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Abstract
This paper studies the problem of exponential passivity for neutral stochastic neural
networks (NSNN) with leakage delay and Markovian jump. The Markovian jump has
partially unknown transition probabilities (PUTPs). By utilizing the Itô differential rule,
choosing a suitable Lyapunov–Krasovskii functional and combining with the
inequality technique, the sufficient delay-dependent exponential passivity criteria are
obtained. These sufficient conditions are provided in the form of linear matrix
inequalities (LMIs), which can be easily solved by LMI toolbox in Matlab. Finally, two
simulated numerical examples are discussed in detail to illustrate the effectiveness of
the established results.
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1 Introduction
During the past few decades, neural networks (NN) with time delays have found wide
applications such as image processing, fixed-point computation, pattern recognition, as-
sociative memory, and so on. A lot of interesting results on the dynamical behaviors in
different delayed neural networks have been published in the literature (see [1–9] and the
references therein).

As a special time delay, the neutral delay has been considered in various NN in the recent
years. It is more difficult to deal with neutral-type neural networks (NTNN) comparing to
the traditional delayed neural networks. Park and Kwon, in [10], studied the NTNN with
interval time-varying delays and obtained the delay-dependent stability criterion by the
Lyapunov stability theory and inequality approach. In [11], the authors considered NTNN
with both discrete and unbounded distributed delays, and some delay-dependent condi-
tions were established. Mahmoud and Ismail [12] derived the robust exponential stability
condition for NTNN via using the Lyapunov–Krasovskii functional and the integral in-
equality. In [13–15], the issue of programming of state estimator and synchronization for
NTNN were considered. Recently, another typical time delay called leakage (or forgetting)
delay extensively exists in the negative feedback terms of the neural networks and it has
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a great impact on the dynamic behaviors of delayed neural networks; more details were
discussed in [16–19]. The synchronization problem for coupled NN with interval time-
varying delays and leakage delay was considered in [19], and some novel delay-dependent
conditions for the synchronization of the networks were established based on a suitable
constructed Lyapunov–Krasovskii functional and Finsler’s lemma.

As an important technique, the passivity theory has played a key role in analyzing the
stability of time delay systems [20, 21], which were extensively applied in many practical ar-
eas such as signal processing [22], complexity [23], chaos and synchronization control [24],
and fuzzy control [25]. Accordingly, the passivity issue of NN with time-varying delays has
attracted the attention of many researchers. Recently, a large number of the passivity re-
sults on neural network systems with time-varying delays have been reported in the litera-
ture, see [26–35] and the references therein. In [30], the authors studied the passivity prob-
lem of the NN with time-varying delays and some improved criteria were obtained. [32]
considered the passivity issue of uncertain NN with discrete and distributed time-varying
delays, and some sufficient conditions were obtained via using a novel Lyapunov functional
together with inequality approach. In [33], the passivity analysis of stochastic NN with
time-varying delays and parametric uncertainties was performed, both delay-independent
and delay-dependent stochastic passivity conditions were presented. In [34], the prob-
lem of passivity analysis was studied for a class of discrete-time stochastic NN with time-
varying delays. In [35], the passivity issue of stochastic NN with interval time-varying de-
lay and norm-bounded parameter uncertainties was considered, some delay-dependent
passivity criteria were obtained by constructing appropriate Lyapunov–Krasovskii func-
tionals and employing an improved inequality.

Additionally, the NN with Markovian jumping parameters have become a subject of
great importance in many practical processes and were discussed by many researchers
[36–47]. For instance, [37] considered the exponential passivity problem (EPP) of NN,
and some sufficient conditions were obtained. Following the problem, the authors of [38]
investigated delay-dependent stability for Markovian jumping NTNN with time-varying
delays. Furthermore, [39] studied the EPP of Markovian jumping stochastic NN with leak-
age and distributed delays, and some delay-dependent sufficient conditions were obtained
by the Lyapunov stability theory and the free-weighting matrix approach. Generally, from
a stabilization standpoint, studying more general jumping systems with PUTPs is signif-
icant and necessary, rather than the transition probabilities are all known. Recently, a lot
of stability and stabilization results on the Markovian jumping systems with PUTPs have
been obtained [48, 49]. For PUTPs, it should be pointed out that the information of the
known elements is included to compute, while the other unknown elements need not be
considered. As much as we know, the analysis of EPP for neutral stochastic neural net-
works (NSNN) with Markovian jump and leakage delays has received very little attention
in the academic field. And the EPP for NSNN with leakage delays and Markovian jump
accompanied by PUTPs has not yet been investigated, and it is very challenging.

Motivated by the above discussion, we will discuss the EPP for Markovian jumping
stochastic neutral-type neural networks (SNTNN) with mixed, leakage delays and par-
tially unknown transition probabilities. A set of Lyapunov–Krasovskii functional methods
combined with the stochastic analysis techniques will be developed to obtain the sufficient
conditions under which the system is the global exponential passivity. By exponential pas-
sivity theory, new delay-dependent exponential passivity criteria for Markovian jumping
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SNTNN with mixed, leakage delays and partially unknown transition probabilities will
be established in terms of LMIs, which can be easily used to calculate the upper bounds
of time delays and the maximum exponential convergence rate by LMI toolbox. Finally,
numerical examples are provided to show the effectiveness of the proposed methods.

Notations: Throughout this paper, the following notations will be used. Rn and R
n×n

denote, respectively, the n-dimensional Euclidean space and the set of all n × n real ma-
trices. The superscript T denotes the transposition and the notation X ≥ Y (respectively,
X > Y ), where X and Y are symmetric matrices, which means that X – Y is positive semi-
definite (respectively, positive definite). E{·} is the mathematical expectation operator with
respect to the given probability measure P . sym(X) = X + XT . col{· · · } denotes a column
vector. In is the n×n identity matrix. Matrices, if not explicitly stated, are assumed to have
compatible dimensions.

2 Model description and preliminaries
Consider the NSNN with mixed and leakage delays expressed by the following state equa-
tions:

d

[
vi(t) –

n∑
j=1

eijvj
(
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)]
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+
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(1)

where i = 1, 2, . . . , n and n denotes the number of neurons, vi(t) denotes the state of the
ith neuron at time t. fj(vj(t)) and fj(vj(t – τ (t))) denote the output of the jth unit at time t.
bij, cij, dij, eij, w1ij, and w2ij are the interconnection matrices representing the weight co-
efficients of the neurons, the scalar ai > 0 denotes the passive decay rate; fj is the neuron
activation function; τ (t), h(t), and r(t) denote respectively the discrete, neutral, and dis-
tributed time-varying delays with 0 ≤ τ (t) ≤ τ , 0 ≤ h(t) ≤ h, 0 ≤ d(t) ≤ d, τ̇ (t) ≤ μ < 1,
and ḣ(t) ≤ η < 1 for t ≥ 0, where τ , h, d, μ, and η are constants; δ ≥ 0 denotes the
constant leakage delay. u(t) = [u1(t), u2(t), . . . , un(t)]T is an external input vector of neu-
rons, z(t) = [z1(t), z2(t), . . . , zn(t)]T is the output vector of neuron networks. The noise per-
turbation σij(t) : Rn × R

n × R
n × R

n × R
n × R

+ → R
n is a Borel measurable function.

ω(t) = (ω1(t),ω2(t), . . . ,ωn(t))T is an n-dimensional Brown motion defined on a complete
probability space (�,F , {Ft}t≥0,P) with a natural filtration {Ft}t≥0 generated by {ω(t)},
where we associate � with the canonical space generated by ω(t) and denote by Ft the
associated σ -algebra generated by {ω(s) : 0 ≤ s ≤ t} with the probability measure P .
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For convenience, we rewrite (1) as follows:

d
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(2)

where

v(t) =
[
v1(t), . . . , vn(t)

]T , A = diag{a1, . . . , an}, B = (bij)n×n,

C = (cij)n×n, D = (dij)n×n, E = (eij)n×n, W1 = (w1ij)n×n,

W2 = (w2ij)n×n, σ =
(
σij(·)

)
n×n, f

(
v(t)

)
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(
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)
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Next, we will give the following assumptions.

Assumption 2.1 For any p ∈ 1, 2, . . . , n, fp(·) is continuous and bounded. Moreover, for
each fp(·), the exist constants l–

k and l+
k such that

l–
p ≤ fp(α1) – fp(α2)

α1 – α2
≤ l+

p , p = 1, 2, . . . , n, (3)

for any α1,α2 ∈ R, α1 �= α2.

Assumption 2.2 All the eigenvalues of matrix E are inside the unit circle.

Note that Assumption 2.2 guarantees the stability of difference system v(t) –
Ev(t – h(t)) = 0. By the above assumptions, using Mawhin’s continuation theorem [50]
guarantees that there exists an equilibrium. For convenience, we always transform an
equilibrium point v∗ = [v∗

1, . . . , v∗
n]T to the origin by translation x(t) = v(t) – v∗, which yields

the following system:

d
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(4)

where x(t) = [x1(t), . . . , xn(t)]T , g(x(t)) = [g1(x1(t)), . . . , gn(xn(t))]T , and gp(xp(t)) =
fp(xp(t) + v∗) – fp(v∗). Noting the fact that f (0) = 0, the trivial solution of system (4) ex-
ists. Therefore, proving the stability of v∗ of system (2) is equal to proving the stability of
the trivial solution of system (4). On the other hand, Assumption 2.1 can be rewritten as
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follows:

l–
p ≤ gp(α1) – gp(α2)

α1 – α2
≤ l+

p , p = 1, 2, . . . , n, (5)

for any α1,α2 ∈ R, α1 �= α2.
Let {r(t), t ≥ 0} be a right-continuous Markov process on the probability space

(�,F , {Ft}t≥0,P) taking values in a finite state space S = (1, 2, . . . , N) with producer
	 = (πij)N×N given by

P
{

r(t + �) = j|r(t) = i
}

=

⎧⎨
⎩πij� + o(�), i �= j,

1 + πii� + o(�), i = j,

where � > 0 and lim�→0
o(�)
�

= 0, πij ≥ 0 is the transition rate from i to j if i �= j, while
πii = –

∑N
j=1,j �=i πij for each mode i.

The transition rates of the continuous-time Markovian jumping systems are regarded
as being partly accessible in this paper. For example, the transition rate matrix 	 with N
operation modes may be expressed as

	 =

⎡
⎢⎢⎢⎢⎣

π11 ? · · · π1N

π21 ? · · · ?
...

...
. . .

...
? πN2 · · · πNN

⎤
⎥⎥⎥⎥⎦ , (6)

where ? stands for the unknown transition rate. For notational perspicuity, ∀i ∈ S, the set
Ui denotes Ui = Ui

k ∪ Ui
uk with

Ui
k � {j : πij is known for j ∈ S},

Ui
uk � {j : πij is unknown for j ∈ S}.

Moreover, if Ui
k �= ∅, it is further described as

Ui
k =

{
ki

1, ki
2, . . . , ki

m
}

, (7)

where m is a non-negation integer with 1 ≤ m ≤ N , and ki
j ∈ Z+ (1 ≤ ki

j ≤ N , j = 1, . . . , m)
represent the jth known element of the set Ui

k in the ith row of the transition rate matrix 	.
Based on the discussions in the above section, in this paper, we consider the following

Markovian jumping NSNN systems with mixed and leakage delays:

d
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z(t) = W1
(
r(t)

)
g
(
x(t)

)
+ W2

(
r(t)

)
g
(
x
(
t – τ (t)

))
+ u(t),

where x(t) = [x1(t), x2(t), . . . , xn(t)]T ∈ R
n is the state vector associated with the neu-

rons. g(x(t)) = [g1(x1(t)), g2(x2(t)), . . . , gn(xn(t))]T are the neuron activation functions, u(t) =
[u1(t), u2(t), . . . , un(t)]T is an external input vector of neurons, z(t) is the output vector of
neuron networks, {r(t), t ≥ 0} is the Markov chain and σ : Rn ×R

n ×R
n ×R

n ×R
n ×R

+ ×
S → R

n.

Remark 2.1 ([48]) It is worthy to note that if Ui
k = ∅, Ui = Ui

uk , which implies that any
information between the ith mode and the other N – 1 modes is not accessible. Then
Markovian jumping systems with N modes can be viewed as the ones with N – 1 modes.
Clearly, when Ui

uk = ∅ and Ui = Ui
k , system (8) becomes the usual assumption case.

For convenience, each possible value of r(t) is denoted by i in system (8). Then, for all
i ∈ S, we have

A
(
r(t)

)
= Ai, B

(
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)
= Bi, C

(
r(t)

)
= Ci, D

(
r(t)

)
= Di, E

(
r(t)

)
= Ei,

W1
(
r(t)

)
= W1i, W2

(
r(t)

)
= W2i.

Hence, system (8) can be rewritten as the following Markovian jumping NSNN:

d
[
x(t) – Eix

(
t – h(t)

)]
=

[
–Aix(t – δ) + Big

(
x(t)

)
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(
x
(
t – τ (t)

))
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t–d(t)
g
(
x(s)

)
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]

+ σ

(
x(t), x(t – δ), x

(
t – τ (t)

)
,
∫ t

t–d(t)
g
(
x(s)

)
ds, x

(
t – h(t)

)
, t, i

)
dω(t),

z(t) = W1ig
(
x(t)

)
+ W2ig

(
x
(
t – τ (t)
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+ u(t).

(9)

To conduct the stochastic analysis, the following assumptions are extensively used.

Assumption 2.3 Assume that σ : Rn × R
n × R

n × R
n × R

n × R
+ × S → R

n is locally
Lipschitz continuous and satisfies the linear growth condition [51]. Besides, σ satisfies

trace
[
σ T (x1, x2, x3, x4, x5, t, i)σ (x1, x2, x3, x4, x5, t, i)

]
≤ xT

1 T1ix1 + xT
2 T2ix2 + xT

3 T3ix3 + xT
4 T4ix4 + xT

5 T5ix5 (10)

for all x1, x2, x3, x4, x5 ∈ R
n, and r(t) = i, i ∈ S, where T1i, T2i, T3i, T4i, and T5i are known

positive constant matrices with appropriate dimensions.

Assumption 2.4 σ (0, 0, 0, 0, 0, t, r(t)) ≡ 0.

Let x(t;φ) denote the state trajectory from the initial data x(θ ) = φ(θ ) on θ ∈ [–ρ, 0]
(ρ = max{h, τ , r} > 0). Clearly, system (8) admits a trivial solution x(t; 0) ≡ 0 correspond-
ing to the initial data φ = 0. For simplicity, we write x(t;φ) = x(t). In addition, φ � {φ(θ ) :
–ρ ≤ θ ≤ 0} ∈ C2

F0
([–ρ, 0];Rn), where C2

F0
([–ρ, 0];Rn) is a family of bounded and contin-

uous.
To end this section, we will introduce a lemma, which is used to prove our main results.
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Lemma 2.1 (Gu et al. [52]) For given symmetric positive definite matrices R > 0 and any
differentiable function x: [a, b] → R

n, the following inequality holds:

∫ b

a
xT (s)Rx(s) ds ≥ 1

b – a

(∫ b

a
x(s) ds

)T

R
(∫ b

a
x(s) ds

)
. (11)

Itô’s formula (or generalized Itô’s formula) is very important to analyze the stochastic
dynamical systems [51, 53]. Before discussing the exponentially passive problem of our
system, we firstly introduce Itô’s formula for a general stochastic system with Markovian
switching in the following.

Consider a stochastic system dx(t) = f (x(t), t, r(t)) dt + g(x(t), t, r(t)) dω(t) on t ≥ 0 with
the initial value x(0) = x0 ∈R

n, where f : Rn ×R
+ ×S →R

n, g : Rn ×R
+ ×S →R

n and r(t)
is the Markov chain defined above. Let C2

1(Rn ×R
+ ×S;R+) be the family of all nonnegative

functions V (x, t, i) on R
n × R

+ × S which are continuously twice differentiable in x and
differentiable in t. If V ∈ C2

1(Rn ×R
+ ×S;R+), an operator LV is defined from R

n ×R
+ ×S

to R by

LV (x, t, i) = Vt(x, t, i) + Vx(x, t, i)f (x, t, i) +
1
2

trace
[
gT (x, t, i)Vxx(x, t, i)g(x, t, i)

]

+
N∑

j=1

πijV (x, t, j),

where

Vt(x, t, i) =
∂V (x, t, i)

∂t
, Vx(x, t, i) =

(
∂V (x, t, i)

∂x1
, . . . ,

∂V (x, t, i)
∂xn

)
,

Vxx(x, t, i) =
(

∂2V (x, t, i)
∂xj∂xk

)
n×n

.

3 Main results
In this section, we derive the delay-dependent exponential passivity criteria for Marko-
vian jumping NSNN with mixed and leakage delays in (8) with partially unknown tran-
sition probabilities. By constructing an appropriate Lyapunov–Krasovskii functional and
employing some stochastic analysis techniques, a new delay-dependent exponential pas-
sivity condition is obtained in the following theorem. For the sake of simplicity, we will
denote the matrices:

L1 = diag
{

l–
1 l+

1 , l–
2 l+

2 , . . . , l–
n l+

n
}

, L2 = diag

{
l–
1 + l+

1
2

,
l–
2 + l+

2
2

, . . . ,
l–
n + l+

n
2

}
,

em = [ 0n×(m–1)n In 0n×(11–m)n ] (m = 1, 2, . . . , 11).

Utilizing a simple conversion, system (9) has an equivalent form as follows:

d
[

x(t) – Eix
(
t – h(t)

)
– Ai

∫ t

t–δ

x(s) ds
]

=
[

–Aix(t) + Big
(
x(t)

)
+ Cig

(
x
(
t – τ (t)

))
+ Di

∫ t

t–d(t)
g
(
x(s)

)
ds + u(t)

]
dt (12)
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+ σ

(
x(t), x(t – δ), x

(
t – τ (t)

)
,
∫ t

t–d(t)
g
(
x(s)

)
ds, x

(
t – h(t)

)
, t, i

)
dω(t),

z(t) = W1ig
(
x(t)

)
+ W2ig

(
x
(
t – τ (t)

))
+ u(t).

Now, we obtain the following delay-dependent exponential passivity condition for system
(8) with partially unknown transition probabilities.

Theorem 3.1 Assume that Assumptions 2.1 and 2.3 hold. Then, for given scalars δ, τ , h,
r, μ, and η, the Markovian jumping NSNN described by (8) with a partly unknown transi-
tion rate matrix (6) is exponentially passive if there exist positive scalars λi, positive definite
symmetric matrices Pi, Q1i, Q2, Q3i, Q4i, Q5, R1, R2, R3, positive diagonal matrices K1, K2,
and any matrices Wi = W T

i , Si = ST
i , Ti = TT

i , Xi = XT
i with appropriate dimensions satis-

fying the following inequalities for all i ∈ S:

�i = sym
{
	T

1 Pi	2
}

+ γ	T
1 Pi	1 + 	T

3

∑
j∈Ui

k

πij(Pj – Wi)	3

+ λi
(
eT

1 T1ie1 + eT
3 T2ie3 + eT

4 T3ie4 + eT
8 T4ie8 + eT

2 T5ie2
)

+ eT
1
(
Q1i + 2δ2Q2 + Q3i + Q4i + 2τ 2R2 + 2h2R3

)
e1

– e–γ δeT
3 Q1ie3 – e–γ δeT

7 Q2e7 – (1 – η)e–γ heT
2 Q3ie2 – (1 – μ)e–γ τ eT

4 Q4ie4

+ eT
5
(
Q5 + d2R1

)
e5 – (1 – μ)e–γ τ eT

6 Q5e6 – e–γ deT
8 R1e8 – e–γ τ eT

9 R2e9

– e–γ heT
10R3e10 – eT

1 L1K1e1 + 2eT
1 L2K1e5 – eT

5 K1e5 – eT
4 L1K2e4 + 2eT

4 L2K2e6

– eT
6 K2e6 – (W1ie5 + W2ie6 + e11)T e11 – eT

11(W1ie5 + W2ie6 + e11)

< 0, (13)

Pi ≤ λiI, (14)∑
j∈Ui

k

πij(Q1j – Si) ≤ δQ2, (15)

∑
j∈Ui

k

πij(Q3j – Ti) ≤ hR3, (16)

∑
j∈Ui

k

πij(Q4j – Xi) ≤ τR2, (17)

Pj – Wi ≤ 0, j ∈ Ui
uk , j �= i, (18)

Q1j – Si ≤ 0, j ∈ Ui
uk , j �= i, (19)

Q3j – Ti ≤ 0, j ∈ Ui
uk , j �= i, (20)

Q4j – Xi ≤ 0, j ∈ Ui
uk , j �= i, (21)

Pj – Wi ≥ 0, j ∈ Ui
uk , j = i, (22)

Q1j – Si ≥ 0, j ∈ Ui
uk , j = i, (23)

Q3j – Ti ≥ 0, j ∈ Ui
uk , j = i, (24)

Q4j – Xi ≥ 0, j ∈ Ui
uk , j = i, (25)
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where

	1 = e1 – Eie2 – Aie7, 	2 = –Aie1 + Bie5 + Cie6 + Die8 + e11,

	3 = e1 – Eje2 – Aje7.

Proof For representation convenience, we denote

yi(t) = x(t) – Eix
(
t – h(t)

)
,

αi(t) = –Aix(t – δ) + Big
(
x(t)

)
+ Cig

(
x
(
t – τ (t)

))
+ Di

∫ t

t–d(t)
g
(
x(s)

)
ds + u(t),

βi(t) = σ

(
x(t), x(t – δ), x

(
t – τ (t)

)
,
∫ t

t–d(t)
g
(
x(s)

)
ds, x

(
t – h(t)

)
, t, i

)
,

then system (9) can be rewritten as

dyi(t) = αi(t) dt + βi(t) dω(t).

Construct a stochastic Lyapunov–Krasovskii functional candidate for system (8) as fol-
lows:

V
(
xt , t, r(t)

)
=

4∑
k=1

Vi
(
xt , t, r(t)

)
, (26)

where

V1
(
xt , t, r(t)

)
= ηT (t)P

(
r(t)

)
η(t),

V2
(
xt , t, r(t)

)
=

∫ t

t–δ

eγ (s–t)xT (s)Q1
(
r(t)

)
x(s) ds + 2δ

∫ t

t–δ

∫ t

θ

eγ (s–t)xT (s)Q2x(s) ds dθ ,

V3
(
xt , t, r(t)

)
=

∫ t

t–h(t)
eγ (s–t)xT (s)Q3

(
r(t)

)
x(s) ds +

∫ t

t–τ (t)
eγ (s–t)xT (s)Q4

(
r(t)

)
x(s) ds

+
∫ t

t–τ (t)
eγ (s–t)gT(

x(s)
)
Q5g

(
x(s)

)
ds,

V4
(
xt , t, r(t)

)
= d

∫ t

t–d

∫ t

θ

eγ (s–t)gT(
x(s)

)
R1g

(
x(s)

)
ds dθ

+ 2τ

∫ t

t–τ

∫ t

θ

eγ (s–t)xT (s)R2x(s) ds dθ

+ 2h
∫ t

t–h

∫ t

θ

eγ (s–t)xT (s)R3x(s) ds dθ ,

with η(t) = x(t) – E(r(t))x(t – h(t)) – A(r(t))
∫ t

t–δ
x(s) ds.

Then it follows from Itô’s formula that

dV (xt , t, i) = LV (xt , t, i) dt + Vxβi(t) dω(t), (27)
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where

LV1(xt , t, i) = sym
{
	T

1 Pi	2
}

+ trace
(
βT

i (t)Piβi(t)
)

+ 	T
3

N∑
j=1

πijPj	3. (28)

On the other hand, by Assumption 2.3 and condition (14), it follows that

trace
[
βT

i (t)βi(t)
]

≤ λi

[
xT (t)T1ix(t) + xT (t – δ)T2ix(t – δ) + xT(

t – τ (t)
)
T3ix

(
t – τ (t)

)

+
(∫ t

t–r(t)
g
(
x(s)

))T

T4i

(∫ t

t–r(t)
g
(
x(s)

))
+ xT(

t – h(t)
)
T5ix

(
t – h(t)

)]
, (29)

LV2(xt , t, i) ≤ –γ V2(xt , t, i) + xT (t)
(
Q1i + 2δ2Q2

)
x(t) – e–γ δxT (t – δ)Q1ix(t – δ)

+
∫ t

t–δ

eγ (s–t)xT (s)
N∑

j=1

πijQ1jx(s) ds – 2δ

∫ t

t–δ

eγ (s–t)xT (s)Q2x(s) ds, (30)

LV3(xt , t, i)

≤ –γ V3(xt , t, i) + xT (t)(Q3i + Q4i)x(t)

– (1 – η)e–γ hxT(
t – h(t)

)
Q3ix

(
t – h(t)

)
– (1 – μ)e–γ τ xT(

t – τ (t)
)
Q4ix

(
t – τ (t)

)
+ gT(

x(t)
)
Q5g

(
x(t)

)
– (1 – μ)e–γ τ gT(

x
(
t – τ (t)

))
Q5g

(
x
(
t – τ (t)

))

+
∫ t

t–h(t)
eγ (s–t)xT (s)

N∑
j=1

πijQ3jx(s) ds +
∫ t

t–τ (t)
eγ (s–t)xT (s)

N∑
j=1

πijQ4jx(s) ds. (31)

Taking into account the situation that the information of transition probabilities is not
accessible completely, due to

∑N
j=1 πij = 0, the following zero equations hold for arbitrary

matrices Wi = W T
i , Si = ST

i , Ti = TT
i , Xi = XT

i :

–	T
3

( N∑
j=1

πijWi

)
	3 = 0, ∀i ∈ S, (32)

–
∫ t

t–δ

eγ (s–t)xT (s)

( N∑
j=1

πijSi

)
x(s) ds = 0, ∀i ∈ S, (33)

–
∫ t

t–h(t)
eγ (s–t)xT (s)

( N∑
j=1

πijTi

)
x(s) ds = 0, ∀i ∈ S, (34)

–
∫ t

t–τ (t)
eγ (s–t)xT (s)

( N∑
j=1

πijXi

)
x(s) ds = 0, ∀i ∈ S. (35)

And applying Lemma 2.1, it is easy to obtain the following inequalities:

LV1(xt , t, i) ≤ sym
{
	T

1 Pi	2
}

+ λi
(
eT

1 T1ie1 + eT
3 T2ie3 + eT

4 T3ie4 + eT
8 T4ie8 + eT

2 T5ie2
)

+ 	T
3

∑
j∈Ui

k

πij(Pj – Wi)	3 + 	T
3

∑
j∈Ui

uk

πij(Pj – Wi)	3, (36)
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LV2(xt , t, i) ≤ –γ V2(xt , t, i) + xT (t)
(
Q1i + 2δ2Q2

)
x(t) – e–γ δxT (t – δ)Q1ix(t – δ)

+
∫ t

t–δ

eγ (s–t)xT (s)
∑
j∈Ui

k

πij(Q1j – Si)x(s) ds – δ

∫ t

t–δ

eγ (s–t)xT (s)Q2x(s) ds

+
∫ t

t–δ

eγ (s–t)xT (s)
∑

j∈Ui
uk

πij(Q1j – Si)x(s) ds

– e–γ δ

(∫ t

t–δ

x(s) ds
)T

Q2

(∫ t

t–δ

x(s) ds
)

, (37)

LV3(xt , t, i) ≤ –γ V3(xt , t, i) + xT (t)(Q3i + Q4i)x(t)

– (1 – η)e–γ hxT(
t – h(t)

)
Q3ix

(
t – h(t)

)
– (1 – μ)e–γ τ xT(

t – τ (t)
)
Q4ix

(
t – τ (t)

)
+ gT(

x(t)
)
Q5g

(
x(t)

)
– (1 – μ)e–γ τ gT(

x
(
t – τ (t)

))
Q5g

(
x
(
t – τ (t)

))
+

∫ t

t–h(t)
eγ (s–t)xT (s)

∑
j∈Ui

k

πij(Q3j – Ti)x(s) ds

+
∫ t

t–h(t)
eγ (s–t)xT (s)

∑
j∈Ui

uk

πij(Q3j – Ti)x(s) ds

+
∫ t

t–τ (t)
eγ (s–t)xT (s)

∑
j∈Ui

k

πij(Q4j – Xi)x(s) ds

+
∫ t

t–τ (t)
eγ (s–t)xT (s)

∑
j∈Ui

uk

πij(Q4j – Xi)x(s) ds. (38)

By using Lemma 2.1 and the following easy computation, it can be seen that

LV4(xt , t, i) ≤ –γ V4(xt , t, i) + d2gT(
x(t)

)
R1g

(
x(t)

)
+ xT (t)

(
2τ 2R2 + 2h2R3

)
x(t)

– τ

∫ t

t–τ (t)
eγ (s–t)xT (s)R2x(s) ds – h

∫ t

t–h(t)
eγ (s–t)xT (s)R3x(s) ds

– e–γ d
(∫ t

t–d(t)
g
(
x(s)

)
ds

)T

R1

(∫ t

t–d(t)
g
(
x(s)

)
ds

)

– e–γ τ

(∫ t

t–τ (t)
x(s) ds

)T

R2

(∫ t

t–τ (t)
x(s) ds

)

– e–γ h
(∫ t

t–h(t)
x(s) ds

)T

R3

(∫ t

t–h(t)
x(s) ds

)
. (39)

For positive diagonal matrices K1 = diag{k11, k12, . . . , k1n} and K2 = diag{k21, k22, . . . , k2n}, it
follows from condition (5) that

0 ≤
[

x(t)
g(x(t))

]T [
–L1K1 L2K1

L2K1 –K1

][
x(t)

g(x(t))

]
, (40)
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0 ≤
[

x(t – τ (t))
g(x(t – τ (t)))

]T [
–L1K2 L2K2

L2K2 –K2

][
x(t – τ (t))

g(x(t – τ (t)))

]
. (41)

From Eqs. (14)–(17), (36)–(41), and computing the mathematical expectation, one can get
that

E
{
LV (xt , t, i) + γ V (xt , t, i) – 2zT (t)u(t)

}
≤ E

{
ξT (t)�iξ (t) + 	T

3

∑
j∈Ui

uk

πij(Pj – Wi)	3

+
∫ t

t–δ

eγ (s–t)xT (s)
∑

j∈Ui
uk

πij(Q1j – Si)x(s) ds

+
∫ t

t–h(t)
eγ (s–t)xT (s)

∑
j∈Ui

uk

πij(Q3j – Ti)x(s) ds

+
∫ t

t–τ (t)
eγ (s–t)xT (s)

∑
j∈Ui

uk

πij(Q4j – Xi)x(s) ds
}

, (42)

where

ξ (t) = col

{
x(t), x

(
t – h(t)

)
, x(t – δ), x

(
t – τ (t)

)
, g

(
x(t)

)
, g

(
x
(
t – τ (t)

))
,

∫ t

t–δ

x(s) ds,
∫ t

t–d(t)
g
(
x(s)

)
ds,

∫ t

t–τ (t)
x(s) ds,

∫ t

t–h(t)
x(s) ds, u(t)

}
.

Note that πii = –
∑N

j=1,j �=i πij and πij ≥ 0 for all j �= i, namely πii < 0 for all i ∈ S. Therefore,
it follows from Definition 1 in [37] and easy calculation that if i ∈ Ui

k , inequalities (13)–(21)
imply that

E
{
LV (xt , t, i) + γ V (xt , t, i) – 2zT (t)u(t)

}
< 0. (43)

On the other hand, similarly, if i ∈ Ui
uk , inequalities (13)–(25) also mean that inequal-

ity (43) holds. Therefore, regardless of whether the transition probability is accessible,
conditions (13)–(25) imply that system (8) is exponentially passive. It completes the
proof. �

Remark 3.1 Recently, many of the researchers have developed the passivity results in
the literature (see [27–32]). In [29], the authors studied the passivity analysis for neu-
ral networks using the Lyapunov–Krasovskii functional method. In [31], the authors in-
vestigated the passivity analysis of neural networks with time-varying discrete and dis-
tributed delays by using a delay-decomposition approach. Moreover, the authors of [32]
dealt with new passivity criteria for neural networks with time-varying delay. How-
ever, the stochastic noise was not taken into account in these models. In [33–35], au-
thors investigated the problem for passivity analysis of stochastic neural networks using
the free-weighting matrix method. So far, those methods cannot be applied to neu-
ral networks with leakage delay due to the existence of the term δ in those systems.
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In addition, the Markovian jumping was not taken into account in these models. In
[39], authors studied the EPP of Markovian jumping stochastic NN with leakage and
distributed delays, and some delay-dependent sufficient conditions were obtained by
the Lyapunov stability theory and the free-weighting matrix approach. However, the
neutral time delay and Markovian jump with partially unknown transition probabili-
ties were not taken into account in this model. Therefore, Theorem 3.1 considers not
only the NN with neutral time delay but also Markovian jump with partially unknown
transition probabilities. To some extent, it is an extension for the results of [39]. It is
worth pointing out that the passivity criteria in [39] cannot directly be proved, but our
method can directly prove the obtained condition. Therefore, the exponential passivity
criteria we obtained are more general than some existing results. Moreover, the Lya-
punov functionals 2δ

∫ t
t–δ

∫ t
θ

eγ (s–t)xT (s)Q2x(s) ds dθ , 2τ
∫ t

t–τ

∫ t
θ

eγ (s–t)xT (s)R2x(s) ds dθ , and
2h

∫ t
t–h

∫ t
θ

eγ (s–t)xT (s)R3x(s) ds dθ also play an important role in Theorem 3.1. What is more,
the presented approaches can also be applied to other exponential passivity problems of
stochastic fuzzy neutral-type BAM neural networks, stochastic fuzzy neutral-type Hop-
field neural networks, and so on.

Remark 3.2 Similar to [48] and [49], so as to get the less conservative exponential passiv-
ity criterion of Markovian jumping systems with partial information on transition prob-
abilities, the free-connection weighting matrices are presented by making full use of the
relationship of the transition rates among many subsystems, i.e.,

∑N
j=1 πij = 0 for all i ∈ S,

which overcomes the conservativeness of employing the fixed connection weighting ma-
trices.

Remark 3.3 It should be pointed out that the more known elements in (6) we have, the
lower the conservativeness of the condition would be. Namely, if there are more unknown
elements in (6), the maximum of time delays and the maximum of exponential conver-
gence rate will be lower in Theorem 3.1. It will be shown in the section of example. In
fact, if all transition probabilities are known, the corresponding system can be considered
as a general Markovian jumping stochastic neutral-type neural networks system. Thus,
the obtained conditions in Theorem 3.1 will accordingly cover the results for Markovian
jumping stochastic neutral-type neural network systems with mixed and leakage delays.
Therefore, our results are more general than some existing results. On the other hand, one
can employ the common Lyapunov functional method to analyze the exponential passivity
for the Markovian jumping systems under the assumption that all transition probabilities
are unknown, it is omitted here.

For the exponential passivity analysis of the Markovian jumping NSNN systems (8) with
all transition probabilities known, we can obtain the following corollary by following a
similar approach as in the proof of Theorem 3.1.

Corollary 3.1 Suppose that Assumptions 2.1 and 2.3 hold. For given scalars δ, τ , h, r,
μ, and η, the Markovian jumping NSNN described by (9) is exponentially passive if there
exist positive scalars λi, positive definite symmetric matrices Pi, Q1i, Q2, Q3i, Q4i, Q5, R1,
R2, R3, and positive diagonal matrices K1, K2 such that the following inequalities hold for
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all i ∈ S:

�i = sym
{
	T

1 Pi	2
}

+ γ	T
1 Pi	1 + 	T

3

N∑
j=1

πijPj	3

+ λi
(
eT

1 T1ie1 + eT
3 T2ie3 + eT

4 T3ie4 + eT
8 T4ie8 + eT

2 T5ie2
)

+ eT
1
(
Q1i + 2δ2Q2 + Q3i + Q4i + 2τ 2R2

)
e1

+ 2h2eT
1 R3e1 – e–γ δeT

3 Q1ie3 – e–γ δeT
7 Q2e7 – (1 – η)e–γ heT

2 Q3ie2

– (1 – μ)e–γ τ eT
4 Q4ie4 + eT

5
(
Q5 + d2R1

)
e5 – (1 – μ)e–γ τ eT

6 Q5e6

– e–γ deT
8 R1e8 – e–γ τ eT

9 R2e9 – e–γ heT
10R3e10 – eT

1 L1K1e1

+ 2eT
1 L2K1e5 – eT

5 K1e5 – eT
4 L1K2e4 + 2eT

4 L2K2e6 – eT
6 K2e6

– (W1ie5 + W2ie6 + e11)T e11 – eT
11(W1ie5 + W2ie6 + e11)

< 0,

Pi ≤ λiI,

N∑
j=1

πijQ1j – δQ2 ≤ 0,
N∑

j=1

πijQ3j – hR3 ≤ 0,
N∑

j=1

πijQ4j – τR2 ≤ 0,

where

	1 = e1 – Eie2 – Aie7, 	2 = –Aie1 + Bie5 + Cie6 + Die8 + e11,

	3 = e1 – Eje2 – Aje7.

Remark 3.4 As a special case, when Markov jumping parameters are not considered, the
Markov chain {r(t), t ≥ 0} only takes a unique value 1 (i.e., S = {1}), system (8) will be re-
duced to the following NSNN with mixed and leakage delays:

d
[
x(t) – Ex

(
t – h(t)

)]
=

[
–Ax(t – δ) + Bg

(
x(t)

)
+ Cg

(
x
(
t – τ (t)

))
+ D

∫ t

t–d(t)
g
(
x(s)

)
ds + u(t)

]
dt

+ σ

(
x(t), x(t – δ), x

(
t – τ (t)

)
,
∫ t

t–d(t)
g
(
x(s)

)
ds, x

(
t – h(t)

)
, t

)
dω(t),

z(t) = W1g
(
x(t)

)
+ W2g

(
x
(
t – τ (t)

))
+ u(t).

(44)

Now, the delay-dependent exponential passivity analysis for system (8) without Marko-
vian jump parameters is described by the following corollary.

Corollary 3.2 Suppose that Assumptions 2.1 and 2.3 hold. For given scalars δ, τ , h, r, μ,
and η, the NSNN described by (44) is exponentially passive if there exist positive scalar λ,
positive definite symmetric matrices P, Qi (i = 1, . . . , 5), Ri (i = 1, 2, 3), and positive diagonal
matrices K1, K2 such that the following inequalities (LMIs) hold for all i ∈ S:

P ≤ λI, (45)
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� = sym
{
	T

1 P	2
}

+ γ	T
1 P	1 + λ

(
eT

1 T1e1 + eT
3 T2e3 + eT

4 T3e4 + eT
8 T4e8 + eT

2 T5e2
)

+ eT
1
(
Q1 + 2δ2Q2

)
e1 + eT

1 (Q3 + Q4)e1 – e–γ δeT
3 Q1e3 – 2e–γ δeT

7 Q2e7

– (1 – η)e–γ heT
2 Q3e2 – (1 – μ)e–γ τ eT

4 Q4e4 + eT
5 Q5e5 – (1 – μ)e–γ τ eT

6 Q5e6

+ d2eT
5 R1e5 – e–γ deT

8 R1e8 + eT
1
(
2τ 2R2 + 2h2R3

)
e1 – 2e–γ τ eT

9 R2e9

– 2e–γ heT
10R3e10 – eT

1 L1K1e1 + 2eT
1 L2K1e5 – eT

5 K1e5 – eT
4 L1K2e4 – eT

6 K2e6

+ 2eT
4 L2K2e6 – (W1e5 + W2e6 + e11)T e11 – eT

11(W1e5 + W2e6 + e11)

< 0, (46)

where

	1 = e1 – Ee2 – Ae7, 	2 = –Ae1 + Be5 + Ce6 + De8 + e11,

em = [ 0n×(m–1)n In 0n×(11–m)n ] (m = 1, 2, . . . , 11).

Proof The proof of the corollary is totally similar to Theorem 3.1 and it is omitted here. �

Remark 3.5 In this paper, the relationships among the delayed maximum upper bounds of
leakage delay δ, discrete delay τ , neutral delay h, distributed delay d, exponential conver-
gence rate γ , and the upper bound of the derivatives μ, η are implicitly got in Theorem 3.1.
Such relationships, however, have not been fully considered in the existing results related
to exponential passivity analysis.

4 Numerical examples
Two numerical examples are provided in this section to show the feasibility of the pre-
sented results in this paper.

Example 4.1 The parameters of the discussed systems (8) with four operation modes are
listed as follows:

A1 =

[
1.2 0
0 1.5

]
, A2 =

[
1.4 0
0 0.9

]
,

A3 =

[
2 0
0 1.1

]
, A4 =

[
1.8 0
0 1.6

]
,

B1 =

[
–0.21 –0.19
–0.24 0.1

]
, B2 =

[
0.9 –0.9
0.5 –0.8

]
, B3 =

[
–0.3 –0.2

–0.25 0.2

]
,

B4 =

[
–0.15 –0.1
–0.2 0.1

]
, C1 =

[
–0.09 –0.2

0.2 0.1

]
, C2 =

[
0.1 0.1
0.2 0.3

]
,

C3 =

[
–0.1 –0.3
0.3 0.2

]
, C4 =

[
–0.15 –0.35
0.35 0.25

]
, D1 =

[
–0.5 0

0 –0.5

]
,

D2 =

[
0.1 –0.02

–0.2 0.07

]
, D3 =

[
0.2 –0.03

–0.3 0.08

]
, D4 =

[
0.25 –0.03

–0.35 0.08

]
,

E1 =

[
–0.2 0
0.2 –0.09

]
, E2 =

[
0.1 0
0.5 –0.1

]
, E3 =

[
0.2 0
0.6 –0.2

]
,
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E4 =

[
0.15 0
0.55 –0.15

]
, W11 =

[
1 0
0 1

]
, W12 =

[
1 0
0 1

]
,

W13 =

[
1 0
0 1

]
, W14 =

[
1 0
0 1

]
, W21 =

[
1 0
0 1

]
,

W22 =

[
1 0
0 1

]
, W23 =

[
1 0
0 1

]
, W24 =

[
1 0
0 1

]
,

T11 = 0.16I, T12 = T21 = 0.17I, T22 = T31 = 0.08I, T32 = 0.09I,

T41 = T42 = 0.01I, T51 = 0.02I, T52 = 0.03I, T13 = 0.18I, T23 = 0.09I,

T33 = 0.1I, T43 = 0.02I, T53 = 0.04I, T14 = 0.2I, T24 = 0.1I,

T34 = 0.16I, T44 = 0.04I, T54 = 0.06I.

The partly unknown transition rate matrix 	 is considered as the following two cases:

Case I: 	 =

⎡
⎢⎢⎢⎣

–1.3 0.2 ? ?
? ? 0.3 0.3

0.6 ? –1.5 ?
0.4 ? ? ?

⎤
⎥⎥⎥⎦ ,

Case II: 	 =

⎡
⎢⎢⎢⎣

–1.3 0.2 0.5 0.6
0.5 –1.1 0.3 0.3
0.6 0.4 –1.5 0.5
0.4 0.2 0.5 –1.1

⎤
⎥⎥⎥⎦ .

In this example, we take the nonlinear activation function:

gi(xi) =

⎧⎨
⎩0.01 tanh(xi), xi ≤ 0,

0.02xi, xi > 0.

We take l–
1 = l–

2 = –0.01, l+
1 = l+

2 = 0.02. Let L1 = diag{–0.0002, –0.0002}, L2 =
diag{0.005, 0.005}. By solving Eqs. (13)–(25) in Theorem 3.1 and using the LMI Toolbox
of Matlab , when δ = 0.1, η = 0.01, and γ = 0.3, the maximum of the time delay τ = h = d
for different cases and different μ can be computed, respectively, as shown in Table 1. It
is easily seen from Table 1 that the more knowledge of transition probabilities we have,
the larger the maximum of delay can be obtained for ensuring stochastically exponential
passivity. This shows the tradeoff between the cost of obtaining transition probabilities
and the system performance. Furthermore, the maximum exponential convergence rate
γ obtained in Theorem 3.1 for different cases and different values of μ and η when δ = 0.1,
τ = 1, h = 0.1, and d = 0.2 are listed in Table 2. Therefore, it follows from Theorem 3.1 that
the neural networks (8) are stochastically exponentially passive in the sense of Defini-
tion 1 in [37]. From this example, it is proved that the approach presented in this paper is
feasible.
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Table 1 Maximum allowable upper bounds τ = h = d for different values of μ

μ

0 0.3 0.5 0.6

Case I 3.1379 2.6924 2.2117 1.8586
Case II 80.70 79.5125 78.3868 77.6650

Table 2 Maximum exponential convergence rate

μ,η

0 0.3 0.5 0.6

Case I 1.0267 0.8562 0.4559 0.1365
Case II 23.20 22.8560 22.5335 22.3194

Table 3 Maximum exponential convergence rate

μ,η

0 0.3 0.5 0.7

Corollary 3.2 1.1764 0.9097 0.6176 0.0781

Table 4 Maximum allowable upper bounds τ = h = d for different values of μ

μ

0 0.3 0.5 0.7

Corollary 3.2 1.2758 1.0466 0.7873 0.3066

Example 4.2 Consider the two-dimensional stochastic neural networks of neutral type
with mixed and leakage delays (44) with the following parameters:

A =

[
2 0
0 3

]
, B =

[
0.3 –0.2

–0.2 0.3

]
, C =

[
–0.1 –0.2
–0.2 0.1

]
,

D =

[
–0.2 0.1
–0.1 –0.2

]
, E =

[
–0.1 0.2
–0.2 –0.1

]
,

T1 = 0.16I, T2 = 0.17I, T3 = 0.08I, T4 = 0.01I, T5 = 0.02I.

In this example, the activation function is g(x) = 1
2 (|x + 1| – |x – 1|). Clearly, it sat-

isfies Assumption 2.1 with l–
1 = l–

2 = 0.5, l+
1 = l+

2 = 0.55, L1 = diag{0.275, 0.275}, L2 =
diag{0.525, 0.525}. By computing LMIs (45) and (46) in Corollary 3.2, the maximum rates
γ obtained in Corollary 3.2 for different values of μ and η when δ = 0.1, τ = 1, h = 0.2,
and d = 0.3 are listed in Table 3. On the other hand, for different values of μ and η, by
Corollary 3.2, we can get the upper bounds τ , h, and d to guarantee that the neural net-
works (44) are exponentially passive in the sense of Definition 1 in [37]. By employing the
Matlab LMI toolbox, the upper bounds τ , h, and d are calculated and tabulated in Table 4
corresponding to different values of μ with η = 0.5, γ = 0.5, and δ = 0.1. The numerical
results in Table 4 illustrate the effectiveness of the delay-dependent exponential passivity
condition proposed in Corollary 3.2.
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5 Conclusion
In this paper, we have studied the issue of exponential passivity for Markovian jumping
NSNN with mixed, leakage delays and partially unknown transition probabilities. By uti-
lizing an appropriate Lyapunov–Krasovskii functional, the sufficient conditions of expo-
nential passivity are given in terms of linear matrix inequalities (LMIs), which can be easily
computed by the LMI toolbox of Matlab. Finally, two examples are given to show the ad-
vantage of the presented results in this paper.
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