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Abstract
In this paper, we study sums of finite products of Legendre and Laguerre polynomials
and derive Fourier series expansions of functions associated with them. From these
Fourier series expansions, we are going to express those sums of finite products as
linear combinations of Bernoulli polynomials. Further, by using a method other than
Fourier series expansions, we will be able to express those sums in terms of Euler
polynomials.
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1 Introduction and preliminaries
The Coulomb potential can be written as a series in Legendre polynomials Pn(x) (n ≥ 0).
They satisfy the orthogonality relation

∫ 1

–1
Pn(x)Pm(x) dx =

2
2n + 1

δn,m,

and are solutions to the Legendre equation

(
1 – x2)P′′

n(x) – 2xP′
n(x) + n(n + 1)Pn(x) = 0.

We let the reader refer to [1] for further applications of Legendre polynomials.
The Laguerre polynomials Ln(x) have important applications to the solution of Schrö-

dinger’s equation for the hydrogen atom. They are orthogonal over the interval [0,∞) with
the weight function e–x, namely

∫ ∞

0
Ln(x)Lm(x)e–x dx = δn,m,

and are solution to the Laguerre equation

xL′′
n(x) + (1 – x)L′

n(x) + nLn(x) = 0.
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The Legendre polynomials Pn(x) and Laguerre polynomials Ln(x) are respectively defined
by the recurrence relations as in the following (see [2–4]):

(n + 2)Pn+2(x) = (2n + 3)xPn+1(x) – (n + 1)Pn(x) (n ≥ 0),

P0(x) = 1, P1(x) = x,
(1.1)

(n + 2)Ln+2(x) = (2n + 3 – x)Ln+1(x) – (n + 1)Ln(x) (n ≥ 0),

L0(x) = 1, L1(x) = –x + 1.
(1.2)

Both Pn(x) and Ln(x) are polynomials of degree n with rational coefficients.
From (1.1) and (1.2), it can be easily seen that the generating functions for Pn(x) and

Ln(x) are given by (see [2–4])

F(t, x) =
(
1 – 2xt + t2)– 1

2 =
∞∑

n=0

Pn(x)tn, (1.3)

G(t, x) = (1 – t)–1 exp

(
–

xt
1 – t

)
=

∞∑
n=0

Ln(x)tn. (1.4)

As is well known, the Bernoulli polynomials Bn(x) are given by

t
et – 1

ext =
∞∑

n=0

Bn(x)
tn

n!
. (1.5)

For any real number x, we let

〈x〉 = x – [x] ∈ [0, 1) (1.6)

denote the fractional part of x, where [x] is the greatest integer ≤ x.
We recall here that
(a) for m ≥ 2,

Bm
(〈x〉) = –m!

∞∑
n=–∞

n	=0

e2π inx

(2π in)m ; (1.7)

(b)

–
∞∑

n=–∞
n	=0

e2π inx

2π in
=

⎧⎨
⎩

B1(〈x〉), for x ∈R – Z,

0, for x ∈ Z.
(1.8)

For any integers m, r with m, r ≥ 1, we put

αm,r(x) =
∑

i1+i2+···+i2r+1=m

Pi1 (x)Pi2 (x) · · ·Pi2r+1 (x), (1.9)

where the sum runs over all nonnegative integers i1, i2, . . . , i2r+1 with i1 + i2 + · · ·+ i2r+1 = m.
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Then we will consider the function αm,r(〈x〉) and derive its Fourier series expansions.
As an immediate corollary to these Fourier series expansions, we will be able to express
αm,r(x) as a linear combination of Bernoulli polynomials Bn(x). We state this here as The-
orem A.

Theorem A For any integers m, r with m, r ≥ 1, we let

�m,r =
1

(2r – 1)!!2m+r

[ m–1
2 ]∑

k=0

(–1)k
(

m + r
k

)(
2m + 2r – 2k

m + r

)
(m + r – 2k)r .

Then we have the identity

∑
i1+···+i2r+1=m

Pi1 (x) · · ·Pi2r+1 (x) =
1

2r – 1

m∑
j=0

(2r + 2j – 3)!!
(2r – 3)!!j!

�m–j+1,r+j–1Bj(x). (1.10)

Here (x)r = x(x – 1) · · · (x – r + 1) for r ≥ 1, (x)0 = 1, (2n – 1)!! = (2n – 1)(2n – 3) · · · 1 for n ≥ 1,
and (–1)!! = 1.

Also, for any integers m, r with m ≥ 1, r ≥ 0, we put

βm,r(x) =
∑

i1+···+ir+1=m

Li1

(
x

r + 1

)
Li2

(
x

r + 1

)
· · ·Lir+1

(
x

r + 1

)
, (1.11)

where the sum is over all nonnegative integers i1, i2, . . . , ir+1 with i1 + · · · + ir+1 = m.

Then we will study the function βm,r(〈x〉) and obtain its Fourier series expansions. Again,
as a corollary to these, we can express βm,r(x) in terms of Bernoulli polynomials. Here our
result is as follows.

Theorem B For any integers m, r with m ≥ 1, r ≥ 0, we let

�m,r = (–1)m
m–1∑
k=0

(–1)k

(m – k)!

(
m + r

k

)
.

Then the following identity holds:

∑
i1+···+ir+1=m

Li1

(
x

r + 1

)
Li2

(
x

r + 1

)
· · ·Lir+1

(
x

r + 1

)

= –
m∑

j=0

(–1)j

j!
�m–j+1,r+j–1Bj(x). (1.12)

Here we note that neither Pn(x) nor Ln(x) is an Appell polynomial, whereas all our related
results, except [5], have been only about Appell polynomials (see [6–9]).

Assume that the polynomials pn(x), qn(x), and rn(x) have degree n. The linearization
problem in general consists in determining the coefficients cnm(k) in the expansion of the
product of two polynomials qn(x) and rm(x) in terms of an arbitrary polynomial sequence
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{pk(x)}k≥0:

qn(x)rm(x) =
n+m∑
k=0

cnm(k)pk(x).

Thus our results in Theorems A and B can be viewed as generalizations of the linearization
problem.

Our study of sums of finite products of special polynomials in this paper can be further
justified by the following. Let us put

γm(x) =
m–1∑
k=1

1
k(m – k)

Bk(x)Bm–k(x) (m ≥ 2). (1.13)

Just as we see in (1.10) and (1.12), γm(x) can be expressed in terms of Bernoulli polyno-
mials from the Fourier series expansions of γm(〈x〉). From these expansions and after some
simple modification, we can obtain the famous Faber–Pandharipande–Zagier identity (see
[10]) and a variant of Miki’s identity (see [11–14]).

The papers [15, 16] are excellent sources for operational techniques. Finally, for some of
the recent results, we let the reader refer to the papers [5–9, 17–19].

2 Fourier series expansions for functions associated with Legendre
polynomials

We start with the following lemma which will play an important role in this section.

Lemma 2.1 Let n, r be integers with n, r ≥ 0. Then we have the identity

∑
i1+i2+···+i2r+1=n

Pi1 (x)Pi2 (x) · · ·Pi2r+1 (x) =
1

(2r – 1)!!
P(r)

n+r(x), (2.1)

where the sum is over all nonnegative integers i1, i2, . . . , i2r+1 with i1 + i2 + · · · + i2r+1 = n.

Proof By differentiating (1.3) r times, we obtain

∂rF(t, x)
∂xr = (2r – 1)!!tr(1 – 2xt + t2)–r– 1

2 , (2.2)

∂rF(t, x)
∂xr =

∞∑
n=r

P(r)
n (x)tn =

∞∑
n=0

P(r)
n+r(x)tn+r . (2.3)

From (2.2) and (2.3), we have

(2r – 1)!!
(1 – 2xt + t2)r+ 1

2
=

∞∑
n=0

P(r)
n+r(x)tn. (2.4)
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On the other hand, from (1.3) and (2.2) we observe that

∞∑
n=0

( ∑
i1+i2+···+i2r+1=n

Pi1 (x)Pi2 (x) · · ·Pi2r+1 (x)
)

tn

=

( ∞∑
n=0

Pn(x)tn

)2r+1

=
(
1 – 2xt + t2)–r– 1

2

=
1

(2r – 1)!!

∞∑
n=0

P(r)
n+r(x)tn. (2.5)

Comparing both sides of (2.5), we get the desired result. �

It is known that the Legendre polynomials Pn(x) are given by (see [2, 3])

Pn(x) = 2F1

(
–n,n+1

1

∣∣∣∣1 – x
2

)
=

1
2n

[ n
2 ]∑

k=0

(–1)k
(

n
k

)(
2n – 2k

n

)
xn–2k , (2.6)

where 2F1(a,b
c |z) =

∑∞
n=0

〈a〉n〈b〉n
〈c〉n

zn

n! is the Gauss hypergeometric function with 〈x〉n denoting
the rising factorial polynomial defined by

〈x〉n = x(x + 1) · · · (x + n – 1) (n ≥ 1), 〈x〉0 = 1.

The rth derivative of (2.6) is given by

P(r)
n (x) =

1
2n

[ n–r
2 ]∑

k=0

(–1)k
(

n
k

)(
2n – 2k

n

)
(n – 2k)rxn–2k–r (0 ≤ r ≤ n). (2.7)

Combining (2.1) and (2.7), we get the following lemma.

Lemma 2.2 For integers n, r with n, r ≥ 0, we have the following identity:

∑
i1+i2+···+i2r+1=n

Pi1 (x)Pi2 (x) · · ·Pi2r+1 (x)

=
1

(2r – 1)!!2n+r

[ n
2 ]∑

k=0

(–1)k
(

n + r
k

)(
2n + 2r – 2k

n + r

)
(n + r – 2k)rxn–2k . (2.8)

For integers m, r with m, r ≥ 1 as in (1.9), we let

αm,r(x) =
∑

i1+i2+···+i2r+1=m

Pi1 (x)Pi2 (x) · · ·Pi2r+1 (x).

Then we will consider the function

αm,r
(〈x〉) =

∑
i1+i2+···+i2r+1=m

Pi1
(〈x〉)Pi2

(〈x〉) · · ·Pi2r+1

(〈x〉), (2.9)
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defined on R, which is periodic with period 1. The Fourier series of αm,r(〈x〉) is

∞∑
n=–∞

A(m,r)
n e2π inx, (2.10)

where

A(m,r)
n =

∫ 1

0
αm,r

(〈x〉)e–2π inx dx

=
∫ 1

0
αm,r

(〈x〉)e–2π inx dx. (2.11)

For integers m, r ≥ 1, we put

�m,r = αm,r(1) – αm,r(0)

=
∑

i1+···+i2r+1=m

(
Pi1 (1)Pi2 (1) · · ·Pi2r+1 (1) – Pi1 (0)Pi2 (0) · · ·Pi2r+1 (0)

)
. (2.12)

Now, from (2.8), we see that

�m,r =
1

(2r – 1)!!2m+r

[ m–1
2 ]∑

k=0

(–1)k
(

m + r
k

)(
2m + 2r – 2k

m + r

)
(m + r – 2k)r . (2.13)

Here we note that

αm,r(0) =

⎧⎨
⎩

(–1)
m
2

(2r–1)!!2m+r
(m+r

m
2

)(m+2r
m+r

)
r!, if m even,

0, if m odd.
(2.14)

From (2.1), we observe that

d
dx

αm,r =
d

dx

(
1

(2r – 1)!!
P(r)

m+r(x)
)

=
1

(2r – 1)!!
P(r+1)

m+r (x)

= (2r + 1)αm–1,r+1(x).

Thus we have shown that

d
dx

αm,r(x) = (2r + 1)αm–1,r+1(x). (2.15)

Replacing m by m + 1, r by r – 1, from (2.15) we get

d
dx

(
1

2r – 1
αm+1,r–1(x)

)
= αm,r(x), (2.16)

∫ 1

0
αm,r(x) dx =

1
2r – 1

�m+1,r–1, (2.17)
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αm,r(0) = αm,r(1) ⇐⇒ �m,r = 0. (2.18)

We are now ready to determine the Fourier coefficients A(m,r)
n .

Case 1: n 	= 0.

A(m,r)
n =

∫ 1

0
αm,r(x)e–2π inx dx

= –
1

2π in
[
αm,r(x)e–2π inx]1

0 +
1

2π in

∫ 1

0

(
d

dx
αm,r(x)

)
e–2π inx dx

= –
1

2π in
(
αm,r(1) – αm,r(0)

)
+

2r + 1
2π in

∫ 1

0
αm–1,r+1(x)e–2π inx dx

=
2r + 1
2π in

A(m–1,r+1)
n –

1
2π in

�m,r

=
2r + 1
2π in

(
2r + 3
2π in

A(m–2,r+2)
n –

1
2π in

�m–1,r+1

)
–

1
2π in

�m,r

=
(2r + 3)!!

(2π in)2(2r – 1)!!
A(m–2,r+2)

n –
2∑

j=1

(2r + 2j – 3)!!
(2π in)j(2r – 1)!!

�m–j+1,r+j–1

= · · ·

=
(2r + 2m – 1)!!

(2π in)m(2r – 1)!!
A(0,r+m)

n –
m∑

j=1

(2r + 2j – 3)!!
(2π in)j(2r – 1)!!

�m–j+1,r+j–1

= –
1

2r – 1

m∑
j=1

(2r + 2j – 3)!!
(2π in)j(2r – 3)!!

�m–j+1,r+j–1. (2.19)

Case 2: n = 0.

A(m,r)
0 =

∫ 1

0
αm,r(x) dx =

1
2r – 1

�m+1,r–1. (2.20)

Now, from (1.7), (1.8), (2.10), (2.11), (2.19), and (2.20), we have the following Fourier
series expansion of αm,r(〈x〉):

1
2r – 1

�m+1,r–1

–
∞∑

n=–∞
n	=0

(
1

2r – 1

m∑
j=1

(2r + 2j – 3)!!
(2π in)j(2r – 3)!!

�m–j+1,r+j–1

)
e2π inx

=
1

2r – 1
�m+1,r–1

+
1

2r – 1

m∑
j=1

(2r + 2j – 3)!!
(2r – 3)!!j!

�m–j+1,r+j–1

(
–j!

∞∑
n=–∞

n	=0

e2π inx

(2π in)j

)

=
1

2r – 1
�m+1,r–1 +

1
2r – 1

m∑
j=2

(2r + 2j – 3)!!
(2r – 3)!!j!

�m–j+1,r+j–1Bj
(〈x〉)

+ �m,r ×
⎧⎨
⎩

B1(〈x〉), for x /∈ Z,

0, for x ∈ Z
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=
1

2r – 1

m∑
j=0
j 	=1

(2r + 2j – 3)!!
(2r – 3)!!j!

�m–j+1,r+j–1Bj
(〈x〉)

+ �m,r ×
⎧⎨
⎩

B1(〈x〉), for x /∈ Z,

0, for x ∈ Z.
(2.21)

αm,r(〈x〉) (m, r ≥ 1) is piecewise C∞. Moreover, αm,r(〈x〉) is continuous for those positive
integers m, r with �m,r = 0, and discontinuous with jump discontinuities at integers for
the positive integers m, r with �m,r 	= 0. Thus, for �m,r = 0, the Fourier series of αm,r(〈x〉)
converges uniformly to αm,r(〈x〉), whereas, for �m,r 	= 0, the Fourier series of αm,r(〈x〉) con-
verges pointwise to αm,r(〈x〉) for x /∈ Z and converges to

1
2
(
αm,r(0) + αm,r(1)

)
= αm,r(0) +

1
2
�m,r

=

⎧⎨
⎩

(–1)
m
2

(2r–1)!!2m+r
(m+r

m
2

)(m+2r
m+r

)
r! + 1

2�m,r , if m even,
1
2�m,r , if m odd,

(2.22)

for x ∈ Z (see (2.14)).
From these observations together with (2.21) and (2.22), we obtain the next two theo-

rems.

Theorem 2.3 For any integers m, r with m, r ≥ 1, we let

�m,r =
1

(2r – 1)!!2m+r

[ m–1
2 ]∑

k=0

(–1)k
(

m + r
k

)(
2m + 2r – 2k

m + r

)
(m + r – 2k)r .

Assume that �m,r = 0 for some positive integers m, r. Then we have the following:
(a)

∑
i1+i2+···+i2r+1=m

Pi1
(〈x〉)Pi2

(〈x〉) · · ·Pi2r+1

(〈x〉)

has the Fourier series expansion
∑

i1+i2+···+i2r+1=m

Pi1
(〈x〉)Pi2

(〈x〉) · · ·Pi2r+1

(〈x〉)

=
1

2r – 1
�m+1,r–1 –

1
2r – 1

∞∑
n=–∞

n	=0

( m∑
j=1

(2r + 2j – 3)!!
(2π in)j(2r – 3)!!

�m–j+1,r+j–1

)
e2π inx

for all x ∈R, where the convergence is uniform.
(b)

∑
i1+i2+···+i2r+1=m

Pi1
(〈x〉)Pi2

(〈x〉) · · ·Pi2r+1

(〈x〉)

=
1

2r – 1

m∑
j=0
j 	=1

(2r + 2j – 3)!!
(2r – 3)!!j!

�m–j+1,r+j–1Bj
(〈x〉)

for all x ∈R.



Kim et al. Advances in Difference Equations  (2018) 2018:277 Page 9 of 17

Theorem 2.4 For any integers m, r with m, r ≥ 1, we let

�m,r =
1

(2r – 1)!!2m+r

[ m–1
2 ]∑

k=0

(–1)k
(

m + r
k

)(
2m + 2r – 2k

m + r

)
(m + r – 2k)r .

Assume that �m,r 	= 0 for some positive integers m, r. Then we have the following:
(a)

1
2r – 1

�m+1,r–1 –
1

2r – 1

∞∑
n=–∞

n	=0

( m∑
j=1

(2r + 2j – 3)!!
(2π in)j(2r – 3)!!

�m–j+1,r+j–1

)
e2π inx

=

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

∑
i1+···+i2r+1=m Pi1 (〈x〉)Pi2 (〈x〉) · · ·Pi2r+1 (〈x〉), for x /∈ Z,
(–1)

m
2

(2r–1)!!2m+r
(m+r

m
2

)(m+2r
m+r

)
r! + 1

2�m,r , for x ∈ Z and m even,
1
2�m,r , for x ∈ Z and m odd.

(b)

1
2r – 1

m∑
j=0

(2r + 2j – 3)!!
(2r – 3)!!j!

�m–j+1,r+j–1Bj
(〈x〉)

=
∑

i1+i2+···+i2r+1=m

Pi1
(〈x〉)Pi2

(〈x〉) · · ·Pi2r+1

(〈x〉), for x /∈ Z;

1
2r – 1

m∑
j=0
j 	=1

(2r + 2j – 3)!!
(2r – 3)!!j!

�m–j+1,r+j–1Bj
(〈x〉)

=

⎧⎨
⎩

(–1)
m
2

(2r–1)!!2m+r
(m+r

m
2

)(m+2r
m+r

)
r! + 1

2�m,r , if m even,
1
2�m,r , if m odd,

for x ∈ Z.

Finally, we observe that the statement in Theorem A follows immediately from Theo-
rems 2.3 and 2.4.

3 Fourier series expansions for functions associated with Laguerre
polynomials

The following lemma is needed for our discussion in this section.

Lemma 3.1 Let n, r be integers with n, r ≥ 0. Then we have the identity

∑
i1+i2+···+ir+1=n

Li1

(
x

r + 1

)
Li2

(
x

r + 1

)
· · ·Lir+1

(
x

r + 1

)
= (–1)rL(r)

n+r(x), (3.1)

where the sum runs over all nonnegative integers i1, i2, . . . , ir+1 with i1 + i2 + · · · + ir+1 = n.

Proof Differentiating (1.4) r times, we get

∂rG(t, x)
∂xr = (–1)rtr(1 – t)–r–1 exp

(
–

xt
1 – t

)
, (3.2)
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∂rG(t, x)
∂xr =

∞∑
n=r

L(r)
n (x)tn =

∞∑
n=0

L(r)
n+r(x)tn+r . (3.3)

Equating (3.2) and (3.3) gives us

(–1)r(1 – t)–r–1 exp

(
–

xt
1 – t

)
=

∞∑
n=0

L(r)
n+rtn. (3.4)

On the other hand, from (1.4) and (3.4), we note that

∞∑
n=0

( ∑
i1+i2+···+ir+1=n

Li1

(
x

r + 1

)
Li2

(
x

r + 1

)
· · ·Lir+1

(
x

r + 1

))
tn

=

( ∞∑
n=0

Ln

(
x

r + 1

)
tn

)r+1

=
(

(1 – t)–1 exp

(
–

xt
(r + 1)(1 – t)

))r+1

= (–1)r
∞∑

n=0

L(r)
n+rtn. (3.5)

Comparing both sides of (3.5) yields the desired result. �

It is known that the Laguerre polynomials Ln(x) are given by (see [2, 3])

Ln(x) = 1F1(–n
1 |x) =

n∑
k=0

(–1)k
(

n
k

)
1
k!

xk , (3.6)

where 1F1(a
b|z) =

∑∞
n=0

〈a〉n
〈b〉n

zn

n! is the hypergeometric function.
The rth derivative of (3.6) is given by

L(r)
n (x) =

n∑
k=r

(–1)k 1
k!

(
n
k

)
(k)rxk–r

=
n∑

k=r

(–1)k 1
(k – r)!

(
n
k

)
xk–r

=
n–r∑
k=0

(–1)k+r 1
k!

(
n

k + r

)
xk (0 ≤ r ≤ n). (3.7)

From (3.1) and (3.7), we obtain the following result.

Lemma 3.2 For integers n, r with n, r ≥ 0, we have the following identity:

∑
i1+i2+···+ir+1=n

Li1

(
x

r + 1

)
Li2

(
x

r + 1

)
· · ·Lir+1

(
x

r + 1

)

=
n∑

k=0

(–1)k

k!

(
n + r
k + r

)
xk . (3.8)
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For integers m, r with m ≥ 1, r ≥ 0 as in (1.11), we put

βm,r(x) =
∑

i1+i2+···+ir+1=m

Li1

(
x

r + 1

)
Li2

(
x

r + 1

)
· · ·Lir+1

(
x

r + 1

)
.

Then we will consider the function

βm,r
(〈x〉) =

∑
i1+i2+···+ir+1=m

Li1

( 〈x〉
r + 1

)
Li2

( 〈x〉
r + 1

)
· · ·Lir+1

( 〈x〉
r + 1

)
, (3.9)

defined on R, which is periodic with period 1.
The Fourier series of βm,r(〈x〉) is

∞∑
n=–∞

B(m,r)
n e2π inx, (3.10)

where

B(m,r)
n =

∫ 1

0
βm,r

(〈x〉)e–2π inx dx

=
∫ 1

0
βm,r(x)e–2π inx dx. (3.11)

For integers m, r with m ≥ 1, r ≥ 0, we set

�m,r = βm,r(1) – βm,r(0)

=
∑

i1+i2+···+ir+1=m

(
Li1

(
1

r + 1

)
Li2

(
1

r + 1

)
· · ·Lir+1

(
1

r + 1

)

– Li1 (0)Li2 (0) · · ·Lir+1 (0)
)

. (3.12)

Now, from (3.8), we see that

�m,r = (–1)m
m–1∑
k=0

(–1)k

(m – k)!

(
m + r

k

)
. (3.13)

From (3.1), we note that

d
dx

βm,r(x) =
d

dx
(
(–1)rL(r)

m+r(x)
)

= (–1)rL(r+1)
m+r (x)

= –βm–1,r+1(x).

Thus we have shown that

d
dx

βm,r(x) = –βm–1,r+1(x). (3.14)
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Replacing m by m + 1, r by r – 1, from (3.14), we get

d
dx

(
–βm+1,r–1(x)

)
= βm,r(x), (3.15)

∫ 1

0
βm,r(x) dx = –�m+1,r–1, (3.16)

βm,r(0) = βm,r(1) ⇐⇒ �m,r = 0. (3.17)

We are now going to determine the Fourier coefficients.
Case 1: n 	= 0.

B(m,r)
n =

∫ 1

0
βm,r(x)e–2π inx dx

= –
1

2π in
[
βm,r(x)e–2π inx]1

0 +
1

2π in

∫ 1

0

(
d

dx
βm,r(x)

)
e–2π inx dx

= –
1

2π in
(
βm,r(1) – βm,r(0)

)
–

1
2π in

∫ 1

0
βm–1,r+1(x)e–2π inx dx

= –
1

2π in
B(m–1,r+1)

n –
1

2π in
�m,r

= –
1

2π in

(
–

1
2π in

B(m–2,r+2)
n –

1
2π in

�m–1,r+1

)
–

1
2π in

�m,r

=
(

–
1

2π in

)2

B(m–2,r+2)
n +

2∑
j=1

(
–

1
2π in

)j

�m–j+1,r+j–1

= · · ·

=
(

–
1

2π in

)m

B(0,r+m)
n +

m∑
j=1

(
–

1
2π in

)j

�m–j+1,r+j–1

=
m∑

j=1

(
–

1
2π in

)j

�m–j+1,r+j–1. (3.18)

Case 2: n = 0.

B(m,r)
0 =

∫ 1

0
βm,r(x) dx = –�m+1,r–1. (3.19)

Now, from (1.7), (1.8), (3.10), (3.11), (3.18), and (3.19), the Fourier series expansion of
βm,r(〈x〉) is given by

–�m+1,r–1 +
∞∑

n=–∞
n	=0

( m∑
j=1

(
–

1
2π in

)j

�m–j+1,r+j–1

)
e2π inx

= –�m+1,r–1 –
m∑

j=1

(–1)j

j!
�m–j+1,r+j–1

(
–j!

∞∑
n=–∞

n	=0

e2π inx

(2π in)j

)

= –�m+1,r–1 –
m∑

j=2

(–1)j

j!
�m–j+1,r+j–1Bj

(〈x〉)
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+ �m,r ×
⎧⎨
⎩

B1(〈x〉), if x /∈ Z,

0, if x ∈ Z

= –
m∑

j=0
j 	=1

(–1)j

j!
�m–j+1,r+j–1Bj

(〈x〉) + �m,r ×
⎧⎨
⎩

B1(〈x〉), if x /∈ Z,

0, if x ∈ Z.
(3.20)

βm,r(〈x〉) (m ≥ 1, r ≥ 0) is piecewise C∞. In addition, βm,r(〈x〉) is continuous for those
integers m, r (m ≥ 1, r ≥ 0) with �m,r = 0, and discontinuous with jump discontinuities
at integers for those integers m, r (m ≥ 1, r ≥ 0) with �m,r 	= 0. Hence, for �m,r = 0, the
Fourier series of βm,r(〈x〉) converges uniformly to βm,r(〈x〉). Whereas, for �m,r 	= 0, the
Fourier series of βm,r(〈x〉) converges pointwise to βm,r(〈x〉) for x /∈ Z and converges to

1
2
(
βm,r(0) + βm,r(1)

)
= βm,r(0) +

1
2
�m,r =

(
m + r

r

)
+

1
2
�m,r (3.21)

for x ∈ Z (see (3.8)).
From these observations together with (3.20) and (3.21), we have the next two theorems.

Theorem 3.3 For any integers m, r with m ≥ 1, r ≥ 0, we let

�m,r = (–1)m
m–1∑
k=0

(–1)k

(m – k)!

(
m + r

k

)
.

Assume that �m,r = 0 for some integers m, r with m ≥ 1, r ≥ 0. Then we have the following:
(a)

∑
i1+i2+···+ir+1=m

Li1

( 〈x〉
r + 1

)
Li2

( 〈x〉
r + 1

)
· · ·Lir+1

( 〈x〉
r + 1

)

has the Fourier series expansion

∑
i1+i2+···+ir+1=m

Li1

( 〈x〉
r + 1

)
Li2

( 〈x〉
r + 1

)
· · ·Lir+1

( 〈x〉
r + 1

)

= –�m+1,r–1 +
∞∑

n=–∞
n	=0

( m∑
j=1

(
–

1
2π in

)j

�m–j+1,r+j–1

)
e2π inx

for all x ∈R, where the convergence is uniform.
(b)

∑
i1+i2+···+ir+1=m

Li1

( 〈x〉
r + 1

)
Li2

( 〈x〉
r + 1

)
· · ·Lir+1

( 〈x〉
r + 1

)

= –
m∑

j=0
j 	=1

(–1)j

j!
�m–j+1,r+j–1Bj

(〈x〉)

for all x ∈R.
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Theorem 3.4 For any integers m, r with m ≥ 1, r ≥ 0, we let

�m,r = (–1)m
m–1∑
k=0

(–1)k

(m – k)!

(
m + r

k

)
.

Assume that �m,r 	= 0 for some integers m, r with m ≥ 1, r ≥ 0. Then we have the following:
(a)

–�m+1,r–1 +
∞∑

n=–∞
n	=0

( m∑
j=1

(
–

1
2π in

)j

�m–j+1,r+j–1

)
e2π inx

=

⎧⎨
⎩

∑
i1+i2+···+ir+1=m Li1 ( 〈x〉

r+1 )Li2 ( 〈x〉
r+1 ) · · ·Lir+1 ( 〈x〉

r+1 ), for x /∈ Z,(m+r
r

)
+ 1

2�m,r , for x ∈ Z.

(b)

–
m∑

j=0

(–1)j

j!
�m–j+1,r+j–1Bj

(〈x〉)

=
∑

i1+i2+···+ir+1=m

Li1

( 〈x〉
r + 1

)
Li2

( 〈x〉
r + 1

)
· · ·Lir+1

( 〈x〉
r + 1

)
, for x /∈ Z;

–
m∑

j=0
j 	=1

Li1

( 〈x〉
r + 1

)
Li2

( 〈x〉
r + 1

)
· · ·Lir+1

( 〈x〉
r + 1

)

=
(

m + r
r

)
+

1
2
�m,r , for x ∈ Z.

Finally, we see that the statement in Theorem B follows from Theorems 3.3 and 3.4.

4 Expressions in terms of Euler polynomials
For any polynomial p(x) ∈ C[x] with degree m, we know that

p(x) =
m∑

k=0

bkEk(x), (4.1)

where Ek(x) are the Euler polynomials given by 2
et+1 ext =

∑∞
k=0 Ek(x) tk

k! , and

bk =
1

2k!
(
p(k)(1) + p(k)(0)

)
, k = 0, 1, . . . , m. (4.2)

Applying (4.1) and (4.2) to p(x) = αm,r(x) and from (2.15), we see that

α(k)
m,r(x) =

(2r + 2k – 1)!!
(2r – 1)!!

αm–k,r+k(x). (4.3)
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Hence, from (4.3), we have

bk =
1

2k!
(
α(k)

m,r(1) + α(k)
m,r(0)

)

=
(2r + 2k – 1)!!
2k!(2r – 1)!!

(
αm–k,r+k(1) + αm–k,r+k(0)

)

=
(2r + 2k – 1)!!

k!(2r – 1)!!

(
αm–k,r+k(0) +

1
2
�m–k,r+k

)
. (4.4)

Now, from (2.14), (4.1), and (4.4), we get the following theorem.

Theorem 4.1 For any integers m, r with m, r ≥ 1, we have the following:

∑
i1+i2+···+i2r+1=m

Pi1 (x)Pi2 (x) · · ·Pi2r+1 (x) =
m∑

k=0

bkEk(x),

where

bk =

⎧⎨
⎩

(–1)
m–k

2 (r+k)!
k!(2r–1)!!2m+r

(m+r
m–k

2

)(m+2r+k
m+r

)
+ (2r+2k–1)!!

2k!(2r–1)!! �m–k,r+k , for m – k even,
(2r+2k–1)!!
2k!(2r–1)!! �m–k,r+k , for m – k odd,

and �m,r is given by (2.13).

Proceeding analogously to the above discussion, we get the next result, the details of
which are left to the reader.

Theorem 4.2 For any integers m, r with m ≥ 1, r ≥ 0, we have the following identity:

∑
i1+i2+···+ir+1=m

Li1

(
x

r + 1

)
Li2

(
x

r + 1

)
· · ·Lir+1

(
x

r + 1

)

=
m∑

k=0

(–1)k

k!

((
m + r
r + k

)
+

1
2
�m–k,r+k

)
Ek(x),

where �m,r is given by (3.13).

5 Results and discussion
In this paper, we investigated sums of finite products of Legendre and Laguerre polynomi-
als and derived Fourier series expansions of functions associated with those polynomials.
From these Fourier series expansions, we were able to express those sums of finite prod-
ucts as linear combinations of Bernoulli polynomials. Further, by using a different method,
we expressed those sums of finite products as linear combinations of Euler polynomials
as well. It is expected that we will be able to express those sums of finite products as linear
combinations of some classical orthogonal polynomials. Here we note that the Bernoulli
and Euler polynomials are not orthogonal polynomials but Appell polynomials.
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6 Conclusion
In this paper, we considered the Fourier series expansions for functions associated with
Legendre and Laguerre polynomials. In addition, by using a method other than Fourier
series expansions, we were able to express those sums in terms of Euler polynomials. It is
noteworthy that all the other previous related papers, except [5, 20–22], were associated
with Appell polynomials, while the present one is about classical orthogonal polynomials.
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