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Abstract
In this paper, the problem on outer synchronization is investigated for a class of mixed
delayed complex networks by using the pinning control strategy. Together with some
Lyapunov–Krasovskii functional and effective mathematical techniques, several
conditions are derived to guarantee a class of complex networks with mixed delays to
be outer synchronization. By proposing a novel functional condition which has not
been proposed so far, further improved synchronization criteria are proposed. Finally,
two examples are given to illustrate the effectiveness of the results.
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1 Introduction
Complex networks [1, 2] lie everywhere in our daily life, such as the Internet, world wide
web, communication networks, social networks, genetic regulatory networks, power grid
networks, and so on. In 1990, controlling chaos was proposed, and it was shown that one
can convert a chaotic attractor to any one of a large number of possible attracting time-
periodic motions via making only small time-dependent perturbations of an available sys-
tem parameter [1]. Synchronization of complex networks has become an active field of
research [3–10], because the synchronization mechanism can better explain many natural
phenomena, including the synchronous information exchange in the Internet and world
wide web, and the synchronous transfer of digital or analog signals in communication net-
works. In 1998, focusing on the transition from a regular lattice to a random graph, Watts
and Strogatz introduced an interesting model, i.e., the small-world network [4].

From the control strategy point of view, all kinds of control approaches have been pro-
posed in the field of the synchronization of complex networks. These approaches can be
divided into two classes in general. One is based on the continuous updating feedback
signals, for instance time-delay feedback control [11], adaptive control [12, 13], and non-
linear feedback control [14]. The other kind is based on the discrete signals updated at in-
stant times, such as sampled-data control [15] and impulsive control [16]. The traditional
method to synchronize a complex network is to add a controller to each of the network
nodes to tame the dynamics to approach a desired synchronization trajectory. However, a
complex network is normally composed of a large number of high-dimensional nodes, and
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it is expensive and infeasible to control all the neurons. Motivated by this practical con-
sideration, the idea of controlling a small portion of nodes, named pinning control, was
introduced in [17]. Pinning control, as a feasible strategy, could drive networks of coupled
oscillators onto some desired trajectory. Generally speaking, we apply pinning control by
adding a feedback control input on a fraction of networks nodes. Though we just exert
the direct control on such pinned nodes, it can be propagated to the rest of the oscillators
through the coupling among the nodes. Many pinning algorithms have been reported for
the synchronization of dynamical networks (see [18–23]). [18] investigated the effects of
control strength on nonlinearly coupled systems in the process of synchronization. Wu
and Fu [21] studied the cluster mixed synchronization of complex networks with commu-
nity structure and nonidentical nodes by using some linear pinning control schemes. It
turned out that the pinning control method reduces the control cost to a certain extent by
reducing the amount of controllers added to the nodes.

Up to now, all sorts of different synchronization phenomena, such as complete synchro-
nization [24, 25], generalized synchronization [26], phase synchronization [27], cluster
synchronization [28], exponential synchronization [29] etc., have been reported in the lit-
erature. Complete synchronization means that the coupled chaotic systems remain in step
with each other in the course of time. In coupled systems with identical elements (i.e., each
component having the same dynamics and parameter set), we can observe complete syn-
chronization. Complete synchronization can be regarded as inner synchronization. Except
the aforementioned inner synchronization behavior, there exists another synchronization
phenomenon named outer synchronization, which occurs between two or more coupled
networks [30]. In reality, many practical systems, such as the different species develop-
ment in balance [31], the groups of Drosophila clock neurons [32], and the spread of dis-
eases, such as SARS and bird flu, between two communities [33], can be used to illustrate
the outer synchronization phenomenon between two networks. Due to its theoretical and
practical importance, outer synchronization between two dynamical networks has drawn
much attention in recent years [34–38]. In [34], the outer synchronization was studied
between two delay-coupled complex dynamical networks with nonidentical topological
structures and a noise perturbation. Zheng et al. [35] investigated the adaptive synchro-
nization between two nonlinearly delay-coupled complex networks with the bidirectional
actions and nonidentical topological structures. Outer synchronization between drive and
response networks via adaptive impulsive pinning control was investigated in [36]. The
problem of pinning outer synchronization was considered between two delayed complex
networks with nonlinear coupling [37]. In [38], an aperiodically adaptive intermittent con-
trol scheme combined with the pinning strategy was proposed for outer synchronization
between two general complex delayed dynamical networks.

Motivated by the above discussions, in this paper, we study the outer synchronization of
complex dynamical networks with mixed time delayed coupling. Combining the pinning
control method and the linear matrix inequality technique, some sufficient conditions for
synchronization of complex networks with time-varying delays are derived. By proposing
a novel activation functional condition, further improved outer synchronization criteria
are proposed. Finally, two examples are given to illustrate the effectiveness of the proposed
methods.

This paper is organized as follows. The network model is introduced and some necessary
lemmas are given in Sect. 2. Section 3 discusses the outer synchronization of the complex
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dynamical networks with mixed delayed coupling by the pinning control method. Cor-
responding synchronization criteria for guaranteeing synchronization are obtained. The
theoretical results are verified numerically by several representative examples in Sect. 4.
Finally, this paper is concluded in Sect. 5.

Notation Throughout this paper, Rn denotes the n-dimensional Euclidean space and
R

n×n is the set of all n × n real matrices. For symmetric matrices X and Y , the no-
tation X > Y (X ≥ Y ) means that the matrix X – Y is positive definite (nonnegative).
[ X Y

Y T Z

]
=

[ X Y
∗ Z

]
with ∗ denoting the symmetric term in a symmetric matrix.

2 Preliminaries
Consider a complex dynamical network consisting of N identical nodes with linearly cou-
pling network with mixed delays:

ẋi(t) = Axi(t) + Bf
(
xi(t)

)
+ Cf

(
xi

(
t – τ (t)

))
+ D

∫ t

t–σ

f
(
xi(s)

)
ds +

N∑

j=1

hij�xj(t), (1)

where i = 1, 2, . . . , N , xi(t) = (xi1(t), . . . , xin(t))T ∈ R
n is the state vector of node i, f :

R
n → R

n is continuously differentiable, f (xi(t)) = [f1(xi1(t)), . . . , fn(xin(t))]T . Here A =
diag{a1, a2, . . . , an} < 0. The matrices B = (bij)n×n and C = (cij)n×n are weight and delayed
weight matrices, respectively. The matrix D = (dij)n×n is a distributed delayed weight ma-
trix. σ is a distributed delay. The matrix � = diag{γ1,γ2, . . . ,γn} ∈R

n×n is an inner coupling
matrix of complex networks and it is a positive definite matrix. H = (hij)N×N is an outer
coupling matrix representing the complex network topology defined as follows: If there
is a connection between nodes i and j (j �= i), then hij �= 0; otherwise, hij = 0 (j �= i) and the
diagonal elements of matrix H are defined by hii = –

∑N
j=1,j �=i hij.

Assumption 1 Here τ (t) denotes the interval time-varying delay satisfying

0 ≤ τ0 ≤ τ (t) ≤ τm, μ0 ≤ τ̇ (t) ≤ μm < +∞, and τ̄ = τm – τ0. (2)

Assumption 2

l–
i ≤ fi(x) – fi(y)

x – y
≤ l+

i , ∀x, y ∈R, x �= y, i = 1, 2, . . . , n, (3)

where l–
i , l+

i , i = 1, 2, . . . , n, are constants and L1 = diag(l–
1 , l–

2 , . . . , l–
n ), L2 = diag(l+

1 , l+
2 , . . . , l+

n).

Remark 1 The constants l–
i and l+

i in Assumption 2 are allowed to be positive, negative,
or zero. This assumption is weaker than Assumption 2 in [20], which is the special case of
the function satisfying condition (3).

We refer to model (1) as the drive-coupled complex dynamical network. Correspond-
ingly, the response complex network with controller ui(t), i = 1, 2, . . . , N , can be written
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as

ẏi(t) = Ayi(t) + Bf
(
yi(t)

)
+ Cf

(
yi

(
t – τ (t)

))

+ D
∫ t

t–σ

f
(
yi(s)

)
ds +

N∑

j=1

hij�yj(t) + ui(t),
(4)

ui(t) =

⎧
⎨

⎩
–d(yi(t) – xi(t)), i = 1, 2, . . . , l;

0, i = l + 1, . . . , N ,
(5)

where d = diag(d1, d2, . . . , dn) > 0 is a positive definite feedback gain matrix, and 1 ≤ l ≤ N .

Definition 2.1 The drive-response networks (1) and (4) are said to achieve outer syn-
chronization if

lim
t→∞

∥∥yi(t) – xi(t)
∥∥ = 0, i = 1, 2, . . . , N .

We define outer synchronization errors between the drive network (1) and the response
network (4) as ei(t) = yi(t) – xi(t).

Then, the following error dynamical network can be obtained:

ėi(t) = Aei(t) + Bg
(
ei(t)

)
+ Cg

(
ei

(
t – τ (t)

))

+ D
∫ t

t–σ

g
(
ei(s)

)
ds +

N∑

j=1

hij�ej(t) – dei(t), (6)

where i = 1, 2, . . . , l, g(ei(t)) = f (yi(t))– f (xi(t)), g(ei(t)) = [g1(ei1(t)), . . . , gn(ein(t))]. According
to inequality (3), one can obtain

l–
i ≤ gi(x)

x
≤ l+

i , gi(0) = 0, ∀x ∈ R, i = 1, 2, . . . , n. (7)

Lemma 2.1 (Jensen’s inequality) For any constant matrix X ∈ 
n×n, X = XT > 0, two
scalars h2 ≥ h1 > 0 such that the following integration is well defined, then

–(h2 – h1)
∫ t–h1

t–h2

xT (s)Xx(s) ds ≤ –
(∫ t–h1

t–h2

x(s) ds
)T

X
(∫ t–h1

t–h2

x(s) ds
)

.

Lemma 2.2 For any constant matrix Z ∈ 
n×n, Z = ZT > 0, two scalars τm ≥ τ0 > 0 such
that the following integration is well defined, then

–
∫ –τ0

–τm

∫ t

t+θ

ẋT (s)Zẋ(s) ds

≤ 2(1 – τ̄ )
τm + τ0

xT (t)Zx(t) –
2(1 – τ̄ )
τ 2

m – τ 2
0

∫ t–τ0

t–τm

xT (s) ds Z
∫ t–τ0

t–τm

x(s) ds.

Proof

[
ẋT (s)Zẋ(s) ẋT (s)

ẋ(s) Z–1

]

≥ 0.
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Integration of the above inequality from t + θ to t, where –τm ≤ θ ≤ –τ0, yields

[∫ t
t+θ

ẋT (s)Zẋ(s) ds
∫ t

t+θ
ẋT (s) ds

∫ t
t+θ

ẋ(s) ds –θZ–1

]

≥ 0.

Integration from –τm to –τ0 yields

[∫ –τ0
–τm

∫ t
t+θ

ẋT (s)Zẋ(s) ds dθ
∫ –τ0

–τm

∫ t
t+θ

ẋT (s) ds dθ
∫ –τ0

–τm

∫ t
t+θ

ẋ(s) ds dθ
∫ –τ0

–τm
–θZ–1 dθ

]

≥ 0.

According to Schur complements,

–
∫ –τ0

–τm

∫ t

t+θ

ẋT (s)Zẋ(s) ds dθ

≤ –
2

τ 2
m – τ 2

0

(∫ –τ0

–τm

∫ t

t+θ

ẋT (s) ds dθ

)
Z
(∫ –τ0

–τm

∫ t

t+θ

ẋ(s) ds dθ

)

= –
2

τ 2
m – τ 2

0

[
(τm – τ0)xT (t) –

∫ t–τ0

t–τm

xT (s) ds
]

Z
[

(τm – τ0)x(t) –
∫ t–τ0

t–τm

x(s) ds
]

= –
2(τm – τ0)2

τ 2
m – τ 2

0
xT (t)Zx(t) +

4
τm + τ0

xT (t)Z
∫ t–τ0

t–τm

x(s) ds

–
2

τ 2
m – τ 2

0

∫ t–τ0

t–τm

xT (s) ds Z
∫ t–τ0

t–τm

x(s) ds.

Applying the inequality 2XT PY ≤ XT PX + Y T PY , one can obtain

–
∫ –τ0

–τm

∫ t

t+θ

ẋT (s)Zẋ(s) ds dθ

≤ –
2(τm – τ0)
τm + τ0

xT (t)Zx(t) –
2

τ 2
m – τ 2

0

∫ t–τ0

t–τm

xT (s) ds Z
∫ t–τ0

t–τm

x(s) ds

+
2

τm + τ0
xT (t)Zx(t) +

2
τm + τ0

∫ t–τ0

t–τm

xT (s) ds Z
∫ t–τ0

t–τm

x(s) ds

=
2(1 – τ̄ )
τm + τ0

xT (t)Zx(t) –
2(1 – τ̄ )
τ 2

m – τ 2
0

∫ t–τ0

t–τm

xT (s) ds Z
∫ t–τ0

t–τm

x(s) ds. �

3 Main results
In this section, by using a Lyapunov–Krasovskii functional, new outer synchronization
criteria for mixed delayed complex networks will be proposed.

Theorem 3.1 Under Assumptions 1 and 2, for given matrices L1 = diag{l–
1 , l–

2 , . . . , l–
n},

L2 = diag{l+
1 , l+

2 , . . . , l+
n}, and scalars τm, τ0, μ0, μm, the complex networks (1) and (4) can

achieve outer synchronization if there exist positive definite matrices P, Q, R1, R2, X1, X2, Y ,
Z, positive diagonal matrices Wi = diag{w1i, . . . , wni}, i = 1, 2, . . . , 8, � = diag{λ1,λ2, . . . ,λn},
and 	 = diag{δ1, δ2, . . . , δn} such that the following LMIs hold:

F =

⎛

⎜
⎝

2(pk + l+
k δk – l–

k λk)H – w8
kIN (λk – θk)γkH w5

kγkH
∗ –w7

kIN 0
∗ ∗ –w6

kIN

⎞

⎟
⎠ < 0 (8)
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and

E =

⎛

⎜⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜⎜
⎜⎜
⎜⎜
⎜⎜
⎜⎜⎜
⎜⎜
⎝

E11 0 0 0 E15 0 E17 0 0 0 E1,11 E1,12

∗ E22 0 0 E25 E26 0 0 0 0 0 0
∗ ∗ E33 0 0 0 0 E38 0 0 0 0
∗ ∗ ∗ E44 0 0 E47 0 0 0 0 0
∗ ∗ ∗ ∗ E55 0 E57 0 0 0 E5,11 E5,12

∗ ∗ ∗ ∗ ∗ E66 0 0 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ E77 0 0 0 0 E7,12

∗ ∗ ∗ ∗ ∗ ∗ ∗ E88 0 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ E99 0 0 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ E10,10 0 E10,12

∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ E11,11 0
∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ ∗ E12,12

⎞

⎟⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟⎟
⎟⎟
⎟⎟
⎟⎟
⎟⎟⎟
⎟⎟
⎠

< 0, (9)

where

E11 = 2P(A – d) + Q + 2(L2	 – L1�)(A – d) + τ 2
0 X1 + τ̄ 2X2

+
2(1 – τ̄ )
τm + τ0

Z – 2L1W1L2 + W8,

E15 = PB + (� – 	)(A – d) + (L2	 – L1�)B + L1W1 + L2W1,

E17 = PC + (L2	 – L1�)C, E1,11 = PD + (L2	 – L1�)D, E1,12 = (A – d)W5,

E22 = R2 – 2L1W2L2, E26 = L2W2 + L1W1,

E33 = –Q – R1 – 2L1W4L2, E38 = L1W4 + L2W4,

E44 = (1 – μ0)R1 – (1 – μm)R2 – 2L1W3L2, E47 = L1W3 + L2W3,

E55 = 2(� – 	)B + σ 2Y – 2W1 + W7, E57 = (� – 	)C, E5,11 = (� – 	)D,

E5,12 = BW5, E66 = –2W2, E77 = –2W3, E7,12 = –CW5,

E88 = –2W4, E99 = –X1,

E10,10 = –X2 –
2(1 – τ̄ )
τ 2

m – τ 2
0

Z, E10,12 = DW5,

E11,11 = –σY , and E12,12 =
τ 2

m – τ 2
0

2
Z – 2W5 + W6.

Proof Construct a Lyapunov functional as follows:

V (et) =
7∑

i=1

Vi(et),

where

V1(et) =
N∑

i=1

eT
i (t)Pei(t),
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V2(et) =
N∑

i=1

∫ t

t–τm

eT
i (s)Qei(s) ds,

V3(et) = 2
N∑

i=1

n∑

j=1

λi

∫ eij(t)

0

(
gj(s) – l–

j s
)

ds + 2
N∑

i=1

n∑

j=1

δi

∫ eij(t)

0

(
l+
j s – gj(s)

)
ds,

V4(et) =
N∑

i=1

∫ t–τ (t)

t–τm

eT
i (s)R1ei(s) ds +

N∑

i=1

∫ t–τ0

t–τ (t)
eT

i (s)R2ei(s) ds,

V5(et) = τ0

N∑

i=1

∫ 0

–τ0

∫ t

t+θ

eT
i (s)X1ei(s) ds dθ + τ̄

N∑

i=1

∫ –τ0

–τm

∫ t

t+θ

eT
i (s)X2ei(s) ds dθ ,

V6(et) = σ

N∑

i=1

∫ 0

–σ

∫ t

t+θ

gT(
ei(s)

)
Yg

(
ei(s)

)
ds dθ ,

and

V7(et) =
N∑

i=1

∫ –τ0

–τm

∫ 0

θ

∫ t

t+λ

ėT
i (s)Zėi(s) ds dλdθ .

The time derivative of V (et) along the trajectory of system (6) is given by

V̇1(et) = 2
N∑

i=1

eT
i (t)Pėi(t)

= 2
N∑

i=1

eT
i (t)P

[
Aei(t) + Bg

(
ei(t)

)
+ Cg

(
ei

(
t – τ (t)

))
+ D

∫ t

t–σ

g
(
ei(s)

)
ds – dei(t)

]

+ 2
N∑

i=1

eT
i (t)P

N∑

j=1

hij�ej(t), (10)

V̇2(et) =
N∑

i=1

eT
i (t)Qei(t) –

N∑

i=1

eT
i (t – τm)Qei(t – τm), (11)

V̇3(et) = 2
N∑

i=1

[
gT(

ei(t)
)
(� – 	) + eT

i (t)(L2	 – L1�)
]
ėi(t)

= 2
N∑

i=1

gT(
ei(t)

)
(� – 	)

[
(A – d)ei(t) + Bg

(
ei(t)

)
+ Cg

(
ei

(
t – τ (t)

))

+ D
∫ t

t–σ

g
(
ei(s)

)
ds

]

+ 2
N∑

i=1

eT
i (t)(L2	 – L1�)

[
(A – d)ei(t) + Bg

(
ei(t)

)
+ Cg

(
ei

(
t – τ (t)

))

+ D
∫ t

t–σ

g
(
ei(s)

)
ds

]
+ 2

N∑

i=1

gT(
ei(t)

)
(� – 	)

N∑

j=1

hij�ej(t)

+ 2
N∑

i=1

eT
i (t)(L2	 – L1�)

N∑

j=1

hij�ej(t), (12)
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V̇4(et) =
N∑

i=1

[(
1 – τ̇ (t)

)
eT

i
(
t – τ (t)

)
R1ei

(
t – τ (t)

)
– eT

i (t – τm)R1ei(t – τm)

+ eT
i (t – τ0)R2ei(t – τ0) –

(
1 – τ̇ (t)

)
eT

i
(
t – τ (t)

)
R2ei

(
t – τ (t)

)]

≤
N∑

i=1

[
(1 – μ0)eT

i
(
t – τ (t)

)
R1ei

(
t – τ (t)

)
– eT

i (t – τm)R1ei(t – τm)

+ eT
i (t – τ0)R2ei(t – τ0) – (1 – μm)eT

i
(
t – τ (t)

)
R2ei

(
t – τ (t)

)]
. (13)

By employing Lemma 2.1, one can obtain

V̇5(et) = τ 2
0

N∑

i=1

eT
i (t)X1ei(t) – τ0

N∑

i=1

∫ t

t–τ0

eT
i (s)X1ei(s) ds

+
N∑

i=1

τ̄ 2eT
i (t)X2ei(t) –

N∑

i=1

τ̄

∫ t–τ0

t–τm

eT
i (s)X2ei(s) ds

≤ τ 2
0

N∑

i=1

eT
i (t)X1ei(t) –

N∑

i=1

(∫ t

t–τ0

eT
i (s) ds

)
X1

(∫ t

t–τ0

ei(s) ds
)

+ τ̄ 2
N∑

i=1

eT
i (t)X2ei(t) –

N∑

i=1

∫ t–τ0

t–τm

eT
i (s)dsX2

∫ t–τ0

t–τm

ei(s) ds, (14)

V̇6(et) = σ 2
N∑

i=1

gT(
ei(t)

)
Yg

(
ei(t)

)
– σ

N∑

i=1

∫ t

t–σ

gT(
ei(s)

)
Yg

(
ei(s)

)
ds

≤ σ 2
N∑

i=1

gT(
ei(t)

)
Yg

(
ei(t)

)
–

N∑

i=1

∫ t

t–σ

gT(
ei(s)

)
dsY

∫ t

t–σ

g
(
ei(s)

)
ds. (15)

According to Lemma 2.2, one can obtain

V̇7(et) =
τ 2

m – τ 2
0

2

N∑

i=1

ėT
i (t)Zėi(t) –

N∑

i=1

∫ –τ0

–τm

∫ t

t+θ

ėT
i (s)Zėi(s) ds dθ

≤ τ 2
m – τ 2

0
2

N∑

i=1

ėT
i (t)Zėi(t) +

2(1 – τ̄ )
τm + τ0

N∑

i=1

eT
i (t)Zei(t)

–
2(1 – τ̄ )
τ 2

m – τ 2
0

N∑

i=1

∫ t–τ0

t–τm

eT
i (s) ds Z

∫ t–τ0

t–τm

ei(s) ds. (16)

According to (7), there exist positive diagonal matrices Wi = diag(w1i, . . . , wni), i = 1, 2,
. . . , 8, such that the following inequalities hold:

0 ≤ –2
n∑

j=1

n∑

i=1

wi1
[
gi

(
eij(t)

)
– l–

i eij(t)
][

gi
(
eij(t)

)
– l+

i eij(t)
]

– 2
n∑

j=1

n∑

i=1

wi2
[
gi

(
eij(t – τ0)

)
– l–

i eij(t – τ0)
][

gi
(
eij(t – τ0)

)
– l+

i eij(t – τ0)
]
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– 2
n∑

j=1

n∑

i=1

wi3
[
gi

(
eij

(
t – τ (t)

))
– l–

i eij
(
t – τ (t)

)][
gi

(
eij(t – τ0)

)
– l+

i eij
(
t – τ (t)

)]

– 2
n∑

j=1

n∑

i=1

wi4
[
gi

(
eij(t – τm)

)
– l–

i eij(t – τm)
][

gi
(
eij(t – τm)

)
– l+

i eij(t – τm)
]
, (17)

and

0 = 2
N∑

i=1

ėT
i (t)W5

[

–ėi(t) + (A – d)ei(t) + Bg
(
ei(t)

)
+ Cg

(
ei

(
t – τ (t)

))

+ D
∫ t

t–σ

g
(
ei(s)

)
ds +

N∑

j=1

hij�ej(t)

]

. (18)

Let ẽk(t) = [ẽ1k , ẽ2k , . . . , ẽNk], i = 1, 2, . . . , n. Then

0 =
N∑

i=1

[
ėT (t)W6ėi(t) + gT(

ei(t)
)
W7g

(
ei(t)

)
+ eT

i (t)W8ei(t)
]

–
N∑

i=1

[
w6

k
˙̃eT

k (t)˙̃ek(t) + w7
kgT(

ẽk(t)
)
g
(
ẽk(t)

)
+ w8

k ẽT
k (t)ẽk(t)

]
. (19)

Combining with the terms in (10)–(19), we can get

V̇ (et) ≤
N∑

i=1

ξT
i (t)Eξi(t) +

n∑

k=1

ζ T
k (t)Fζk(t),

where

ξT
i (t) =

[
eT

i (t) eT
i (t – τ0) eT

i (t – τm) eT
i (t – τ (t)) gT (ei(t)) gT (ei(t – τ0))

gT (e(t – τ (t))) gT (ei(t – τm))
∫ t

t–τ0
eT

i (s) ds
∫ t–τ0

t–τm
eT

i (s) ds
∫ t

t–σ
gT (ei(s)) ds ėT (t)

]
,

ζ T
k (t) =

[
ẽT

k (t) gT (ẽk(t)) ˙̃eT
k (t)

]
.

Based on LMIs (8) and (9), one can guarantee V̇ (et) < 0 to be true. Based on the theory of
Lyapunov–Krasovskii stability theorem, the controlled networks (1) and (4) can achieve
the desired synchronization and the proof is completed. �

Next, we derive an improved result for the dynamical networks (1) and (4).

Theorem 3.2 Under Assumptions 1 and 2, for given matrices L1 = diag(l–
1 , l–

2 , . . . , l–
n ), L2 =

diag(l+
1 , l+

2 , . . . , l+
n ), and scalars τm, τ0, the complex networks (1) and (4) can achieve outer

synchronization if there exist symmetric positive definite matrices P, Q, R1, R2, X1, X2, Y ,
Z, positive diagonal matrices wi = diag(k1i, . . . , wni), i = 5, 6, 7, 8, Ki = diag(k1i, . . . , kni), i =
1, 2, . . . , 8, � = diag(λ1,λ2, . . . ,λn), and 	 = diag(δ1, δ2, . . . , δn) such that the following LMIs
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hold:

F =

⎛

⎜
⎝

2(pk + l+
k δk – l–

k λk)H – w8
kIN (λk – θk)γkH w5

kγkH
∗ –w7

kIN 0
∗ ∗ –w6

kIN

⎞

⎟
⎠ < 0, (20)


 = (
ij)n×n < 0, i, j = 1, . . . , 12, (21)

and

� = (�ij)n×n < 0, i, j = 1, . . . , 12, (22)

where


11 = 2P(A – d) + Q + 2(L2	 – L1�)(A – d) + τ 2
0 X1 + τ̄ 2X2

+
2(1 – τ̄ )
τm + τ0

Z – L1K1(L1 + L2) + W8,


15 = PB + (� – 	)(A – d) + (L2	 – L1�)B + L1K1 +
L1 + L2

2
K1,


17 = E17, 
1,11 = E1,11, 
1,12 = E1,12


22 = R2 – L1K2(L1 + L2), 
26 =
L1 + L2

2
K2 + L1K1,


33 = –Q – R1 – L1K4(L1 + L2), 
38 = L1K4 +
L1 + L2

2
K4,


44 = (1 – μ0)R1 – (1 – μm)R2 – L1K3(L1 + L2), 
47 = L1K3 +
L1 + L2

2
K3,


55 = 2(� – 	)B + σ 2Y – 2K1 + W7, 
57 = E57, 
5,11 = E57,


5,12 = E5,12, 
66 = –2K2, 
77 = –2K3, 
7,12 = –CW5,


88 = –2K4, 
99 = –X1,


10,10 = –X2 –
2(1 – τ̄ )
τ 2

m – τ 2
0

Z, 
10,12 = DW5,


11,11 = –σY , 
12,12 =
τ 2

m – τ 2
0

2
Z – 2W5 + W6,

�11 = 2P(A – d) + Q + 2(L2	 – L1�)(A – d) + τ 2
0 X1 + τ̄ 2X2

+
2(1 – τ̄ )
τm + τ0

Z – (L1 + L2)K5L2 + W8,

�15 = PB + (� – 	)(A – d) + (L2	 – L1�)B +
L1 + L2

2
K5 + L2K5,

�17 = E17, �1,11 = E1,11, �1,12 = E1,12

�22 = R2 – (L1 + L2)K6L2, �26 = L2K6 +
L1 + L2

2
K5,

�33 = –Q – R1 – (L1 + L2)K7L2, �38 =
L1 + L2

2
K7 + L2K7,

�44 = (1 – μ0)R1 – (1 – μm)R2 – (L1 + L2)K6L2, �47 =
L1 + L2

2
K6 + L2K6,
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�55 = 2(� – 	)B + σ 2Y – 2K4 + W7, �57 = E57, �5,11 = E57,

�5,12 = E5,12, �66 = –2K5, �77 = –2K6, �7,12 = –CW5,

�88 = –2W7, �99 = –X1,

�10,10 = –X2 –
2(1 – τ̄ )
τ 2

m – τ 2
0

Z, �10,12 = DW5,

�11,11 = –σY , and �12,12 =
τ 2

m – τ 2
0

2
Z – 2W5 + W6.

Proof For positive definite matrices P, Q, R1, R2, X1, X2, Y , Z, let us consider the same
Lyapunov functional V (et) =

∑7
i=1 Vi(et) proposed in Theorem 3.1.

Here, we consider inequality (17) to two cases.
Case 1:

l–
i ≤ gi(x)

x
≤ l–

i + l+
i

2
.

This condition is equivalent to

[
gi(x) – l–

i x
]
[

gi(x) –
l–
i + l+

i
2

x
]

< 0, i = 1, . . . , n. (23)

For any positive diagonal matrices Ki = diag(ki1, . . . , kin), i = 1, 2, 3, 4, the following inequal-
ity holds:

0 ≤ –2
n∑

j=1

n∑

i=1

k1i
[
gi

(
eij(t)

)
– l–

i eij(t)
][

gi
(
eij(t)

)
–

l–
i + l+

i
2

eij(t)
]

– 2
n∑

j=1

n∑

i=1

k2i
[
gi

(
eij(t – τ0)

)
– l–

i eij(t – τ0)
]
[

gi
(
eij(t – τ0)

)
–

l–
i + l+

i
2

eij(t – τ0)
]

– 2
n∑

j=1

n∑

i=1

k3i
[
gi

(
eij

(
t – τ (t)

))
– l–

i eij
(
t – τ (t)

)]

×
[

gi
(
eij

(
t – τ (t)

))
–

l–
i + l+

i
2

eij
(
t – τ (t)

)
]

– 2
n∑

j=1

n∑

i=1

k4i
[
gi

(
eij(t – τm)

)
– l–

i eij(t – τm)
]

×
[

gi
(
eij(t – τm)

)
–

l–
i + l+

i
2

eij(t – τm)
]

. (24)

Then, from the proof of Theorem 3.1, when l–
i ≤ gi(x)

x ≤ l–i +l+i
2 , an upper bound of V̇ (et) can

be obtained

V̇ (et) ≤
N∑

i=1

ξT
i (t)
ξi(t) +

n∑

k=1

ζ T
k (t)Fζk(t) < 0. (25)

Based on the theory of Lyapunov–Krasovskii stability, (20) and (21), the controlled net-
works (1) can achieve synchronization when l–

i ≤ gi(x)
x ≤ l–i +l+i

2 .
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Case 2:

l–
i + l+

i
2

≤ gi(x)
x

≤ k+
i .

This condition is equivalent to

[
gi(x) –

l–
i + l+

i
2

x
][

gi(x) – l+
i x

]
< 0, i = 1, . . . , n. (26)

For any positive diagonal matrices Ki = diag(ki1, . . . , kin), i = 5, 6, 7, 8, the following inequal-
ity holds:

0 ≤ –2
N∑

i=1

n∑

j=1

k5i

[
gi

(
eij(t)

)
–

l–
i + l+

i
2

eij(t)
][

gi
(
eij(t)

)
– l+

i eij(t)
]

– 2
N∑

i=1

n∑

j=1

k6i

[
gi

(
eij(t – τ0)

)
–

l–
i + l+

i
2

eij(t – τ0)
][

gi
(
eij(t – τ0)

)
– l+

i eij(t – τ0)
]

– 2
N∑

i=1

n∑

j=1

k7i

[
gi

(
eij

(
t – τ (t)

))
–

l–
i + l+

i
2

eij
(
t – τ (t)

)]

× [
gi

(
eij

(
t – τ (t)

))
– l+

i eij
(
t – τ (t)

)]

– 2
N∑

i=1

n∑

j=1

k8i

[
gi

(
eij(t – τm)

)
–

l–
i + l+

i
2

eij(t – τm)
]

× [
gi

(
eij(t – τm)

)
– l+

i eij(t – τm)
]
. (27)

Then, from the proof of Theorem 3.1, when l–
i ≤ gi(x)

x ≤ l–i +l+i
2 , an upper bound of V̇ (et) can

be obtained

V̇ (et) ≤
N∑

i=1

ξT
i (t)�ξi(t) +

n∑

k=1

ζ T
k (t)Fζk(t) < 0. (28)

Based on the theory of Lyapunov–Krasovskii stability, (20) and (22), the controlled net-
works (1) can achieve synchronization when l–i +l+i

2 ≤ gi(x)
x ≤ l+

i . �

Remark 2 In Theorem 3.2, by choosing (x, y) in (3) as (ei(t – τ0), ei(t – τ (t))) and (ei(t –
τ (t)), ei(t – τm)) at each subinterval l–

i ≤ gi(x)
x ≤ l–i +l+i

2 and l–i +l+i
2 ≤ gi(x)

x ≤ k+
i , respectively,

more information on cross terms among the states gi(ei(t –τ0)), gi(ei(t –τ (t))), gi(ei(t –τm)),
ei(t – τ0), ei(t – τ (t)), and ei(t – τm) will be utilized, which may lead to less conservative
stability criteria.

Remark 3 In [39], they only investigated the pinning synchronization in neural networks
with discrete time-varying delay. In this paper, we consider a complex network with dis-
crete and distributed delays. For the coupling matrix H , we need hij �= 0, but in [14] they
need hij > 0 or hij ≥ 0. So our results improve and generalize the works in [14, 39].
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4 Illustrative example
In this section, a numerical example is given to demonstrate the effectiveness of the pro-
posed methods.

Example 1 Consider a two-dimensional network with both discrete and distributed de-
lays:

ẋi(t) = Axi(t) + Bf
(
xi(t)

)
+ Cf

(
xi

(
t – τ (t)

))
+ D

∫ t

t–σ

f
(
xi(s)

)
ds, (29)

where xi(t) = (xi1(t), xi2(t))T is the state vector of the networks, f (xi(t)) = (tanh(xi1(t)),
tanh(xi2(t)))T is the activation functions vector, τ (t) = | sin(t)|. Taking

A =

(
–1.5 0

0 –2

)

, B =

(
–2.5 –0.3

6 5

)

,

C =

(
–3 2
0.3 –8

)

, D =

(
–0.5 –1
–3.6 –0.5

)

,

the dynamical behavior of (29) with the initial condition x1(0) = [0.2, 0.5]T , x2(0) =
[–0.6, 0.1]T , Fig. 1 displays the chaotic attractor.

In this simulation, we consider the two-dimensional error system

ėi(t) = Aei(t)+Bg
(
ei(t)

)
+Cg

(
ei

(
t –τ (t)

))
+D

∫ t

t–σ

g
(
ei(s)

)
ds+

20∑

j=1

hij�ej(t)–dei(t), (30)

Figure 1 Attractor trajectories of (29) and the state trajectories of x1, x2
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where ei(t) = (ei1(t), ei2(t))T is the state vector of the ith neural network. Here i =
1, 2, . . . , 10, which means we just choose 10 nodes to control. We set the parameters to
be

H =

(
H11 H11

H11 H11

)

, H11 =

⎛

⎜
⎜⎜
⎜⎜
⎜⎜
⎝

–9 1 1 1 1
1 –9 1 1 1
...

...
. . .

...
...

1 1 · · · –9 1
1 1 · · · 1 –9

⎞

⎟
⎟⎟
⎟⎟
⎟⎟
⎠

10×10

,

� = I, σ = 0.5, g
(
xi(t)

)
=

(
tanh

(
xi1(t)

)
, tanh

(
xi2(t)

))T , d =

(
2 0
0 2

)

.

Here, we just choose the control gains di to be 2. If it is selected as too high value, it is easy
to synchronize the systems. Figure 2 shows the drive system xi(t) state orbits which are
unstable.

The evolution of the synchronization errors ei(t) (i = 1, 2, . . . , 20) is depicted in Fig. 3. It
shows that the error system can be outer synchronization under pinning controller.

Then by resorting to LMI in Matlab Toolbox, Theorem 3.1 can guarantee the outer syn-
chronization of the dynamical networks, and we can derive the feasible solution to LMIs
in (8) and (9) as follows:

P =

(
0.3345 0.0331
0.0331 0.1210

)

, Q =

(
3.7550 0.0007
0.0007 3.7551

)

,

R1 =

(
0.7754 –0.0676

–0.0676 0.8167

)

, R2 =

(
–0.1286 0.0064
0.0064 –0.1433

)

,

X1 =

(
0.1541 –0.0063

–0.0063 0.1414

)

, X2 =

(
0.1566 –0.0078

–0.0078 0.1407

)

,

Y =

(
0.7120 0.0843
0.0843 0.7254

)

, Z =

(
0.2000 –0.0011

–0.0011 0.1971

)

,

W1 =

(
0.3272 –0.0058

–0.0058 0.3363

)

, W2 =

(
0.7126 0.2715
0.2715 0.6910

)

,

W3 =

(
0.8899 –0.0479

–0.0479 0.9368

)

, W4 =

(
2.3118 0.0008
0.0008 2.3119

)

,

W5 =

(
0.4599 –0.0685

–0.0685 0.1909

)

, W6 =

(
–0.4803 0.0001
0.0001 –0.4813

)

,

W7 =

(
0.2768 0.3642
0.3642 0.3453

)

, W8 =

(
0.4511 –0.0316

–0.0316 0.3875

)

,

� =

(
–0.6757 –0.2486

–0.2486 – 0.6525

)

, 	 =

(
–0.5372 –0.1231
–0.1231 –0.3499

)

.
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Figure 2 The state trajectories of xi1, xi2 in system (29)
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Figure 3 The evolution of ei1(t), ei2(t) in system (30) under pinning control
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From these simulations, one can conclude that using the proposed method in this paper,
outer synchronization of systems (1) and (4) can be achieved.

5 Conclusion
In Theorem 3.1, by choosing a new Lyapunov functional, some new synchronization con-
dition for complex networks with mixed time-varying delays has been proposed. Based
on the results of Theorem 3.1, by constructing new inequalities of activation functions,
further improved stability criteria are proposed in Theorem 3.2. Finally, a numerical ex-
ample has been given to illustrate the effectiveness of the proposed methods. It should be
mentioned that the given method can be further studied and can be extended to fractional-
order systems and discrete complex systems.
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