32,33 – δβ –
α

γ + x32,33
= 0.

The Jacobian matrix about the equilibria E32,33 is given by

(
–x32,33 + αx32,33

(γ +x32,33)2 –x32,33

0 –δ

)
. (2.16)

The eigenvalues of the above matrix are λ1 = x32,33( α

(γ +x32,33)2 – 1), λ2 = –δ < 0. Hence, the
stability of E32,33 is determined by the symbol of λ1.

(1) If γ – γ δβ < α < α2 and γ < 1 – δβ , after simple calculation, we have:
(a) For the equilibrium E32( 1–γ –

√�1
2 , δβ), since α

(γ +x32,33)2 > 1, it follows that λ1 > 0,
that is, E32 is unstable;

(b) For the equilibrium E33( 1–γ +
√�1

2 , δβ), since α

(γ +x32,33)2 < 1, it follows that λ1 < 0,
that is, E33 is locally asymptotically stable.
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Table 1 The existence and stability of equilibria of system (1.3), where γ < 1 – δβ

Qualifications Equilibria & Stability

E0 E1 E21 E22 E23 E23∗ E31 E32 E33 E33∗
0 < α < γ – γ δβ saddle unstable – – unstable – – – stable –
α = γ – γ δβ saddle unstable – – unstable – – – – stable
γ – γ δβ < α < γ saddle stable – – unstable – – unstable stable –
α = γ saddle stable – – – unstable – unstable stable –
γ < α < α2 saddle stable – unstable unstable – – unstable stable –
α = α2 saddle stable – unstable unstable – unstable – – –
α2 < α < α1 saddle stable – unstable unstable – – – – –
α = α1 saddle stable unstable – – – – – – –
α1 < α saddle stable – – – – – – – –

(2) If α = γ – γ δβ and γ < 1 – δβ , system (1.3) only has a unique equilibrium
E33(1 – δβ – γ , δβ), after simple calculation, we have λ1 = (δβ+γ –1)2

δβ–1 . And as
γ < 1 – δβ , we have δβ – 1 < 0, (δβ + γ – 1)2 > 0, that is to say, λ1 < 0. Hence E33 is
locally asymptotically stable.

(3) If 0 < α < γ – γ δβ , as discussed in case (1), for the equilibrium E33( 1–γ +
√�1

2 , δβ),
there are α

(γ +x32,33)2 < 1, then:
(a) If γ < 1 – δβ , we have λ1 < 0, that is, E33 is locally asymptotically stable;
(b) If γ > 1 – δβ , we have λ1 > 0, that is, E33 is unstable.

This ends the proof of Theorem 2.5. �

The existence and stability of equilibria of system (1.3) are summarized in Table 1, where
γ < 1 – δβ and γ < α2.

3 Bifurcation analysis
This section tries to discuss variable bifurcations of system (1.3) and obtains the conditions
for the saddle-node bifurcation and the transcritical bifurcation.

3.1 Saddle-node bifurcation
The conditions which can ensure the existence of boundary equilibria E22, E23 are given in
Sect. 2. After observing the change of E22, E23, we could find that these boundary equilibria
are distinct if γ < α < α1, and E22 coincides with E23 if α = α1; finally they will all disappear
if α > α1. Hence, the appearance or annihilation of equilibria may be due to the occurrence
of a saddle-node bifurcation in the boundary equilibrium E21 which exists when

α = αSN1 =
(γ + 1)2

4
.

We will prove the existence of a saddle-node bifurcation as follows.

Theorem 3.1 System (1.3) undergoes a saddle-node bifurcation when the system param-
eters satisfy the restriction α = αSN1 along with the condition γ < 1 which is given in Theo-
rem 2.1. Here, α ≡ αSN1 = (γ +1)2

4 and α is seen as the bifurcation parameter.

Proof In this section, we use Sotomayor’s theorem [35] to prove the occurrence of a
saddle-node bifurcation with the transversality condition α = αSN1. The Jacobian matrix
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about the equilibrium E21 is given by

J(E21) =

(
0 –x21

0 δ

)
. (3.1)

Obviously, J(E21) has a zero eigenvalue, named λ1.
Let V and W be two eigenvectors respectively corresponding to the eigenvalue λ1 for

the matrices J(E21) and J(E21)T . After simple calculation, we have

V =

(
V1

V2

)
=

(
1
0

)
; W =

(
W1

W2

)
=

(
1

1–γ

2δ

)
.

Moreover,

Fα(E21;αSN1) =

(
– x

γ +x
0

)
x=x21

=

(
– 1–γ

γ +1
0

)
,

D2F(E21;αSN1)(V , V ) =

(
∂2F1
∂x2 V 2

1 + 2 ∂2F1
∂x∂y V1V2 + ∂2F1

∂y2 V 2
2

∂2F2
∂x2 V 2

1 + 2 ∂2F2
∂x∂y V1V2 + ∂2F2

∂y2 V 2
2

)

(E21;αSN1)

=

(
–2 + 4γ

γ +1
0

)
.

One could easily see that V and W satisfy

W T Fα(E21;αSN1) = –
1 – γ

γ + 1
�= 0,

W T[
D2F(E21;αSN1)(V , V )

]
= –2 +

4γ

γ + 1
�= 0,

which means that when α = αSN1, the saddle-node bifurcation occurs at E21.
The proof of Theorem 3.1 is finished. �

Similarly the conditions which can ensure the existence of positive equilibria E32, E33 are
given in Sect. 2, and we could find that these positive equilibria are distinct if γ – γ δβ <
α < α2, and E32 coincides with E33 if α = α2; finally they will all disappear if α > α2. Hence,
the appearance or annihilation of equilibria may be due to the occurrence of a saddle-node
bifurcation at the positive equilibrium E31 which exists when

α = αSN2 =
(δβ – γ – 1)2

4
.

We will prove the occurrence of a saddle-node bifurcation at the positive equilibrium E31

as follows.

Theorem 3.2 System (1.3) undergoes a saddle-node bifurcation when the system param-
eters satisfy the restriction α = αSN1 along with the condition γ < 1 which is given in Theo-
rem 2.1. Here, α ≡ αSN1 = (γ +1)2

4 and α is seen as the bifurcation parameter.
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Proof We also use Sotomayor’s theorem [35] to prove the occurrence of a saddle-node bi-
furcation with the transversality condition α = αSN2. The Jacobian matrix about the equi-
librium E31 is given by

J(E31) =

(
0 –x31

0 δ

)
. (3.2)

Obviously, J(E31) has a zero eigenvalue, named λ1.
Let V and W be two eigenvectors respectively corresponding to the eigenvalue λ1 for

the matrices J(E31) and J(E31)T . After simple calculation, we have

V =

(
V1

V2

)
=

(
1
0

)
; W =

(
W1

W2

)
=

(
1

– 1–δβ–γ

2δ

)
.

Moreover,

Fα(E31;αSN2) =

(
– x

γ +x
0

)
x=x31

=

(
– 1–δβ–γ

γ +1–δβ

0

)
,

D2F(E31;αSN2)(V , V ) =

(
∂2F1
∂x2 V 2

1 + 2 ∂2F1
∂x∂y V1V2 + ∂2F1

∂Y 2 V 2
2

∂2F2
∂x2 V 2

1 + 2 ∂2F2
∂x∂y V1V2 + ∂2F2

∂Y 2 V 2
2

)

(E31;αSN2)

=

(
–2 + 4γ

γ +1–δβ

0

)
.

One could easily see that V and W satisfy

W T Fα(E31;αSN2) = –
1 – δβ – γ

γ + 1 – δβ
�= 0,

W T[
D2F(E31;αSN2)(V , V )

]
= –2 +

4γ

γ + 1 – δβ
�= 0,

which means that when α = αSN2, the saddle-node bifurcation occurs at E31.
The proof of Theorem 3.2 is finished. �

For β = 0.5, γ = 0.2, δ = 0.4, we get αSN1 = α1 = 0.36. For 0.2 = γ < α < αSN1, system
(1.3) has two distinct boundary equilibria E22, E23 (see Fig. 1(e), (f ), (g)) which coincide
with each other for α = αSN1 (see Fig. 1(h)) and no boundary equilibrium in the x-axis for
α > αSN1 (see Fig. 1(i)).

Meanwhile, we get αSN2 = α2 = 0.25. For 0.16 = γ – γ δβ < α < αSN2, system (1.3) has two
distinct interior equilibria E22, E23 (see Fig. 1(c), (d), (e)) which coincide with each other
for α = αSN1 (see Fig. 1(f )) and no interior equilibrium for α > αSN1 (see Fig. 1(g), (h), (i)).

3.2 Transcritical bifurcation
In Sect. 2, it was easy for us to notice an interesting phenomenon: when α = γ , E22 will
coincide with E0 if γ < 1 and E23 will coincide with E0 if γ > 1. Hence, the appearance of the
phenomenon may be due to the occurrence of a transcritical bifurcation in the boundary
equilibrium E0. Then we have the following.
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Figure 1 (a) Dynamic behaviors of system (1.3), the parameters (α,β ,γ ,δ) = (0.1, 0.5, 0.2, 0.4). (b) Dynamic
behaviors of system (1.3), the parameters (α,β ,γ ,δ) = (0.16, 0.5, 0.2, 0.4). (c) Dynamic behaviors of system (1.3),
the parameters (α,β ,γ ,δ) = (0.18, 0.5, 0.2, 0.4). (d) Dynamic behaviors of system (1.3), the parameters
(α,β ,γ ,δ) = (0.2, 0.5, 0.2, 0.4). (e) Dynamic behaviors of system (1.3), the parameters
(α,β ,γ ,δ) = (0.22, 0.5, 0.2, 0.4). (f) Dynamic behaviors of system (1.3), the parameters
(α,β ,γ ,δ) = (0.25, 0.5, 0.2, 0.4). (g) Dynamic behaviors of system (1.3), the parameters
(α,β ,γ ,δ) = (0.3, 0.5, 0.2, 0.4). (h) Dynamic behaviors of system (1.3), the parameters
(α,β ,γ ,δ) = (0.36, 0.5, 0.2, 0.4). (i) Dynamic behaviors of system (1.3), the parameters
(α,β ,γ ,δ) = (0.5, 0.5, 0.2, 0.4)

Theorem 3.3 System (1.3) undergoes a transcritical bifurcation when the system param-
eters satisfy the restriction α = αTC1 = γ . Here, α is seen as the bifurcation parameter.

Proof In this section, we also use Sotomayor’s theorem [35] to verify the occurrence of a
transcritical bifurcation with the transversality condition α = αTC1. The Jacobian matrix
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Figure 1 Continued

about the equilibrium E0 is given by

J(E0) =

(
0 0
0 –δ

)
. (3.3)

Obviously, J(E0) has a zero eigenvalue, named λ1.
Let V and W be two eigenvectors respectively corresponding to the eigenvalue λ1 for

the matrices J(E0) and J(E0)T . After simple calculation, we have

V =

(
V1

V2

)
=

(
1
0

)
; W =

(
W1

W2

)
=

(
1
0

)
.

Moreover,

Fα(E0;αTC1) =

(
– x

γ +x
0

)
x=0

=

(
0
0

)
,

DFα(E0;αTC1)V =

(
– γ

(γ +x)2 0
0 0

)
(E0;αTC1)

(
1
0

)
=

(
– 1

γ

0

)
,
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D2F(E0;αTC1)(V , V ) =

(
∂2F1
∂x2 V 2

1 + 2 ∂2F1
∂x∂y V1V2 + ∂2F1

∂Y 2 V 2
2

∂2F2
∂x2 V 2

1 + 2 ∂2F2
∂x∂y V1V2 + ∂2F2

∂Y 2 V 2
2

)

(E0;αTC1)

=

(
–2 + 2

γ

0

)
.

Therefore V and W satisfy

W T Fα(E0;αTC1) = 0,

W T[
DFα(E0;αTC1)V

]
= –

1
γ

�= 0,

W
[
D2F(E0;αTC1)(V , V )

]
= –2 +

2
γ

�= 0,

which means that when α = αTC1, the transcritical bifurcation occurs at E0.
The proof of Theorem 3.3 is finished. �

This interesting phenomenon also takes place in the boundary equilibrium E1: when
α = γ – γ δβ , then E32 will coincide with E1 if γ < 1 – δβ and E33 will coincide with E1 if
γ > 1 – δβ . Hence, the appearance of the phenomenon may be due to the occurrence of a
transcritical bifurcation in the boundary equilibrium E1. Then we have the following.

Theorem 3.4 System (1.3) undergoes a transcritical bifurcation when the system parame-
ters satisfy the restriction α = αTC2 = γ – γ δβ . Here, α is seen as the bifurcation parameter.

Proof We also use Sotomayor’s theorem [35] to prove the occurrence of a transcritical bi-
furcation with the transversality condition α = αTC2.The Jacobian matrix about the equi-
librium E1 is given by

J(E1) =

(
0 0
0 –δ

)
. (3.4)

Obviously, J(E1) has a zero eigenvalue, named λ1.
Let V and W be two eigenvectors respectively corresponding to the eigenvalue λ1 for

the matrices J(E1) and J(E1)T . After simple calculation, we have

V =

(
V1

V2

)
=

(
1
0

)
; W =

(
W1

W2

)
=

(
1
0

)
.

Moreover,

Fα(E1;αTC2) =

(
– x

γ +x
0

)
(E1;αTC2)

=

(
0
0

)
,

DFα(E1;αTC2)V =

(
– γ

(γ +x)2 0
0 0

)
(E1;αTC2)

(
1
0

)
=

(
– 1

γ

0

)
,
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D2F(E1;αTC2)(V , V ) =

(
∂2F1
∂x2 V 2

1 + 2 ∂2F1
∂x∂y V1V2 + ∂2F1

∂Y 2 V 2
2

∂2F2
∂x2 V 2

1 + 2 ∂2F2
∂x∂y V1V2 + ∂2F2

∂Y 2 V 2
2

)

(E1;αTC2)

=

(
–2 + 2(1–δβ)

γ

0

)
.

Therefore V and W satisfy

W T Fα(E1;αTC2) = 0,

W T[
DFα(E1;αTC2)V

]
= –

1
γ

�= 0,

W
[
D2F(E1;αTC2)(V , V )

]
= –2 +

2(1 – δβ)
γ

�= 0,

which means that when α = αTC2, the transcritical bifurcation also occurs at E1.
The proof of Theorem 3.4 is finished. �

4 Numeric simulations
Example 4.1 Consider the following system:

dx
dt

= x(1 – x) – xy –
αx

0.2 + x
,

dy
dt

= y
(

0.4 –
y

0.5

)
.

(4.1)

In this system, corresponding to system (1.3), we take β = 0.5, γ = 0.2, δ = 0.4. Then we
have 0.2 = γ < 1 – δβ = 0.8, γ – γ δβ = 0.16, α1 = (γ +1)2

4 = 0.36, and α2 = (δβ–γ –1)2

4 = 0.25.
From Theorem 2.1, system (4.1) has two boundary equilibria E0(0, 0), E1(0, 0.2) for all pos-
itive parameters, and E0(0, 0) is unstable from Theorem 2.2(1).

(1) Take α = 0.1, then 0 < α < γ – γ δβ , from Theorem 2.1(i)(e) and (ii)(e), system (4.1)
has another boundary equilibrium E23(0.9099, 0) and a unique positive equilibrium
E33(0.6873, 0.2). Furthermore, from Theorem 2.2(2)(i), Theorem 2.3, and
Theorem 2.5(3), we have E1 is a saddle, E23 is unstable, and E33 is locally
asymptotically stable, see Fig. 1(a);

(2) Take α = 0.16, then α = γ – γ δβ < γ , α �= γ 2, from Theorem 2.1(i)(e) and (ii)(d),
system (4.1) has another boundary equilibrium E23(0.8472, 0) and a unique positive
equilibrium E33∗ (0.6, 0.2). Furthermore, from Theorem 2.2(2)(iii), Theorem 2.3, and
Theorem 2.5(2), we have E1 is a saddle node, E23 is unstable, and E33∗ is locally
asymptotically stable, see Fig. 1(b);

(3) Take α = 0.18, then γ – γ δβ < α < γ , from Theorem 2.1(i)(e) and (ii)(c), system (4.1)
has another boundary equilibrium E23(0.8243, 0) and two distinct positive equilibria
E32(0.0354, 0.2), E33(0.5646, 0.2). Furthermore, from Theorem 2.2(2)(ii),
Theorem 2.3, and Theorem 2.5(1), we have E1 is a stable node, E23 is unstable, E32 is
unstable, and E33 is locally asymptotically stable, see Fig. 1(c);

(4) Take α = 0.2, then α = γ , from Theorem 2.1(i)(d) and (ii)(c), system (4.1) has
another boundary equilibrium E23∗ (0.8, 0) and two distinct positive equilibria
E32(0.0764, 0.2), E33(0.5236, 0.2). Furthermore, from Theorem 2.2(2)(ii),
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Theorem 2.3, and Theorem 2.5(1), we have E1 is a stable node, E23 is unstable, E32 is
unstable, and E33 is locally asymptotically stable, see Fig. 1(d);

(5) Take α = 0.22, then γ < α < α2, from Theorem 2.1(i)(c) and (ii)(c), system (4.1) has
other two boundary equilibria E22(0.0258, 0) E23(0.7741, 0) and two distinct positive
equilibria E32(0.1268, 0.2), E33(0.4732, 0.2). Furthermore, from Theorem 2.2(2)(ii),
Theorem 2.3, and Theorem 2.5(1), we have E1 is a stable node, E22, E23 is unstable,
E32 is unstable, and E33 is locally asymptotically stable, see Fig. 1(e);

(6) Take α = 0.25, then α = α2, from Theorem 2.1(i)(c) and (ii)(b), system (4.1) has other
two boundary equilibria E22(0.0683, 0) E23(0.7317, 0) and a unique positive
equilibrium E31(0.3, 0.2). Furthermore, from Theorem 2.2(2)(ii), Theorem 2.3, and
Theorem 2.4, we have E1 is a stable node, E22, E23 is unstable and E31 is a saddle
node, see Fig. 1(f );

(7) Take α = 0.3, then α2 < α < α1, from Theorem 2.1(i)(c) and (ii)(a), system (4.1) has
other two boundary equilibria E22(0.1551, 0) E23(0.6450, 0) and none positive
equilibria. Furthermore, from Theorem 2.2(2)(ii), Theorem 2.3, we have E1 is a
stable node and E22, E23 is unstable, see Fig. 1(g);

(8) Take α = 0.36, then α = α1, from Theorem 2.1(i)(b) and (ii)(a), system (4.1) has
another boundary equilibrium E21(0.4, 0) and none positive equilibria. Furthermore,
from Theorem 2.2(2)(ii), Theorem 2.3, we have E1 is a stable node and E21 is
unstable, see Fig. 1(h);

(9) Take α = 0.5, then α1 < α, from Theorem 2.1(i)(a) and (ii)(a), system (4.1) only has
two boundary equilibria E0(0, 0), E1(0, 0.2). Furthermore, from Theorem 2.2 (2) (ii),
we have E1 is a stable node, see Fig. 1(i);

5 Conclusion
An amensalism model with Michaelis–Menten type harvesting and a cover for the first
species is proposed and studied in this paper. Already Xie et al. [18] investigated the lo-
cal and global stability property of the possible equilibria of the above model, where the
harvesting term h = 0. By contrast, we can find some interesting phenomena about the
dynamic behavior of system (1.3):

(a) At most, there are six equilibria for the system including two distinct interior points.
While in [18] there just four equilibria and a unique interior point;

(b) With the increase in the number of equilibria, dynamic behavior of the system
becomes more complex, such as the appearance of bifurcation;

(c) In [18], once the positive equilibrium exists, it is globally stable. While in system
(1.3), if α = α2, then there is a unique positive equilibrium E31; from Theorem 2.4,
we have E31 is a saddle node (see Fig. 1(h)).

That is, by introducing the harvesting, the dynamic behaviors of the system become
complicated.
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