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Abstract
In this paper, we deal with a class of neutral random nonlinear systems. The existence
and uniqueness of the solution to neutral random functional nonlinear systems
(NRFSs) are established. Furthermore, the criteria on noise-to-state stability in the
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1 Introduction
Stochastic differential equations (SDEs) are widely adopted to describe systems with
stochastic disturbances. As one of the most important issues of SDEs, stability theory
of SDEs has been studied intensively over past decades, see for instance [1–6] and the
references therein.

Moreover, delay effects are common phenomena which exist in a wide variety of real sys-
tems. Neutral differential equations with delay (NDDEs in short) are often used to describe
the systems which depend not only on present and past states but also involve deriva-
tives with delays. For theory of NDDEs, one can see Hale and Lunel [7] and the references
therein. Taking the environmental disturbances into account, Kolmanovskii and Nosov [8]
and Mao [9] discussed the neutral stochastic differential equations with delay driven by
Brownian motion (NSDDEs). Since then, so many efforts have been made on this topic,
especially on asymptotical boundedness and exponential stability of NSDDEs. One can
see [10–13] and the references therein.

Although fruitful results on the stability of SDEs have been obtained, it seems that the
model of SDEs is not necessarily the best model in some specific situations (see [14, 15] for
more details). For example, stationary processes are more reasonable to describe stochas-
tic disturbances to other electric elements in circuit systems with power noise filter than
white noises. Stationary processes have been applied to automatic control, information
theory, and wireless technology. In Wu [14], a framework of stability analysis for random
nonlinear systems with second-order processes was established. The notion of noise-to-
state stability was proposed for stochastic nonlinear systems by regarding the unknown
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covariance of Brownian motion as the deterministic input in [16] and [17]. Based on the
above works, Zhang et al. [18] investigated the noise-to-state stability in probability of
state-dependent switched random nonlinear systems with second-order stationary pro-
cesses. Then, Zhang et al. [15] and Zhang et al. [19] established the criteria on noise-to-
state stability in the moment of random switched systems under a reasonable assumption
of second-order processes, respectively.

In this paper, motivated by the above-mentioned works, we deal with a class of neutral
random functional nonlinear systems of the form

d
[
x(t) – D(xt)

]
= f (xt , t) dt + g(xt , t)ξ (t) dt, t ≥ t0 (1)

with initial data xt0 . Here, the same as in [14], ξ (t) is a second-order process. The existence
and uniqueness of the solution to system (1) and the noise-to-state exponential stability of
an important class of system (1) are considered. We mentioned that, when ξ (t) is a white
noise, regarding ξ (t) as the formal derivative of a Brownian motion (or Wiener process)
B(t), equation (1) becomes the classical functional SDE described by

d
[
x(t) – D(xt)

]
= f (xt , t) dt + g(xt , t) dB(t), t ≥ t0

with initial data xt0 .
The paper is organized as follows. In Sect. 2, we introduce some notations and pre-

liminaries. Section 3 is devoted to the existence and uniqueness of solution to a neutral
random functional nonlinear system. In Sect. 4, the criteria of noise-to-state exponential
stability in the pth moment of neutral random delay nonlinear systems are established. An
example is given in Sect. 5 to illustrate our main results.

2 Notations and preliminaries
Throughout this paper, unless otherwise specified, we use the following notations. Let | · |
be the Euclidean norm in Rn. If A is a vector or matrix, its transpose is denoted by AT . If
A is a matrix, its trace norm is denoted by trace |A| =

√
trace(AT A). Let τ > 0 and denote

by C([–τ , 0]; Rn) the family of continuous functions ϕ from [–τ , 0] to Rn with the norm
‖ϕ‖ = sup–τ≤θ≤0 |ϕ(θ )|. Let R+ = [0,∞) and K stands for the set of all functions R+ → R+,
which are continuous, strictly increasing, and vanishing at zero.

Let (�,F ,Ft , P) be a given complete probability space with a filtration {Ft}t≥0 satis-
fying the usual conditions. For p > 0, let Lp

Ft0
([–τ , 0]; Rn) be the family of Ft0 -measurable

C([–τ , 0]; Rn)-valued random variables η such that E‖η‖p < ∞. Denote by Cb
Ft0

([–τ , 0]; Rn)
the family of all Ft0 -measurable, bounded, and C([–τ , 0]; Rn)-valued random variables.

Consider a neutral random functional nonlinear system of the form

d
[
x(t) – D(xt)

]
= f (xt , t) dt + g(xt , t)ξ (t) dt, t ≥ t0 (2)

with initial data xt0 = η = {η(θ ) : –τ ≤ θ ≤ 0} ∈L1
Ft0

([–τ , 0]; Rn), where D : C([–τ , 0]; Rn) →
Rn, f : C([–τ , 0]; Rn) × R+ → Rn and g : C([–τ , 0]; Rn) × R+ → Rn×d are Borel-measurable,
x(t) ∈ Rn is the state of the system and xt = {x(t + θ ) : –τ ≤ θ ≤ 0} is regarded as a
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C([–τ , 0]; Rn)-valued stochastic process. The stochastic process ξ (t) ∈ Rd is a second-
order process satisfying the following assumption.

Assumption A1 The process ξ (t) ∈ Rd is Ft-adapted and piecewise continuous and sat-
isfies

sup
t0≤s≤t

E
∣
∣ξ (s)

∣
∣2 < ∞, ∀t ≥ t0.

Remark 1 From supt0≤s≤t E|ξ (s)|2 < ∞, for all t ≥ t0, one can verify ξ (t) < ∞, a.s.

Definition 1 A solution to system (2) on t ≥ t0 – τ is a process x(t) := x(t; t0, xt0 ) satisfying
the following:

1. x(t) is continuous and Ft-adapted for t ≥ t0 – τ , where Ft ≡Ft0 for t ∈ [t0 – τ , t0];
2. For every T > t0,

∫ T
t0

|f (xt , t)|dt < ∞ a.s. and
∫ T

t0
|g(xt , t)|dt < ∞ a.s.;

3. For every T > t0

x(T) – D(xT ) = x(t0) – D(xt0 ) +
∫ T

t0

f (xs, s) ds +
∫ T

t0

g(xs, s)ξ (s) ds.

A solution x(t) to system (2) is said to be unique if any other solution x̄(t) is indistin-
guishable from x(t).

To analyze the existence and uniqueness of solution to system (2), we impose the fol-
lowing assumptions.

Assumption A2 Both f and g are piecewise continuous in t and satisfy the Lipschitz con-
dition in x, i.e., there exists a constant K > 0 such that

∣
∣f (φ, t) – f (ϕ, t)

∣
∣ +

∣
∣g(φ, t) – g(ϕ, t)

∣
∣ ≤ K‖φ – ϕ‖ (3)

for all t ≥ t0 and ∀ϕ, φ ∈ C([–τ , 0]; Rn).

Assumption A3 There exists a constant L > 0 such that

∣∣f (φ, t)
∣∣ +

∣∣g(φ, t)
∣∣ ≤ L

(
1 + ‖φ‖) (4)

for all t ≥ t0 and ∀φ ∈ C([–τ , 0]; Rn).

Assumption A4 There exists κ ∈ (0, 1) such that, for all ϕ,φ ∈ C([–τ , 0]; Rn),

∣
∣D(φ) – D(ϕ)

∣
∣ ≤ κ‖φ – ϕ‖.

3 The existence and uniqueness theorem
Let us now establish the existence and uniqueness of solutions to system (2).

Theorem 1 Under Assumptions A1–A4, the neutral random functional nonlinear system
(2) has a unique solution.
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Proof Uniqueness. Let x(t) and x̄(t) be the two solutions of system (2) with initial data
xt0 = x̄t0 . By Assumptions A2 and A4, we have

∣∣x(t) – x̄(t)
∣∣

≤ ∣∣D(xt) – D(x̄t)
∣∣ +

∫ t

t0

∣∣f (xs, s) – f (x̄s, s)
∣∣ds +

∫ t

t0

∣∣g(xs, s) – g(x̄s, s)
∣∣∣∣ξ (s)

∣∣ds

≤ κ‖xt – x̄t‖ + K
∫ t

t0

‖xs – x̄s‖ds + K
∫ t

t0

‖xs – x̄s‖
∣
∣ξ (s)

∣
∣ds

≤ κ sup
t0–τ≤s≤t

∣∣x(s) – x̄(s)
∣∣ + K

∫ t

t0

sup
t0–τ≤r≤s

∣∣x(r) – x̄(r)
∣∣(1 +

∣∣ξ (s)
∣∣)ds. (5)

This implies

sup
t0≤s≤t

∣∣x(s) – x̄(s)
∣∣

≤ κ sup
t0≤s≤t

∣∣x(s) – x̄(s)
∣∣ + K

∫ t

t0

sup
t0≤r≤s

∣∣x(r) – x̄(r)
∣∣(1 +

∣∣ξ (s)
∣∣)ds, (6)

therefore

sup
t0≤s≤t

∣∣x(s) – x̄(s)
∣∣ ≤ K

1 – κ

∫ t

t0

sup
t0≤r≤s

∣∣x(r) – x̄(r)
∣∣(1 +

∣∣ξ (s)
∣∣)ds. (7)

Applying Gronwall’s inequality yields that x(t) = x̄(t), a.s. for all t ≥ t0. The uniqueness is
proved.

Existence. The proof of existence is divided into the following two steps.
Step 1. Define x0

t0 = η and x0(t) = η(0) for t ≥ t0. For each n = 1, 2, . . . , set xn
t0 = η and

define

xn(t) – D
(
xn–1

t
)

= η(0) – D(η) +
∫ t

t0

f
(
xn–1

s , s
)

ds +
∫ t

t0

g
(
xn–1

s , s
)
ξ (s) ds.

When n = 1, we have

x1(t) – x0(t) = D
(
x0

t
)

– D(η) +
∫ t

t0

f
(
x0

s , s
)

ds +
∫ t

t0

g
(
x0

s , s
)
ξ (s) ds, t ≥ t0.

By Assumptions A2–A4, we have

∣∣x1(t) – x0(t)
∣∣ ≤ ∣∣D

(
x0

t
)

– D(η)
∣∣ +

∫ t

t0

∣∣f
(
x0

s , s
)∣∣ds +

∫ t

t0

∣∣g
(
x0

s , s
)∣∣∣∣ξ (s)

∣∣ds

≤ κ
∥
∥x0

t – x0
t0

∥
∥ + K

∫ t

t0

∥
∥x0

s – x0
t0

∥
∥(

1 +
∣
∣ξ (s)

∣
∣)ds

+
∫ t

t0

[∣∣f
(
x0

t0 , s
)∣∣ +

∣∣g
(
x0

t0 , s
)∣∣∣∣ξ (s)

∣∣]ds

≤ κ
∥
∥x0

t – x0
t0

∥
∥ + K

∫ t

t0

sup
t0≤r≤s

∥
∥x0

r – x0
t0

∥
∥(

1 +
∣
∣ξ (s)

∣
∣)ds

+ L
∫ t

t0

(
1 + ‖η‖)(1 +

∣
∣ξ (s)

∣
∣)ds.
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Then, for any finite number T > t0, we have

sup
t0≤t≤T

∣∣x1(t) – x0(t)
∣∣ ≤ κ sup

t0≤t≤T

∥∥x0
t – x0

t0

∥∥ + K
∫ T

t0

sup
t0≤r≤s

∥∥x0
r – x0

t0

∥∥(
1 +

∣∣ξ (s)
∣∣)ds

+ L
∫ T

t0

(
1 + ‖η‖)(1 +

∣∣ξ (s)
∣∣)ds

≤ sup
t0≤t≤T

∥
∥x0

t – x0
t0

∥
∥
[
κ + K

∫ T

t0

(
1 +

∣
∣ξ (s)

∣
∣)ds

]

+ L
∫ T

t0

(
1 + ‖η‖)(1 +

∣
∣ξ (s)

∣
∣)ds. (8)

Note that

sup
t0≤t≤T

∥∥x0
t – x0

t0

∥∥ = sup
t0–τ≤t≤T

∥∥x0(t) – η
∥∥ ≤ 2‖η‖.

This together with (8) yields

sup
t0≤t≤T

∣∣x1(t) – x0(t)
∣∣ ≤ 2κ‖η‖ +

[
2K‖η‖ + L

(
1 + ‖η‖)]

∫ T

t0

(
1 +

∣∣ξ (s)
∣∣)ds := C. (9)

On the other hand, we have

xn+1(t) – xn(t) = D
(
xn

t
)

– D
(
xn–1

t
)

+
∫ t

t0

[
f
(
xn

s , s
)

– f
(
xn–1

s , s
)]

ds

+
∫ t

t0

[
g
(
xn

s , s
)

– g
(
xn–1

s , s
)]

ξ (s) ds.

By the same procedure as in the proof of the uniqueness and (9), we obtain

sup
t0≤t≤T

∣∣xn+1(t) – xn(t)
∣∣ ≤ sup

t0≤t≤T

∣∣xn(t) – xn–1(t)
∣∣
[
κ + K

∫ T

t0

(
1 +

∣∣ξ (s)
∣∣)ds

]

≤ C
[
κ + K

∫ T

t0

(
1 +

∣∣ξ (s)
∣∣)ds

]n

. (10)

Given T – t0 is small enough such that κ + K
∫ T

t0
(1 + |ξ (s)|) ds < 1, one can show from (10)

that there is a solution to system (2) on [t0 – τ , T].
Step 2. Let σ > 0 be sufficiently small for

κ + K
∫ t0+σ

t0

(
1 +

∣
∣ξ (s)

∣
∣)ds < 1,

by Step 1, there is a solution to system (2) on [t0 – τ , t0 + σ ] with initial data xt0 . By Step 1
again, there is a solution to system (2) on [t0 + σ , t0 + 2σ ] with initial data xt0+σ . Repeating
this procedure, we can derive that there is a solution to system (2) on t ≥ t0 – τ . The proof
is complete. �
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As in the classical SDE situation, the uniform Lipschitz Assumption A2 is somewhat
restrictive in applications of the system, this motivates us to replace Assumption A2 with
the local Lipschitz condition.

Assumption A2′ Assume that for each h > 0, there is a constant Kh > 0 such that

∣∣f (φ, t) – f (ϕ, t)
∣∣ +

∣∣g(φ, t) – g(ϕ, t)
∣∣ ≤ Kh‖φ – ϕ‖ (11)

for all t ≥ t0 and those ϕ,φ ∈ C([–τ , 0]; Rn) with ‖ϕ‖ ∨ ‖φ‖ ≤ h.

Theorem 2 Under Assumptions A1, A2′, A3, and A4, the neutral random functional non-
linear system (2) has a unique solution.

Following the same line of Theorem 2.3.4 in Mao [9], this theorem can be proved by a
standard truncation procedure, so we omit it.

4 Noise-to-state stability
In this section, we consider a special but important class of system (2) of the form

d
[
x(t) – D̄

(
x(t – τ )

)]
= F

(
x(t), x(t – τ ), t

)
dt + G

(
x(t), x(t – τ ), t

)
ξ (t) dt, t ≥ t0 (12)

with initial data xt0 = η = {η(θ ) : –τ ≤ θ ≤ 0} ∈ Cb
Ft0

([–τ , 0]; Rn), where D̄ : Rn → Rn, F :
Rn × Rn × R+ → Rn, and G : Rn × Rn × R+ → Rn×d are Borel-measurable and the process
ξ (t) satisfies Assumption A1. We called (12) the neutral random delay nonlinear system.

For functions D̄, F , and G, we impose the following assumptions.

Assumption A5 Both F and G satisfy the local Lipschitz condition. That is, for each h > 0,
there is a constant Kh > 0 such that

∣∣F(x, y, t) – F(x̄, ȳ, t)
∣∣ +

∣∣G(x, y, t) – G(x̄, ȳ, t)
∣∣ ≤ Kh

(|x – x̄| + |y – ȳ|) (13)

for all t ≥ t0 and ∀x, x̄, y, ȳ ∈ Rn with |x| ∨ |x̄| ∨ |y| ∨ |ȳ| ≤ h.

Assumption A6 There exists a constant L > 0 such that

∣∣F(x, y, t)
∣∣ +

∣∣G(x, y, t)
∣∣ ≤ L

(
1 + |x| + |y|) (14)

for all t ≥ t0 and ∀x, y ∈ Rn.

Assumption A7 There exists κ ∈ (0, 1) such that

∣
∣D̄(x)

∣
∣ ≤ κ|x|

for all x ∈ Rn.

In fact, system (12) can be written as system (2) by defining f (φ, t) = F(φ,φ(–τ ), t) and
g(φ, t) = G(φ,φ(–τ ), t) for (φ, t) ∈ C([–τ , 0]; Rn) × R+. Note that Assumptions A5, A6, and
A7 imply Assumptions A2′, A3, and A4 respectively, so by Theorem 2, there exists a unique
solution to system (12) on [t0 – τ ,∞).
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Definition 2 For p > 0, the neutral nonlinear system (12) is said to be noise-to-state ex-
ponentially stable in the pth moment, if there exist positive constants c, λ and a class K
function γ (·) such that, for all t ≥ t0 and xt0 = η ∈ Cb

Ft0
([–τ , 0]; Rn),

E
∣∣x(t)

∣∣p ≤ cE‖η‖pe–λ(t–t0) + γ
(

sup
t0≤s≤t

E
∣∣ξ (s)

∣∣2
)

.

When p = 2, we also say that it is noise-to-state exponentially stable in the mean square.

The following lemma is a combination of Lemmas 4.3 and 4.5 in Kolmanovskii et al. [11].

Lemma 1 Let p ≥ 1 and Assumption A7 hold. Then, for all x, y ∈ Rn,

∣
∣x – D̄(y)

∣
∣p ≤ (1 + κ)p–1(|x|p + κ|y|p), |x|p ≤ κ|y|p +

|x – D̄(y)|p
(1 – κ)p–1 .

Lemma 2 Let Assumptions A5–A7 hold. Suppose there exist positive constants c1, c2, α1,
α2, α3, d with α1 > α2 and a C1 function V (x, t) : Rn × [t0,∞) → R+ such that, for p ≥ 1 and
∀t ≥ t0, x, y ∈ Rn,

c1|x|p ≤ V (x, t) ≤ c2|x|p (15)

and

∂v
∂t

+
∂v
∂x

F(x, y, t) + d
∣∣
∣∣
∂v
∂x

G(x, y, t)
∣∣
∣∣

2

≤ –α1|x|p + α2|y|p + α3. (16)

Moreover, there is a constant κ ∈ (0, 1) such that

∣
∣D̄(y)

∣
∣ ≤ κ|y|, ∀y ∈ Rn. (17)

Let λ̄ be the unique solution to the equation

α1 – λc2(1 + κ)p–1 – eλτ
(
α2 + κλc2(1 + κ)p–1) = 0.

If λ ∈ (0, λ̄], then for all t ≥ t0 and any initial data {η(θ ) : –τ ≤ θ ≤ 0} = η ∈
Cb
Ft0

([–τ , 0]; Rn), it holds that

eλtE
∣∣x(t) – D̄

(
x(t – τ )

)∣∣p ≤ CλE‖η‖p +
α3

λc1
eλt +

1
4c1d

eλt sup
t0≤s≤t

E
∣∣ξ (s)

∣∣2, (18)

where Cλ := 1
c1

[c2eλt0 (1 + κ)p + τeλτ (α2 + κλc2(1 + κ)p–1)].

Proof For t ≥ t0, let x̃(t) := x(t) – D̄(x(t – τ )), by Young’s inequality and (16), we have

deλtV (x̃(t), t)
dt

= λeλtV
(
x̃(t), t

)
+ eλt[Vt

(
x̃(t), t

)
+ Vx

(
x̃(t), t

)
f
(
x(t), x(t – τ ), t

)
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+ Vx
(
x̃(t), t

)
g
(
x(t), x(t – τ ), t

)
ξ (t)

]

≤ λeλtV
(
x̃(t), t

)
+ eλt[Vt

(
x̃(t), t

)
+ Vx

(
x̃(t), t

)
f
(
x(t), x(t – τ ), t

)]

+ deλt∣∣Vx
(
x̃(t), t

)
g
(
x(t), x(t – τ ), t

)∣∣2 +
1

4d
eλt∣∣ξ (t)

∣∣2

≤ λeλtV
(
x̃(t), t

)
+ eλt[–α1

∣
∣x(t)

∣
∣p + α2

∣
∣x(t – τ )

∣
∣p + α3

]
+

1
4d

eλt∣∣ξ (t)
∣
∣2.

Taking integrals and then expectations on both sides of the above, together with (15) and
(17), we get

eλtEV
(
x̃(t), t

)

≤ eλt0 EV
(
x̃(t0), t0

)
+ E

∫ t

t0

eλs[λV
(
x̃(s), s

)
– α1

∣∣x(s)
∣∣p

+ α2
∣
∣x(s – τ )

∣
∣p + α3

]
ds +

1
4d

E
∫ t

t0

eλs∣∣ξ (s)
∣
∣2 ds

≤ c2eλt0 E
∣∣x(t0) – D̄

(
x(t0 – τ )

)∣∣p + E
∫ t

t0

eλs[λc2
∣∣x̃(s)

∣∣p – α1
∣∣x(s)

∣∣p

+ α2
∣
∣x(s – τ )

∣
∣p + α3

]
ds +

1
4d

E
∫ t

t0

eλs∣∣ξ (s)
∣
∣2 ds

≤ c2eλt0 (1 + κ)pE‖η‖p + E
∫ t

t0

eλs[λc2(1 + κ)p–1(∣∣x(s)
∣∣p + κ

∣∣x(s – τ )
∣∣p)

– α1
∣∣x(s)

∣∣p + α2
∣∣x(s – τ )

∣∣p + α3
]

ds +
1

4d
E

∫ t

t0

eλs∣∣ξ (s)
∣∣2 ds

≤ c2eλt0 (1 + κ)pE‖η‖p +
α3

λ
eλt + E

∫ t

t0

eλs(–α1 + λc2(1 + κ)p–1)∣∣x(s)
∣
∣p ds

+
[
α2 + κλc2(1 + κ)p–1]E

∫ t

t0

eλs∣∣x(s – τ )
∣∣p ds +

1
4d

E
∫ t

t0

eλs∣∣ξ (s)
∣∣2 ds. (19)

However,

E
∫ t

t0

eλs∣∣x(s – τ )
∣
∣p ds ≤ eλτ

(
τE‖η‖p + E

∫ t

t0

eλs∣∣x(s)
∣
∣p ds

)
. (20)

Substituting this into (19), we have

eλtEV
(
x̃(t), t

)

≤ [
c2eλt0 (1 + κ)p + τeλτ

(
α2 + κλc2(1 + κ)p–1)E‖η‖p] +

α3

λ
eλt

– H(λ)E
∫ t

t0

eλs∣∣x(s)
∣
∣p ds +

1
4d

E
∫ t

t0

eλs∣∣ξ (s)
∣
∣2 ds, (21)

where H(λ) := α1 – λc2(1 + κ)p–1 – eλτ (α2 + κλc2(1 + κ)p–1). It is obvious that H(λ) is con-
tinuous and mono-decreasing in λ. For α1 > α2, and from the zero theorem, there exists a
unique positive root λ̄ to the equation H(λ) = 0. Thus, for λ ∈ (0, λ̄], assertion (18) follows
from (21) directly. �
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Based on the above two lemmas, we can now state the main result of this section.

Theorem 3 Let the assumptions of Lemma 2 hold and α3 = 0. Let λ ∈ (0, λ̄ ∧ 1
2τ

log( 1
κ

)],
then for any initial data {η(θ ) : –τ ≤ θ ≤ 0} = η ∈ Cb

Ft0
([–τ , 0]; Rn), the neutral random

delay nonlinear system (12) is noise-to-state exponentially stable in the pth moment.

Proof For λ ∈ (0, λ̄ ∧ 1
2τ

log( 1
κ

)], by Lemmas 1 and 2, we have

eλtE
∣∣x(t)

∣∣p

≤ κeλtE
∣
∣x(t – τ )

∣
∣p +

1
(1 – κ)p–1 eλtE

∣
∣x(t) – D

(
x(t – τ )

)∣∣p

≤ √
κeλ(t–τ )E

∣∣x(t – τ )
∣∣p +

1
(1 – κ)p–1

[
CλE‖η‖p +

1
4c1d

eλt sup
t0≤s≤t

E
∣∣ξ (s)

∣∣2
]

,

where Cλ is the same as defined in (18). Thus, we have

sup
t0≤s≤t

eλsE
∣
∣x(s)

∣
∣p ≤ √

κ
(

E‖η‖p + sup
t0≤s≤t

eλsE
∣
∣x(s)

∣
∣p

)

+
1

(1 – κ)p–1

[
CλE‖η‖p +

1
4c1d

eλt sup
t0≤s≤t

E
∣∣ξ (s)

∣∣2
]

.

Therefore

sup
t0≤s≤t

eλsE
∣
∣x(s)

∣
∣p ≤

[ √
κ

1 –
√

κ
+

Cλ

(1 –
√

κ)(1 – κ)p–1

]
E‖η‖p

+
1

4c1d(1 –
√

κ)(1 – κ)p–1 eλt sup
t0≤s≤t

E
∣
∣ξ (s)

∣
∣2.

In particular,

E
∣∣x(t)

∣∣p ≤
[ √

κ

1 –
√

κ
+

Cλ

(1 –
√

κ)(1 – κ)p–1

]
e–λtE‖η‖p

+
1

4c1d(1 –
√

κ)(1 – κ)p–1 sup
t0≤s≤t

E
∣
∣ξ (s)

∣
∣2,

i.e., system (12) is noise-to-state exponentially stable in the pth moment. �

5 An example
In this section, an example is given to illustrate our main results.

Example 1 Let ξ (t) be a one-dimensional stochastic process satisfying Assumption A1.
Consider the following neutral nonlinear random system:

d
[
x(t) – kx(t – τ )

]
=

[
β1x(t) + β2x(t – τ )

]
dt + β3 sin x(t – τ )ξ (t) dt (22)

with initial data xt0 = η = {η(θ ) : –τ ≤ θ ≤ 0} ∈ Cb
Ft0

([–τ , 0]; R).
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Let V (x, t) = x2, then (15) holds true for c1 = 0.5, c2 = 1, and p = 2. For β1 < 0, with the
help of the elementary inequality 2ab ≤ a2 + b2, one can easily check that

∂v
∂t

+
∂v
∂x

F(x, y, t) + d
∣∣
∣∣
∂v
∂x

G(x, y, t)
∣∣
∣∣

2

= 2β1x2 + 2β2xy – 2kβ1xy – 2kβ2y2 + 4dβ2
3 sin2 y

(
x2 – 2kxy + k2y2)

≤ [
(2 – k)β1 + β2 + 4dβ2

3 (1 + k)
]
x2 +

[
(1 – 2k)β2 – kβ1 + 4dβ2

3
(
k + k2)]y2.

Set k = 0.1, β1 = –1, β2 = 0.5, β3 = 0.5, and d = 0.1, we have

(2 – k)β1 + β2 + 4dβ2
3 (1 + k) = –1.29

and

(1 – 2k)β2 – kβ1 + 4dβ2
3
(
k + k2) = 0.511.

By Theorem 3, system (22) is noise-to-state exponentially stable in the mean square.
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