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Abstract
This paper proposes and analyzes an efficient compact finite difference scheme for
reaction–diffusion equation in high spatial dimensions. The scheme is based on a
compact finite difference method (cFDM) for the spatial discretization. We prove that
the proposed method is asymptotically stable for the linear case. By introducing the
differentiation matrices, the semi-discrete reaction–diffusion equation can be
rewritten as a system of nonlinear ordinary differential equations (ODEs) in matrices
formulations. For the time discretization, we apply the compact implicit integration
factor (cIIF) method which demands much less computational effort. This method
combines the advantages of cFDM and cIIF methods to improve the accuracy
without increasing the computational cost and reducing the stability range.
Numerical examples are shown to demonstrate the accuracy, efficiency, and
robustness of the method.

Keywords: Compact implicit integration factor methods; Compact finite difference
method; Stiff reaction–diffusion equations; High spatial dimensions

1 Introduction
This paper is concerned with high-dimensional reaction–diffusion systems of the follow-
ing form:

ut = D�u + F (u), (1)

where u ∈ Rm represents concentration of m types of molecules or chemical species, D is
the matrix of diffusion coefficients, and F (u) represents reactions and interactions among
different species. The boundary condition is considered to be periodic boundary condi-
tion. It can also apply to other boundary conditions.

Well-known examples of reaction–diffusion systems include the Schnakenberg model
[14], the chloride-iodide-malonic acid (CIMA) reactive model [8], the Gray–Scott model
[4], the Gierer–Meinhardt model [3]. Efficient and accurate simulation of such systems
(1), however, is difficult. This is because they couple a stiff diffusion term with a (typically)
strongly nonlinear reaction term. When discretized, this leads to large systems of strongly
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nonlinear, stiff ODEs. A class of efficient implicit integration factor (IIF) methods [12] was
developed for implicit treatment of the stiff reactions. In the IIF approach, the diffusion
term is solved exactly while the nonlinear equations resulting from the implicit treatment
of reactions are decoupled from the diffusion term to avoid solving large nonlinear sys-
tems. As a result, the size of the nonlinear system arising from the implicit treatment is
independent of the number of spatial grid points, and the small nonlinear algebraic system
can be solved element by element by Picard iteration or Newton iteration.

For a system in high (two or three) spatial dimensions, the dominant computational cost
of IIF method arises from the storage and calculation of exponentials of resulting matrices.
To deal with this difficulty, two types of approaches were introduced in the context of IIF
method. The first one is the Krylov subspace method which approximates the multiplica-
tion between the exponential of matrix and vector [15, 19, 20]. The Krylov implicit inte-
gration factor method is robust in its implementation with various spatial discretization
methods such as FDM, FVM, and DG methods. It also adapts to different mesh generation
including triangular and quadrilateral mesh. However, at each time step the Krylov sub-
space method needs to be carried out at each time step, leading to a significant increase
in CPU time.

The other type of approach to avoid storage of the exponentials of matrices is a compact
implicit integration factor (cIIF) method [11]. By introducing the compact representation
for the matrix approximating the differential operator, the compact IIF methods apply ma-
trix exponential operations sequentially in every spatial direction. As a result, exponential
matrices which are calculated and stored have small sizes, as those in the 1D problem. For
two or three dimensions, the cIIF method is significantly more efficient in both storage and
CPU cost. Recently, based on the idea of cIIF method, an array-representation compact
implicit integration (AcIIF) method [16] was proposed for efficient handling of a general
linear differential operator that includes cross-derivatives and non-constant diffusion co-
efficients. Despite the various advantages and tremendous success, the cIIF method has
its own shortcomings. A serious drawback of this class of methods is that it is limited to
second-order accuracy in space.

In the context of high-order finite differences, compact finite difference methods fea-
ture high-order accuracy and smaller stencils [1, 6, 10, 13, 17]. Recently, there has been a
renewed interest in the development and application of compact finite difference meth-
ods for the numerical solution of the nonlinear Schrodinger equation [2, 18], advection-
diffusion equation [7], and generalized RLW equation [9]. It is evident that they are not
only accurate and cost effective but also provide easier treatment of boundary conditions.
The implicit and AFI methods were usually applied for the stiff ODE system resulting from
the cFDM spatial discretization method. However, large global nonlinear systems need to
be solved at each time step. Therefore,the number of operations for the nonlinear scheme
may be large. Besides that, these time integration methods are limited to second-order
accuracy.

In this paper, we combine the cFDM in space discretization and the cIIF method in time
discretization to solve reaction–diffusion systems (1). Because there are two “compact”
schemes in this method, we will call it double compact (DC) method in this paper for
simplification. To build the cFDM, we adopt a compact scheme which equals a combina-
tion of nodal derivatives to a combination of nodal values of the function. By introduc-
ing a compact representation of the discretized differential operator, the nodal derivatives
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are implicitly evaluated by the nodal values of the function. The DC method not only
yields fourth-order accuracy in space but also keeps the same stencil as the finite differ-
ence scheme. Moreover, the time accuracy, storage, and CPU cost are the same as with the
cIIF method.

This paper is organized as follows. In Sect. 2, we explicitly present this double compact
method for both two and three dimensions. In Sect. 3, we present some numerical exam-
ples to test the accuracy and efficiency of the new method. Conclusions and discussions
are given in Sect. 4.

2 Double compact method
2.1 Two dimensions
In this section, we first illustrate the double compact method by applying it to a two-
dimensional reaction–diffusion equation

∂u
∂t

= D
(

∂2u
∂x2 +

∂2u
∂y2

)
+ F(u), (x, y) ∈ � = [a, b] × [c, d]. (2)

The computation domain � is discretized into grids described by the set (xi, yj) = (a +
ihx, c + jhy), where hx = (b – a)/Nx, hy = (d – c)/Ny and 0 ≤ i ≤ Nx, 0 ≤ j ≤ Ny. We will use
the following notations for difference operators.

Define the following linear mapping:

δ2
x uij =

ui–1,j – 2uij + ui+1,j

h2
x

, δ2
y uij =

ui,j–1 – 2uij + ui,j+1

h2
y

,

Lxuij =
(

1 +
h2

x
12

δ2
x

)
uij =

ui–1,j + 10uij + ui+1,j

12
, (3)

Lyuij =
(

1 +
h2

y

12
δ2

y

)
uij =

ui,j–1 + 10uij + ui,j+1

12
.

Setting v = ∂2u
∂x2 and w = ∂2u

∂y2 , we get the discretization for (2) on the mesh as follows:

d
dt

uij = D(vij + wij) + F(uij), 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny. (4)

We rewrite the nodal values uij as a matrix form instead of a vector form and define

U = (ui, j)Nx×Ny =

⎛
⎜⎜⎜⎜⎝

u1,1 u1,2 · · · u1,Ny

u2,1 u2,2 · · · u2,Ny
...

...
...

...
uNx ,1 uNx ,2 · · · uNx ,Ny

⎞
⎟⎟⎟⎟⎠ . (5)

Similarly, V, W are defined as an Nx × Ny matrix for the nodal derivatives vij and wij. The
semi-discretized form (4) can be written in terms of matrices

d
dt

U = D(V + W) + F(U). (6)

Every element in matrix F(U) is defined as F(uij), i.e., that F(U) = (F(uij))Nx×Ny .
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Next we will build the linear mapping between the derivative matrices V, W and the
solution matrix U. By using a Taylor expansion, we get

δ2
x uij = vij +

h2
x

12
δ2

x vij + O
(
h4) = Lxvij + O

(
h4),

δ2
y uij = wij +

h2
y

12
δ2

y wij + O
(
h4) = Lywij + O

(
h4),

where h = max{hx, hy}. Omitting the small terms O(h4), we obtain the approximation of vij

and wij:

vij = L–1
x δ2

x uij, wij = L–1
y δ2

y uij. (7)

We define the matrices Am = D
h2

m
ANm×Nm and Bm = BNm×Nm , m = x, y, where

AN×N =

⎛
⎜⎜⎜⎜⎜⎜⎝

–2 1 0 · · · 1
1 –2 1 · · · 0
0 1 –2 1 · · ·
· · · · · · · · · · · · · · ·
1 0 · · · 1 –2

⎞
⎟⎟⎟⎟⎟⎟⎠

N×N

,

BN×N =

⎛
⎜⎜⎜⎜⎜⎜⎝

5
6

1
12 0 · · · 1

12
1

12
5
6

1
12 · · · 0

0 1
12

5
6

1
12 · · ·

· · · · · · · · · · · · · · ·
1

12 0 · · · 1
12

5
6

⎞
⎟⎟⎟⎟⎟⎟⎠

N×N

.

(8)

Then the linear mapping equation (7) can be rewritten as a matrix form

V =
(
B–1

x Ax
)
U, W = U

(
AyB–1

y
)
. (9)

Substitution of (9) into (6) yields

d
dt

U =
(
B–1

x Ax
)
U + U

(
AyB–1

y
)

+ F(U). (10)

Assume that the final time is t = T , and let the time step �t = T/N , tn = n�t, 0 ≤ n ≤ N .
To construct the cIIF method for (10), we multiply it by the integration factor e–B–1

x Axt

from the left and e–AyB–1
y t from the right and integrate over one time step from tn to tn+1

to obtain

Un+1 = eB–1
x Ax�tUneAyB–1

y �t

+ eB–1
x Ax�t

(∫ �t

0
e–B–1

x Axτ F
(
U(tn + τ )

)
eAyB–1

y τ dτ

)
eAyB–1

y �t . (11)

Then we approximate the integrand in (11) by using an r – 1th-order Lagrange interpola-
tion polynomial with interpolation points at tn+1, tn, . . . , tn–r+2, and obtain a double com-
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pact scheme at the order of O(h4 + �tr):

Un+1 = eB–1
x Ax�tUneAyB–1

y �t

+ �t

(
α1F (Un+1) +

r–2∑
j=0

α–je(j+1)B–1
x Ax�tF (Un–j)e(j+1)AyB–1

y �t

)
. (12)

See [12] for the values of coefficients αj, j = 1, 0, . . . , 2 – r, for the schemes with different
orders. For example, the second-order double compact (DC2) scheme with O(h4 + �t2) is
of the following form:

Un+1 = eB–1
x Ax�t

(
Un +

�t
2
F (Un)

)
eAyB–1

y �t +
�t
2
F (Un+1). (13)

To solve the nonlinear equation (13), we use the following Picard iterative method:

Un+1,l+1 = eB–1
x Ax�t

(
Un +

�t
2
F (Un)

)
eAyB–1

y �t +
�t
2
F (Un+1,l), l = 0, 1, . . . . (14)

The initial value of iteration is chosen as Un+1,0 = Un. The iteration terminated when
‖Un+1,l+1 – Un+1,l+1‖∞ < ε. We take the iteration threshold in the numerical experiments
as ε = 10–13.

Remark The novel property of the DC method is that the exact evaluation of the diffusion
terms is decoupled from the implicit treatment of the nonlinear terms. As a result, only a
local nonlinear system needs to be solved at each spatial grid point. The numerical tests
show that the method is advantageous in both CPU time and memory savings.

We also consider the fourth-order case such that the order of accuracy in the spatial
direction is consistent with the temporal accuracy. The values of αj, j = 1, 0, –1, –2, for the
fourth-order double compact (DC4) scheme are defined as α1 = 9

24 , α0 = 19
24 , α–1 = – 5

24 , and
α–2 = 1

24 .

Remark The scheme DC4 is multi-step methods. To start the computations at the first
few time steps, we use the Runge–Kutta methods. Specifically, the fourth-order Runge–
Kutta method is used for the first U1 and the second time steps U2 in DC4. Coupled with
initial value U0, the scheme DC4 evolves with time.

2.2 Stability analysis
We study the linear stability of second-order DC methods and discuss the computational
costs of the methods in this subsection. And first we give some definitions and lemmas for
the stability analysis.

A matrix in the form of

CN×N =

⎛
⎜⎜⎜⎝

a0 a0 · · · aN–1

aN–1 a0 · · · aN–2

· · · · · · · · · · · ·
a1 a2 · · · a0

⎞
⎟⎟⎟⎠ (15)
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is called a circulant matrix [5]. Matrix C is determined by the entries in the first row
(a0, a0, . . . , aN–1). It is clear that matrices A and B are circulant matrices.

The circulant matrix has some useful properties as follows [5]:
• If a circulant matrix C is invertible, then its inverse matrix C–1 is circulant.
• Circulant matrices satisfy the operator commuting since, for any two given circulant

matrices C and D, the product CD is circulant, and CD = DC.
• For a real circulant matrix C in (15), all eigenvalues of C are given by

λ = a0 + a1ωk + a2ω
2
k + · · · + aN–1ω

N–1
k with ωk = exp( i2πk

N ), k = 0, 1, 2, . . . , N – 1.
The proceeding properties give the eigenvalues of the N × N order circulant matrices A
and B in the form of

λA
k = –2 + 2 cos

(
2πk
N

)
, λB

k =
5
6

+
1
6

cos

(
2πk
N

)
, k = 0, 1, . . . , N – 1. (16)

The eigenvalues indicate that matrix –A is a positive semi-definite, symmetric, and circu-
lant matrix, and matrix B–1 is a positive definite, symmetric, and circulant matrix. With
the first and the second property of a circulant matrix, we can get –B–1A = –AB–1. This
commutativity indicates that –B–1A is positive semi-definite and its eigenvalues are non-
negative. Based on linear stability analyses in [11], we claim that the second-order DC
method, Eq. (13), is asymptotically stable for the case of F (u) = du and L–1

x δ2
x u = –cu,

where d < 0 and c > 0 correspond to stable reactions and elliptic operators. For more
details on the stability analysis, the reader is referred to the analysis in a unified frame-
work [11].

In comparison with the non-compact FDM spatial discretization coupled with the com-
pact IIF method, extra work for the DC method is the computation of the inverse of matrix
B–1. Since matrix B has small order of magnitude only with N × N , the computation of
inverse matrix is not CPU-intensive. In our numerical tests, the size of matrix B is 128
or 256. The computation for the inverse of this matrix could be easily implemented by
inv(B) in Matlab. In addition, the exponential matrices such as eB–1Ax�t are pre-computed
and stored for later use at every time step. Therefore the new method is advantageous in
accuracy without increasing both CPU time and memory savings.

2.3 Three dimensions
In this section we extend the double compact representation of the Laplacian operator to
three-dimensional systems. In this section, we present a derivation for a three-dimensional
reaction–diffusion equation in a cube with periodic boundary conditions:

∂u
∂t

= D
(

∂2u
∂x2 +

∂2u
∂y2 +

∂2u
∂z2

)
+ F(u), (x, y) ∈ � = [al, au] × [bl, bu] × [cl, cu]. (17)

Let Nx, Ny, Nz be the number of spatial grid points in each spatial direction and hx, hy,
hz be the grid size, respectively, and ui,j,k represents the approximate solution at the grid
point (ihx, jhy, khz).

Setting v = ∂2u
∂x2 , w = ∂2u

∂y2 , and φ = ∂2u
∂z2 , we get the discretization of (17) on the grid point

as follows:

d
dt

uijk = D(vijk + wijk + φijk) + F(uijk), 1 ≤ i ≤ Nx, 1 ≤ j ≤ Ny, 1 ≤ k ≤ Nz. (18)
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Define the following linear mapping in three dimensions:

δ2
x ui,j,k = D

ui–1,j,k – 2ui,j,k + ui+1,j,k

h2
x

,

Lxvi,j,k =
(

1 +
h2

x
12

δ2
x

)
ui,j,k =

ui–1,j,k + 10ui,j,k + ui+1,j,k

12
.

(19)

The linear mappings δ2
y ui,j,k , δ2

z ui,j,k , and Lyvi,j,k , Lzvi,j,k are similarly defined. Based on the
approximation (7), we can get vi,j,k = L–1

x δ2
x ui,j,k , wi,j,k = L–1

y δ2
y ui,j,k , φi,j,k = L–1

z δ2
x ui,j,k . Define

the three-dimensional array: U = (ui,j,k|i = 1, . . . , Nx, j = 1, . . . , Ny, k = 1, . . . , Nz). The fourth-
order compact finite difference scheme for Eq. (18) takes the form

d
dt

U = L–1
x δ2

x U + L–1
y δ2

y U + L–1
z δ2

z U + F (U). (20)

When the second-order IIF is applied to the reaction–diffusion equations of the system
of Eq. (20), we obtain

Un+1 = e(L–1
x δ2

x +L–1
y δ2

y +L–1
z δ2

z )�t
(

Un +
�t
2
F (Un)

)
+

�t
2
F (Un+1). (21)

To avoid computing the exponential of a huge matrix, we adopt the array-representation
implicit integration factor (AcIIF) method which decomposes the matrix into small ma-
trices based on an array representation. See [16] for more details. The three-dimensional
array U can be treated as a collection of all such one-dimensional vectors on a two-
dimensional array

U =
⊗

j=1,...,Ny
k=1,...,Nz

U(:, j, k), (22)

where U(:, j, k) is a vector by fixing the last two indices j, k, U(:, j, k) = (u1,j,k , u2,j,k , . . . ,
uNx ,j,k)T . With the definition of matrices Ax and Bx, the exponential of linear mapping
L–1

x δ2
x in the array representation can be written as a matrix form:

eL
–1
x δ2

x U =
⊗

j=1,...,Ny
k=1,...,Nz

eB–1
x Ax U(:, j, k). (23)

The exponentials of linear mappings L–1
y δ2

y and L–1
z δ2

z have similar array representations.
Because the linear mappings L–1

x δ2
x , L–1

y δ2
y , and L–1

z δ2
z satisfy the commutativity based

on the property of a circulant matrix, we get

eL
–1
x δ2

x +L–1
y δ2

y +L–1
z δ2

z = eL
–1
x δ2

x eL
–1
y δ2

y eL
–1
z δ2

z . (24)
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Direct application of Eqs. (23) and (24) to Eq. (21) results in the following double compact
method with order O(h4 + �t2):

Un+1 =
⊗

j=1,...,Ny
k=1,...,Nz

eB–1
x Ax

( ⊗
i=1,...,Nx
k=1,...,Nz

eB–1
y Ay

( ⊗
i=1,...,Nx
j=1,...,Ny

eB–1
z Az�(i, j, :)

)
(i, :, k)

)
(:, j, k)

+
�t
2
F (Un+1), (25)

where � = U + �t
2 F (Un).

3 Numerical experiments
In this section, we demonstrate the performance of the proposed double compact scheme
on a number of test problems. Firstly, we test our scheme for a linear reaction–diffusion
equation with exact solution. In this test, we investigate the accuracy and efficiency of our
new scheme by comparison with other methods such as the second-order Runge–Kutta
method and the original cIIF method. Then we apply the scheme to the chloride-iodide-
malonic acid (CIMA) model which was derived by Lengyel and Epstein [8]. It can be found
that different choice of dimensionless parameters will lead to a different pattern [19].

Compared with the cIIF method, extra computation is the inverse of matrices Bx and By.
Because these matrices depend only on the spatial grid size in every spatial direction, these
matrices have small sizes as those in 1D problem and the inverse of matrices can be easily
computed. As the cIIF method, for a given spatial and temporal numerical resolution, the
exponential matrices are pre-computed and stored for later use at every time step.

3.1 The accuracy test
Example 1 We consider the following linear reaction–diffusion equation on a rectangle
� = [0, 2π ]2:

∂u
∂t

= 0.2
(

∂2u
∂x2 +

∂2u
∂y2

)
+ 0.1u (26)

with periodic boundary conditions. The exact solution of this equation is u = e–0.1t(cos(x)+
cos(y)). The initial condition is determined by the exact solution. The final computa-
tion time is t = 1. The time step is proportional to the spatial grid size, here we choose
�t = 1/Nx. The L∞ error is measured by difference between the numerical solution and the
exact solution. For the convenience of comparison, we solve this problem by the second-
order double compact (DC2) method, the second-order cIIF (cIIF2) method, and the
second-order Runge–Kutta (RK2) method. The error, order of accuracy, and CPU time
for three methods are listed in Table 1. As seen in the table, DC2 is more accurate than
cIIF2 without adding any computational cost. On the other hand, RK2 demands a much
smaller time step because of stability constraint.

Because the time discretization only has the second order, we cannot get the fourth-
order convergence overall. Now we consider a fourth-order double compact (DC4)
scheme in an attempt to balance the spatial and temporal accuracy of the overall scheme.
The DC4 scheme is a multi-step method. We start the computations at the first time step
U1 and the second time step U2. In our numerical simulation we use the DC2 scheme with
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Table 1 Error, order of accuracy, and CPU time with DC2, cIIF2, and RK2 schemes for Example 1

Nx × Ny DC2, �t = 1/Nx = hx/2π cIIF2, �t = 1/Nx = hx/2π RK2, �t = h2x
L∞ error Order CPU (s) L∞ error Order CPU (s) L∞ error Order CPU (s)

32× 32 2.39× 10–6 – 0.00 1.16× 10–3 – 0.00 1.16× 10–3 – 0.00
64× 64 1.77× 10–7 3.76 0.03 2.91× 10–4 2.00 0.03 2.91× 10–4 2.00 0.07
128× 128 1.80× 10–8 3.30 0.37 7.27× 10–5 2.00 0.37 7.27× 10–5 2.00 2.20
256× 256 2.85× 10–9 2.66 5.71 1.82× 10–5 2.00 5.68 1.82× 10–5 2.00 70.5

Table 2 Error, order of accuracy, and CPU time with DC4 scheme for Example 1

Nx × Ny �t L∞ error Order CPU (s)

32× 32 1/32 2.2449× 10–6 – 0.0058
64× 64 1/64 1.4015× 10–7 4.0016 0.0658
128× 128 1/128 8.7572× 10–9 4.0004 1.0121
256× 256 1/256 5.4901× 10–10 3.9956 16.578

Table 3 Error, order of accuracy, and CPU time with DC2, cIIF2, and RK2 schemes for Example 2

Nx × Ny × Nz DC2, �t = 1/Nx = hx/2π cIIF2, �t = 1/Nx = hx/2π RK2, �t = h2x /3

L∞ error Order CPU (s) L∞ error Order CPU (s) L∞ error Order CPU (s)

16× 16× 16 5.50× 10–5 – 0.05 6.95× 10–3 – 0.04 6.95× 10–3 – 0.09
32× 32× 32 3.59× 10–6 3.94 0.43 1.74× 10–3 2.00 0.43 1.74× 10–3 2.00 2.06
64× 64× 64 2.65× 10–7 3.76 5.93 4.36× 10–4 2.00 5.95 4.36× 10–4 2.00 61.9
128× 128× 128 2.69× 10–8 3.30 127 1.09× 10–4 2.00 124 1.09× 10–4 2.00 2448

a time step �t = 1/N2
x to U1 and U2. Then we go ahead to simulate the problem using the

DC4 scheme with time step �t = 1/Nx. The error, order of accuracy, and CPU time for
the DC4 scheme are listed in Table 2. We can see that the solution by the DC4 scheme is
fourth-order accurate in the temporal and spatial dimensions with time step �t = 1/Nx.
The DC4 scheme only triples the CPU time over the DC2 scheme in the meantime.

Example 2 Then we consider a similar system in three dimensions on � = [0, 2π ]2:

∂u
∂t

= 0.2
(

∂2u
∂x2 +

∂2u
∂y2 +

∂2u
∂z2

)
+ 0.1u (27)

with periodic boundary conditions. The exact solution of this equation is

u = e–0.1t(cos(x) + cos(y) + cos(z)
)
.

The final computation time is t = 1 at which the L∞ error is measured. The time step is
chosen as �t = 1/Nx. Similar to the two-dimensional case, we list the error, order of accu-
racy, and CPU time for DC2, cIIF2, and RK2 methods in Table 3. As shown in Table 3, the
DC2 scheme achieves higher-order accuracy while requires the same CPU time as cIIF2.
The RK2 method requires a much smaller time step and becomes more expensive. Espe-
cially for large grid number N = 128, the computation time is too long to be acceptable.
The solution by the DC4 scheme for the three-dimensional case with time step �t = 1/Nx

is shown in Table 4. As in the two-dimensional case, we can see that the solution by the
DC4 scheme is fourth-order accurate in the temporal and spatial dimensions.
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Table 4 Error, order of accuracy, and CPU time with DC4 scheme for Example 2

Nx × Ny �t L∞ error Order CPU (s)

16× 16× 16 1/16 5.4123× 10–5 – 0.1725
32× 32× 32 1/32 3.3674× 10–6 4.0065 1.9944
64× 64× 64 1/64 2.1022× 10–7 4.0017 29.632
128× 128× 128 1/128 1.3136× 10–8 4.0003 640.60

Figure 1 H0 hexagon, stripe, and Hπ hexagon pattern of CIMA model at t = 104 for 2D

Figure 2 H0 hexagon, stripe, and Hπ hexagon pattern of CIMA model at t = 104 for 3D

3.2 CIMA model
Example 3 Lengyel and Epstein proposed a two-variable kinetic mechanism for CIMA
reaction. In this skeleton version, iodide and chlorite play respectively the roles of the
activator and the inhibitor:

∂u
∂t

= Du∇2u +
1
σ

(
a – u – 4

uv
1 + u2

)
,

∂v
∂t

= Dv∇2v + b
(

u –
uv

1 + u2

)
,

(28)

where Du = 1
σ

, Dv = d, d = 1.07, and σ = 50. We will solve the CIMA model on two-
dimensional case and three-dimensional case. The domains on 2D and 3D are chosen as
� = [0, 100]2 and [0, 100]3, respectively. In our computation, we choose the mesh as 64×64
and 64 × 64 × 64. Random initial concentration distributions of both species are used. In
the simulation the initial condition is taken as u = 10–1 rand(· · · ), v = 10–1 rand(· · · ), where
rand(· · · ) is a random function in Fortran [19].

The Turing pattern needs a long computation time to appear. Here we set the final com-
putation time as t = 10,000. The different patterns will be obtained by selecting three sets
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of values for parameters a, b. The first set (a = 8.8, b = 0.09) leads to an H0 hexagon pat-
tern as shown in Fig. 1(a). The second set (a = 10, b = 0.16) gives rise to a stripe pattern
(see Fig. 1(b)). The third set (a = 12, b = 0.39) generates an Hπ hexagon pattern plotted in
Fig. 1(c). Simulations for these three sets of parameters have also been presented in the 3D
case. We observe similar patterns by selecting the corresponding parameters, see Fig. 2.

4 Concluding remarks
In this paper, we combined the compact FDM in space and the compact IIF method in
time to propose a high-order accurate method for solving reaction–diffusion equation.
The global accuracy order of this method is O(h4 + �tr) (r = 2, 3, 4, . . .) and it allows a con-
siderable saving in the computation time as the cIIF method. The numerical experiments
are conducted to show its superiority over the classical RK method and cIIF method. In the
future work we plan to apply the DC scheme for solving the variable coefficients reaction–
diffusion problem.
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