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Abstract
In this paper, we consider a modified predator–prey model with
Michaelis–Menten-type predator harvesting and diffusion term. We give sufficient
conditions to ensure that the coexisting equilibrium is asymptotically stable by
analyzing the distribution of characteristic roots. We also study the Turing instability
of the coexisting equilibrium. In addition, we use the natural growth rate r1 of the
prey as a parameter and carry on Hopf bifurcation analysis including the existence of
Hopf bifurcation, bifurcation direction, and the stability of the bifurcating periodic
solution by the theory of normal form and center manifold method. Our results
suggest that the diffusion term is important for the study of the predator–prey model,
since it can induce Turing instability and spatially inhomogeneous periodic solutions.
The natural growth rate r1 of the prey can also affect the stability of positive
equilibrium and induce Hopf bifurcation.
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1 Introduction
In nature, predation relationship plays a very important role in ecosystems. Many schol-
ars studied predator–prey dynamic models and developed them in many ways [1–9]. Bian
et al. [10] proposed a stochastic prey–predator system in a polluted environment with
Beddington–DeAngelis functional response and derived sufficient conditions for the ex-
istence of boundary periodic solutions and positive periodic solutions. Zhuo and Zhang
[11] considered a discrete ratio-dependent predator–prey model and obtained a new suf-
ficient condition to ensure that the positive equilibrium is globally asymptotically stable.
Liu et al. [12] proposed an impulsive stochastic infected predator–prey system with Lévy
jumps and delays, and investigated the effects of time delays and impulse stochastic inter-
ference on dynamics of this predator–prey model. Liu and Cheng [13] proposed a prey–
predator model with square-root response function under a state-dependent impulse and
analyzed the existence, uniqueness, and attractiveness of the order-1 periodic solution.

Bifurcation phenomenon is widespread in the ecosystem, and it arouses a strong interest
of researchers [14–19]. Ruan et al. [20] carried out the bifurcation analysis for a predator–
prey model and showed various kinds of bifurcation phenomenon, such as the saddle-
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node bifurcation, the supercritical Hopf bifurcation, the homoclinic bifurcation, and so
on. Huang et al. [14] considered a delayed fractional-order predator–prey model with two-
competitor and nonidentical orders, focusing on the Hopf bifurcation. Jiang and Wang
[15] studied global Hopf bifurcation of a predator–prey model by using the time delay as
a bifurcating parameter.

Population dynamics of the predator–prey model with harvesting has been studied
widely by some scholars [21–24], who suggested that the harvesting term was closely re-
lated to the long-termed stability of the population. May et al. [25] proposed the following
model to describe the interaction of predator and prey with harvesting term:

⎧
⎨

⎩

ẋ = r1x(1 – x
K ) – axy – H1,

ẏ = r2y(1 – y
bx ) – H2,

(1.1)

where x and y represent the densities of prey and predator at time t, respectively. All pa-
rameters involved with the model are positive, r1 and K are the natural growth rate and
carrying capacity of the prey lacking natural predators, respectively, a represents the max-
imum at which per capita reduction rate of the prey x can reach, r2 plays a role of the nat-
ural growth rate of predators, bx is the carrying capacity the predators rely on the prey,
and H1 and H2 represent the effects of the harvesting to preys and predators, respectively.

Based on model (1.1), Hu and Cao [26] proposed model (1.2) with Michaelis–Menten-
type predator harvesting as follows:

⎧
⎨

⎩

ẋ = r1x(1 – x
K ) – axy,

ẏ = r2y(1 – y
bx ) – qEy

cE+ly .
(1.2)

The term qEy
cE+ly is the Michaelis–Menten-type harvesting, and E, p, c, and l are positive pa-

rameters. Hu and Cao [26] considered saddle-node bifurcation, transcritical bifurcation,
Hopf bifurcation, and Bogdanov–Takens bifurcation, and suggested that the Michaelis–
Menten-type harvesting was more realistic and reasonable than the constant-yield har-
vesting and constant effort harvesting.

In real word, diffusion phenomenon widely exists. For example, predators and their
preys distribute inhomogeneously in different spatial locations at time t. To survive better,
they move from a place with high competitive pressure to the place with small pressure.
Compared with predator–prey models without diffusion (ordinary differential equation
(ODE) type predator–prey models), the diffusion can induce more complex phenomena,
such as Turing instability, spatially inhomogeneous periodic solutions, and pattern for-
mation [27–31]. Inspired by these works, we consider the following predator–prey model
with diffusion term:

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂u(x,t)
∂t = r1u(1 – u

K ) – auv + d1�u, x ∈ (0, lπ ), t > 0,
∂v(x,t)

∂t = r2v(1 – v
bu+β

) – qEv
cE+lv + d2�v, x ∈ (0, lπ ), t > 0,

ux(0, t) = vx(0, t) = 0, ux(lπ , t) = vx(lπ , t) = 0, t > 0,

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, x ∈ [0, lπ ],

(1.3)

where d1 > 0 and d2 > 0 are the diffusion coefficients of prey and predator, respectively,
u(x, t) and v(x, t) represent the densities of prey at position x and time t. The carrying
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capacity of the predator, denoted as β , is proportional to the prey and other food. The
boundary condition is the Neumann boundary condition based on the hypothesis that
the region is closed and with no prey and predator species entering and leaving the region
at the boundary.

To simplify model (1.3), denote s = a
r1

, m = cEr2
qE , and h = lr2

qE . Then system (1.3) can be
rewritten as

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

∂u(x,t)
∂t = r1u(1 – u

K – sv) + d1�u, x ∈ (0, lπ ), t > 0,
∂v(x,t)

∂t = r2v(1 – v
bu+β

– 1
m+hv ) + d2�v, x ∈ (0, lπ ), t > 0,

ux(x, t) = vx(x, t) = 0, ux(lπ , t) = vx(lπ , t) = 0, t > 0,

u(x, 0) = u0(x) ≥ 0, v(x, 0) = v0(x) ≥ 0, x ∈ [0, lπ ].

(1.4)

The rest of this paper is organized as follows. In Sect. 2, we study the local stability and
Turing instability of the positive equilibrium of system (1.4). In Sect. 3, we investigate the
existence and property of Hopf bifurcation. In Sect. 4, we give some numerical simula-
tions. In Sect. 5, we give a short conclusion.

2 Stability analysis of equilibria
2.1 Existence of equilibria
Now, we discuss the existence of equilibrium of system (1.4). The equilibrium of system
(1.4) is satisfied:

⎧
⎨

⎩

r1u(1 – u
K – sv) = 0,

r2v(1 – v
bu+β

– 1
m+hv ) = 0.

(2.1)

According to the first equation in Eq. (2.1), we have

v =
1
s

(

1 –
u
K

)

. (2.2)

If u ∈ (0, K), then v > 0. Thus system (1.4) has a positive equilibrium p = (u0, v0). From
Eqs. (2.1) and (2.2) we have

u2 – uα1 – α2 = 0, (2.3)

where

α1 =
K[ms + h(2 – sβ) + bK2s(h + ms – s)]

h(1 + bKs)
,

α2 =
K2[(h + ms)(sβ – 1) – s2β]

h(1 + bKs)
.

Denote

ϕ(u) = u2 – α1u – α2. (2.4)

It is easy to see that ϕ(0) = –α2 and ϕ(K) = –(m–1)K2s2(blK+β)
h(1+bKs) .
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Now, let us discuss ϕ(u) with u ∈ (0, K) in two cases.
Case 1: m > 1. In this case, we have ϕ(K) < 0 under ϕ(0) = –α2 > 0, and thus Eq. (2.4) has

a unique root, whereas ϕ(K) > 0 under ϕ(0) = –α2 > 0, and thus Eq. (2.4) has no roots.
Case 2: m < 1. In this case, if ϕ(0) = –α2 > 0, then we get that ϕ(K) > 0 and ϕ(u) has two

roots or no root, whereas if ϕ(0) = –α2 < 0, then it has a unique root.
Based on this analysis, if (m – 1)α2 < 0, then system (1.4) has a unique positive equilib-

rium P(u0, v0). So, we always assume that system (1.4) has a positive equilibrium P(u0, v0)
in the following discussion.

2.2 Stability analysis of P(u0, v0)
To study the stability analysis of P(u0, v0), we analyze the distribution of characteristic
roots as is done in [32]. Now, we consider the characteristic equation of system (1.4). De-
fine the real-valued Sobolev space

X :=
{

(u, v) ∈ [H2(0, lπ )
]2 : (ux, vx)|x=0.lπ = 0

}
,

and the complexification of X:

XC := X ⊕ iX = {x1 + ix2 : x1, x2 ∈ X}.

The linearized system of (1.4) at (u0, v0) has the form

(
ut

vt

)

= L(ρ)

(
u
v

)

:=

(
d1 0
0 d2

)(
�u
�v

)

+

(
–r1a1 –r1a2

r2b1 r2b2

)(
u
v

)

,

where a1, a2, b1, and b2 are defined in (2.5). Then the linearized operator of the steady-
state system of (1.4) evaluated at (u0, v0) is

L(s) =

(
d1

∂2

∂x2 – r1a1 –r1a2

r2b1 d2
∂2

∂x2 + r2b2

)

with the domain DL(s) = XC and

a1 =
u0

K
, a2 = su0, b1 =

bv0
2

(bu0 + β)2 , b2 =
2hv0 + m

(hv0 + m)2 – 1. (2.5)

It is well known that the eigenvalue problem

–ϕ′′ = μϕ, x ∈ (0, lπ ); ϕ′(0) = ϕ′(lπ ) = 0

has the eigenvalues μn = n2

l2 (n = 0, 1, . . .) with the corresponding eigenfunctions ϕn(x) =
cos nπ

l . Let

(
φ

ψ

)

=
∞∑

n=0

(
an

bn

)

cos
nπ

l
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be the eigenfunction of L(ρ) corresponding to an eigenvalue β(ρ), that is,

L(ρ)(φ,ψ)T = β(ρ)(φ,ψ)T .

Then from a straightforward analysis we have

Ln(s)

(
an

bn

)

= β(s)

(
an

bn

)

, n = 0, 1, . . . ,

where

Ln(s) :=

(
–r1a1 – d1n2

l2 –r1a2

r2b1 r2b2 – d2n2

l2

)

.

It follows that the eigenvalues of L(s) are given by the eigenvalues of Ln(s) for n =
0, 1, 2, . . . . The characteristic equation of Ln(s) is

λ2 – Tnλ + Dn = 0, n = 0, 1, 2, . . . , (2.6)

where

Tn = –(d1 + d2)
n2

l2 – r1a1 + r2b2,

Dn = d1d2z2 + (r1a1d2 – r2b2d1)z + r1r2(a2b1 – a1b2).
(2.7)

Thus we can obtain the eigenvalues of Eq. (2.6):

λ1,2 =
Tn ±√T2

n – 4Dn

2
, n = 0, 1, 2, 3 . . . .

To analyze the influence of the diffusion term in model (1.4), we first study the stability
of P(u0, v0) for ODE model. If d1 = d2 = 0, then the characteristic roots of (2.5) are given
by

λ1,2 =
r2b2 – r1a1 ± √

(r2b2 – r1a1)2 – 4r1r2(a2b1 – a1b2)
2

. (2.8)

We know that the positive equilibrium of a system is locally asymptotically stable when
its eigenvalues all have negative real parts. Therefore we can get that both λ1,2 have nega-
tive real part if and only if r2b2 – r1a1 < 0 and a2b1 – a1b2 > 0, which are guaranteed by

(H1)

r1 >
Kr2

u0

(
1 – m – (m + hv0 – 1)2

(m + hv0)2

)

and
(H2)

1 + sbK >
1 – m

(m + h0 – 1)2 ,

respectively. Summarizing the discussion, we have the following conclusions.
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Theorem 2.1 For ODE system (1.4), if (H1) and (H2) hold, then the positive equilibrium
P(u0, v0) is locally asymptotically stable.

Now, we consider Turing instability of the equilibrium P(u0, v0). For Eq. (2.6), define

⎧
⎪⎪⎨

⎪⎪⎩

z = n2

l2 ,

T(z) = –(d1 + d2)z – r1a1 + r2b2,

D(z) = d1d2z2 + (r1a1d2 – r2b2d1)z + r1r2(a2b1 – a1b2).

(2.9)

According to Theorem 2.1, under hypotheses (H1) and (H2), we have T(0) < 0 and
D(0) > 0. Then T(z) ≤ T(0) < 0. For n 	= 0, we can gain the symmetry axis z0 and the dis-
criminant � of D(z). They are given by

z0 =
r2b2d1 – r1a1d2

2d1d2
, � = (r1a1d2 – r2b2d1)2 – 4d1d2r1r2(a2b1 – a1b2).

We consider the following two cases.
Case I: r2b2d1 – r1a1d2 ≤ 0 or � < 0. Then all the roots of Eq. (2.6) have negative real

parts.
Case II: r2b2d1 > r1a1d2 and � > 0. Denote the two different roots of D(z) = 0 as z1 and

z2 (z1 < z2). By straightforward calculating we get z1,2 = –(r1a1d2–r2b2d1)∓√
�

2d1d2
. Then we have

the following conclusions:
(i) For all n ∈ N , if n2

l2 /∈ (z1, z2), then D(n) > 0, and all the roots of Eq. (2.6) have
negative real parts.

(ii) If there exists k ∈ N such that k2

l2 ∈ (z1, z2), then D(k) < 0, and Eq. (2.6) has at least
one root with positive real part.

Based on this analysis, we have the following theorem.

Theorem 2.2 For PDE system (1.4), let (H1) and (H2) hold. Then the following statements
are true.

(1) In Case I, the positive equilibrium p(u0, v0) is locally asymptotically stable.
(2) In Case II, n2

l2 /∈ (z1, z2) for all n ∈ N , the positive equilibrium p(u0, v0) is locally
asymptotically stable.

(3) In Case II, there exists k ∈ N such that k2

l2 ∈ (z1, z2). Then the positive equilibrium
p(u0, v0) is Turing instability.

3 Analysis of Hopf bifurcation
3.1 Existence of Hopf bifurcation
In the predator–prey system, considering Hopf bifurcation is of great value and signifi-
cance. In this section, we mainly study the existence of Hopf bifurcation by taking r1 as a
bifurcating parameter.

Define

r(n)
1 =

r2K
u0

[
2hv0 + m

(hv0 + m)2 – 1
]

–
K
u0

(d1 + d2)
n2

l2 , n = 0, 1, 2, . . . , n∗
1, (3.1)

where n∗
1 is an integer such that r(n)

1 > 0 for n ≤ n∗
1 and r(n)

1 ≤ 0 for n = n∗
1 + 1. Obviously,

Tn(r(n)
1 ) = 0 and D0(r(0)

1 ) > 0 under hypothesis (H2). Then there exists an integer n∗
2 ≥ 1 such
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that Dn(r(n)
1 ) > 0 when n ≤ n∗

2 and Dn(r(n)
1 ) ≤ 0 when n = n∗

2 + 1. Let n∗ = min{n∗
1, n∗

2}. Then
Eqs. (2.6) have a part of pure imaginary roots when r1 = r(n)

1 where n ≤ n∗. We assume that
system (1.4) has a pair of complex eigenvalues α(r1) ± iω0(r1) when r1 is near rn

1 , where

α
(
r(n)

1
)

=
Tn

2
, ω

(
r(n)

1
)

=
√

4Dn – T2
n

2
,

dα(r1)
dr1

∣
∣
∣
∣
r1=r(n)

1

= –
u0

2K
< 0.

Then the transversal condition is satisfied. System (1.4) undergoes Hopf bifurcation at
r1 = r(n)

1 . Hence we get the following theorem.

Theorem 3.1 If (H2) holds, then system (1.4) undergoes Hopf bifurcation at r1 = r(n)
1 , where

n = 0, 1, 2, . . . , n∗.

3.2 Property of Hopf bifurcation
By using the algorithm in [32] we will give parameters for determining the bifurcation
direction and the stability of the bifurcating periodic solution. Here we just consider the
case of r1 = r(0)

1 , where ω0 = 2
√

r1r2(a2b1–a1b2)
2 . We have

q =

(
1

– iω0K+r1u0
Kr1su0

)

and q∗ =

(
r1u0

2Klπ iω0
+ 1

2lπ
sr1u0

2lπ iω0

)

. (3.2)

Define

⎧
⎨

⎩

f (r1, u, v) = r1u(1 – u
K – sv),

g(r2, u, v) = r2v(1 – v
bu+β

– 1
m+hv ).

(3.3)

By calculating we have

fuu = –
2r1

K
, fuv = –r1s, fvv = fuuu = fuuv = fuvv = fvvv = 0,

guu =
–2r2b2v2

0

(bu0 + β)3 , guv =
2br2v0

(bu0 + β)2 ,

gvv = –
2h2r2v0

(m + hv0)3 , guuu =
6b3r2v2

0

(β + bu0)4 ,

guuv = –
4b2r2v0

(β + bu0)3 , gvvv =
2h2r2(–m + 2hv0)

(m + hv0)4 , guvv = 2br2(bu0 + β)–2.

(3.4)

When n = 0, by a simple computation we get

〈
q∗, Qqq

〉
=

c0

2
–

r1u0(c0 + Ksd0)
2Kiω0

,
〈
q∗, Qqq̄

〉
=

e0

2
–

r1u0(e0 + Ksf0)
2Kiω0

,

〈
q̄∗, Qqq

〉
=

c0

2
+

r1u0(c0 + Ksd0)
2Kiω0

,
〈
q̄∗, Cqqq̄

〉
=

g0

2
–

r1u0(g0 + Ksh0)
2Kiω0

,
(3.5)
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where

c0 = –
2r1

K
a2

0 – 2r1sa0b0, e0 = –
2r1

K
|a0|2 – r1s(a0b0 + a0b0),

d0 =
–2r2b2v2

0

(bu0 + β)3 a2
0 +

4br2v0

(bu0 + β)2 a0b0 –
2h2r2v0

(m + hv0)3 b2
0, g0 = 0,

f0 =
–2r2b2v2

0

(bu0 + β)3 |a0|2 +
2br2v0

(bu0 + β)2 (a0b0 + a0b0) –
2h2r2v0

(m + hv0)3 |b0|2,

h0 =
6b3r2v2

0

(β + bu0)4 |a0|2a0 –
4b2r2v0

(β + bu0)3
(
2|a0|2b0 + a2

0b0
)

+
2br2

(bu0 + β)2
(
2|b0|2a0 + b2

0a0
)

+
2h2r2(–m + 2hv0)

(m + hv0)4 |b0|2b0.

(3.6)

We have

ω20 =
[
2iω0I – L(r1)

]–1
[(

c0

d0

)

–
〈
q∗, Qq,q

〉
(

a0

b0

)

–
〈
q∗, Qq,q

〉
(

a0

b0

)]

, (3.7)

ω11 = –
[
L(r1)

]–1
[(

e0

f0

)

–
〈
q∗, Qqq

〉
(

a0

b0

)

–
〈
q∗, Qqq

〉
(

a0

b0

)]

, (3.8)

H20 =

(
c0

d0

)

–
〈
q∗, Qq,q

〉
(

a0

b0

)

–
〈
q∗, Qq,q

〉
(

a0

b0

)

, (3.9)

H11 =

(
e0

f0

)

–
〈
q∗, Qqq

〉
(

a0

b0

)

–
〈
q∗, Qqq

〉
(

a0

b0

)

. (3.10)

By calculating we get H20 = H11 = 0, that is, ω20 = ω11 = 0. Therefore

〈
q∗, Q(ω11, q)

〉
=
〈
q∗, Q(ω20, q̄)

〉
= 0.

According to [32], we get

c1
(
r(0)

1
)

=
i

2ω0

(

g20g11 – 2|g11|2 –
1
3
|g02|2

)

+
g21

2
, (3.11)

where

g20 =
〈
q∗, Qqq

〉
, g11 =

〈
q∗, Qqq

〉
,

g02 =
〈
q∗, Qqq

〉
, g21 = 2

〈
q∗, Qω11,q

〉
+
〈
q∗, Qω20,q

〉
+
〈
q∗, Cq,q,q

〉
.

Through simplification, when r1 = r(0)
1 , we obtain

c1
(
r(0)

1
)

=
i

2ω0

〈
q∗, Qqq

〉 · 〈q∗, Qqq
〉
+

1
2
〈
q∗, Cq,q,q

〉
. (3.12)

Thus

Re
{

c1
(
r(0)

1
)}

= Re

{
i

2ω0

〈
q∗, Qqq

〉 · 〈q∗, Qqq
〉
+

1
2
〈
q∗, Cq,q,q

〉
}

. (3.13)
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Summarizing the discussion, we have the following conclusions.

Theorem 3.2 If Re(c1(r(0)
1 )) < 0 (resp. > 0), Hopf bifurcation at r1 = r(0)

1 toward the back
(resp., ahead) and the bifurcating periodic solutions are asymptotically stable (resp., un-
stable).

The parameters determining the property of the bifurcation of the spatially inhomoge-
neous periodic solutions (at r1 = r(j)

1 ) are given in the Appendix.

4 Numerical simulations
To support the results found in the previous sections, we give some numerical simula-
tions by Matlab. The numerical simulation of the PDE systems is implemented by pdepe
function in Matlab. Fix the following parameters:

β = 0.2, s = 8, b = 0.1, K = 30,

m = 0.99, h = 0.99, r2 = 2, l = 2.
(4.1)

By computation, we get two positive equilibriums: (u0, v0)1 ≈ (10.341, 0.082) and (u0,
v0)2 ≈ (26.211, 0.016).

For equilibrium (u0, v0)2 ≈ (26.211, 0.016), we obtain a2b1 – a1b2 ≈ –0.003 < 0, so this
equilibrium is unstable by Theorem 2.1. For equilibrium (u0, v0)1 ≈ (10.341, 0.082), we
obtain b2 < a1, r1r2(a2b1 – a1b2) ≈ 0.016 > 0 when r1 = 0.2, so the positive equilibrium
p(u0, v0) = (u0, v0)1 is locally asymptotically stable, which is shown in Fig. 1. If we choose
r1 = 0.029, due to r2b2 > r1a1, then we see that P(u0, v0) is unstable and has a bifurcating
periodic orbit.

In the following, we mainly consider the positive equilibrium P(u0, v0) = (u0, v0)1 and fix
the parameters in (4.1). Choose d1 = 0.01, d2 = 0.2, r1 = 0.2. We have r2b2d1 – r1a1d2 ≈
–0.014 < 0. Then P(u0, v0) is locally asymptotically stable by Theorem 2.2, which is shown
in Fig. 2.

For the positive equilibrium p(u0, v0) = (u0, v0)1, we choose d1 = 2, d2 = 0.001, r1 = 0.2.
By Theorem 2.2 we have z1 ≈ 7.966, z2 ≈ 9.996 × 10–1, and 4/l2 = 1, so that z1 < 4/l2 < z2.
Hence we have Turing instability at P(u0, v0), which is shown in Fig. 3.

Figure 1 Left: r1 = 0.200, the positive equilibriums p(u0, v0) is locally asymptotically stable. Right: r1 = 0.029,
p(u0, v0) is unstable and has the bifurcating periodic orbit
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Figure 2 The numerical simulations of system (1.4) with parameters in (4.1) and d1 = 0.01, d2 = 0.2, r1 = 0.2.
Left: component u is locally asymptotically stable. Right: component v is locally asymptotically stable

Figure 3 The numerical simulations of system (1.4) with parameters in (4.1) and d1 = 2, d2 = 0.001, r1 = 0.2.
Left: component u has Turing instability. Right: component v has Turing instability

Figure 4 The numerical simulations of system (1.4) with parameters in (4.1) and d1 = 0.006, d2 = 0.002,
r1 = 0.02. Left: component u is stable. Right: component v is stable

For the positive equilibrium p(u0, v0) = (u0, v0)1, choose d1 = 0.006, d2 = 0.002. By com-
putation we have r(0)

1 ≈ 0.114 and Re(c1(r(0)
1 )) ≈ –2.830×10–3 < 0. So we conclude that the

positive equilibriums p(u0, v0) loses its stability, and system (1.4) undergoes a Hopf bifur-
cation when r1 crosses r(0)

1 . Moreover, the direction of the bifurcation is toward the back,
and the bifurcating periodic solutions are asymptotically stable by Theorem 3.1, which is
shown in Fig. 4.
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5 Conclusion
In this paper, we study a modified Michaelis–Menten harvesting predator–prey model
with diffusion terms. For ODE system, we get that if hypotheses (H1) and (H2) hold, then
the positive equilibrium p(u0, v0) is locally asymptotically stable. For PDE system (1.4), if
r2b2d1 > r1a1d2 and � > 0, then there exists k ∈ N such that k2

l2 ∈ (z1, z2), k = 0, 1, 2, . . . ,
and the positive equilibrium p(u0, v0) of system (1.4) has Turing instability. In addition,
the positive equilibrium p(u0, v0) is locally asymptotically stable under other conditions.
Finally, we analyze Hopf bifurcation and find that if hypothesis (H2) holds, then Hopf
bifurcation occurs at r1 = r(j)

1 . Moreover, if Re(c1(r(j)
1 )) < 0 (resp. > 0), then Hopf bifurcation

is toward the back (resp., ahead), and the bifurcating periodic solutions are asymptotically
stable (resp., unstable).

Appendix: Bifurcation direction of the spatially inhomogeneous periodic
solutions
In this appendix, we study the bifurcation of the spatially inhomogeneous periodic solu-
tions given in Theorem 3.1. We calculate Re(c1(r(j)

1 )) for j = 1, 2, . . . , n∗
0. Denote r1 = r(j)

1 ,

where r(j)
1 is defined in (3.1). We get ωj =

√

Dj(r
(j)
1 ) , where Dj(r

(j)
1 ) is given in (2.7). We set

q :=

(
aj

bj

)

cos
j
l
x =

⎛

⎝
1

–
r1u+iωjK+d1

j2

l2
K

Kr1su

⎞

⎠ cos
j
l
x

and

q∗ :=

(
a∗

j

b∗
j

)

cos
j
l
x =

⎛

⎜
⎝

1
2lπ –

r1u+d1
j2

l2
K

2lπ iωj

– r1su
2lπ iωj

⎞

⎟
⎠ cos

j
l
x.

By straightforward calculation we have

[
2iωjI – L2j

(
rj

1
)]–1 = (α1 + α2i)–1

(
2iωj + 4d2

j2
l2 – r2b2 –r1a2

r2b1 2iωj + 4d1
j2
l2 + r1a1

)

with

α1 = 16d1d2
j4

l4 + 4(r1a1d2 – r2b2d1)
j2

l2 + r1r2(a2b1 – a1b2) – 4ω2
j ,

α2 = 2ωj

[

4(d1 + d2)
j2

l2 + r1a1 – r2b2

]

and

[
2iωjI – L0

(
rj

1
)]–1 = (α3 + α4i)–1

(
2iωj + d2

j2
l2 – r2b2 –r1a2

r2b1 2iωj + d1
j2
l2 + r1a1

)

with

α3 = d1d2
j4

l4 + (r1a1d2 – r2b2d1)
j2

l2 + r1r2(a2b1 – a1b2) – 4ω2
j ,
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α4 = 2ωj

[

(d1 + d2)
j2

l2 + r1a1 – r2b2

]

.

Then we get

ω20 =
1
2
[
2iωjI – L

(
r1

j)]–1
[(

cos
2j
l

x + 1
)(

cj

dj

)]

=
[

[2iωjI – L2j(r1
j)]–1

2
cos

2j
l

x +
[2iωjI – L0(r1

j)]–1

2

](
cj

dj

)

=
[α1 + α2i]–1

2

(
(2iωj + 4d2

j2
l2 – r2b2)cj – r1a2dj

(2iωj + 4d1
j2
l2 + r1a1)dj + r2b1cj

)

+
[α3 + α4i]–1

2

(
(2iωj + d2

j2
l2 – r2b2)cj – r1a2dj

(2iωj + d1
j2
l2 + r1a1)dj + r2b1cj

)

,

ω11 = –
1
2
[
L
(
r1

j)]–1
[(

cos
2j
l

x + 1
)(

ej

fj

)]

=
α5

–1

2

(
(4d2

j2
l2 – r2b2)ej – r1a2fj

(4d1
j2
l2 + r1a1)fj + r2b1ej

)

+
α6

–1

2

(
(d2

j2
l2 – r2b2)ej – r1a2fj

(d1
j2
l2 + r1a1)fj + r2b1ej

)

,

where

cj = fuu – 2fuv
r1u + iωjK + d1

j2
l2 K

Kr1su
,

dj = guu – 2guv
r1u + iωjK + d1

j2
l2 K

Kr1su
+ gvv

(r1u + iωjK + d1
j2
l2 K)

2

K2r12s2u2 ,

ej = fuu – 2fuv
r1u + d1

j2
l2 K

Kr1su
, gj = 0,

fj = guu + 2guv
r1u + d1

j2
l2 K

Kr1su
+ gvv

(r1u + d1
j2
l2 K)

2
– ω2

j K2

K2r12s2u2 ,

hj = guuu – guuv
3r1u + iωjK + 3d1

j2
l2 K

Kr1su

+ guvv
3[(r1u + d1

j2
l2 K)2 – ωj

2K2] + 2(r1u + d1
j2
l2 K)ωjKi

K2r12s2u2

– gvvv
[(r1u + d1

j2
l2 K)2 – ω2

j K2][r1u + d1
j2
l2 K + iωjK]

K3r13s3u3 ,

and fuu, fuv, fvv, guu, guv, gvv, fuuu, fuuv, fuvv, fvvv, guuu, guuv, guvv, and gvvv are given in (3.6).
Then we have

Qω20,q̄ =

(
fuuγ1 + fuv(γ1b̄j + γ2) + fvvγ2b̄j

guuγ1 + guv(γ1b̄j + γ2) + gvvγ2b̄j

)

cos
2j
l

x cos
j
l
x
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+

(
fuuδ1 + fuv(δ1b̄j + δ2) + fvvδ2b̄j

guuδ1 + guv(δ1b̄j + δ2) + gvvδ2b̄j

)

cos
j
l
x,

Qω11,q̄ =

(
fuuϕ1 + fuv(ϕ1b̄j + ϕ2) + fvvϕ2b̄j

guuϕ1 + guv(ϕ1b̄j + ϕ2) + gvvϕ2b̄j

)

cos
2j
l

x cos
j
l
x

+

(
fuuζ1 + fuv(ζ1b̄j + ζ2) + fvvζ2b̄j

guuζ1 + guv(ζ1b̄j + ζ2) + gvvζ2b̄j

)

cos
j
l
x

with

γ1 =
[α1 + α2i]–1

2

[(

2iωj + 4d2
j2

l2 – r2b2

)

cj – r1a2dj

]

,

γ2 =
[α1 + α2i]–1

2

[(

2iωj + 4d1
j2

l2 + r1a1

)

dj + r2b1cj

]

,

δ1 =
[α3 + α4i]–1

2

[(

2iωj + d2
j2

l2 – r2b2

)

cj – r1a2dj

]

,

δ2 =
[α3 + α4i]–1

2

[(

2iωj + d1
j2

l2 + r1a1

)

dj + r2b1cj

]

,

ϕ1 =
α5

–1

2

[(

4d2
j2

l2 – r2b2

)

ej – r1a2fj

]

,

ϕ2 =
α5

–1

2

[(

4d1
j2

l2 + r1a1

)

fj + r2b1ej

]

,

ζ1 =
α6

–1

2

[(

d2
j2

l2 – r2b2

)

ej – r1a2fj

]

,

ζ2 =
α6

–1

2

[(

d1
j2

l2 + r1a1

)

fj + r2b1ej

]

.

For any j ∈ N , we notice that

∫ lπ

0
cos2 jx

l
dx =

lπ
2

,
∫ lπ

0
cos2 jx

l
cos

2jx
l

dx =
lπ
4

,
∫ lπ

0
cos4 jx

l
dx =

3lπ
8

.

Then we get

〈
q∗, Qω20,q̄

〉
=

lπ
4
{

ā∗
j
(
fuuγ1 + fuv(γ1b̄j + γ2) + fvvγ2b̄j

)

+ b̄∗
j
(
guuγ1 + guv(γ1b̄j + γ2) + gvvγ2b̄j

)}

+
lπ
2
{

ā∗
j
(
fuuδ1 + fuv(δ1b̄j + δ2) + fvvδ2b̄j

)

+ b̄∗
j
(
guuδ1 + guv(δ1b̄j + δ2) + gvvδ2b̄j

)}
,

〈
q∗, Qω11,q

〉
=

lπ
4
{

ā∗
j
(
fuuϕ1 + fuv(ϕ1b̄j + ϕ2) + fvvϕ2b̄j

)

+ b̄∗
j
(
guuϕ1 + guv(ϕ1b̄j + ϕ2) + gvvϕ2b̄j

)}
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+
lπ
2
{

ā∗
j
(
fuuζ1 + fuv(ζ1b̄j + ζ2) + fvvζ2b̄j

)

+ b̄∗
j
(
guuζ1 + guv(ζ1b̄j + ζ2) + gvvζ2b̄j

)}
,

and 〈q∗, Cq,q,q̄〉 = 3lπ
8 (ā∗

j gj + b̄∗
j hj). For any j ∈ N , it follows that 〈q∗, Qqq〉 = 〈q∗, Qqq̄〉 = 0. By

(3.11) we have

Re
(
cj
(
rj

1
))

=
1
2

Re
{

2
〈
q∗, Qω11,q

〉
+
〈
q∗, Qω20,q̄

〉
+
〈
q∗, Cq,q,q̄

〉}
.

Thus, when cj (rj
1) > 0 (resp., < 0), the bifurcating periodic solution toward the back (resp.,

ahead) and the bifurcating periodic solutions are asymptotically stable (resp., unstable).
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