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Abstract
This paper deals with the existence of positive ω-periodic solutions for third-order
ordinary differential equation with delay

u′′′(t) +Mu(t) = f (t,u(t),u(t – τ )), t ∈R,

where ω > 0 andM > 0 are constants, f :R3 →R is continuous, f (t, x, y) is ω-periodic
in t, and τ > 0 is a constant denoting the time delay. We show the existence of
positive ω-periodic solutions when 0 <M < ( 2π√

3ω
)3 and f satisfies some order

conditions. The discussion is based on the theory of fixed point index.
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1 Introduction
In this paper, we discuss the existence of positive ω-periodic solutions for the third-order
ordinary differential equation with delay

u′′′(t) + Mu(t) = f
(
t, u(t), u(t – τ )

)
, t ∈R, (1.1)

where M > 0 is a constant, f : R3 → R is continuous, f (t, x, y) is ω-periodic in t, τ > 0 is a
constant which denotes the time delay.

The problem of periodic solutions for delayed differential equations is an important
research topic in ODE qualitative analysis, which has wide applications in mechanics,
physics, ecology, economics, and other disciplines and has attracted much attention of
scholars; see [3, 5–12, 14]. For second-order differential equations without delay, the ex-
istence and multiplicity of positive periodic solutions are discussed in [1, 5–10, 12, 14]. In
[13], the authors studied the existence of positive solutions for higher order p-Laplacian
boundary value problems. In recent years, the existence of positive periodic solutions for
third-order ODEs has been studied by using fixed point theorems of cone mapping. By
utilizing Krasnoselskii’s fixed point theorem in cones Feng [3] proved the existence and
multiplicity of positive periodic solutions of the third-order equation

u′′′(t) + αu′′(t) + βu′(t) = f
(
t, u(t)

)
, t ∈ [0, 2π ], (1.2)
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where α > 0 and β > 0 satisfy certain conditions. Li [11] discussed the existence of positive
ω-periodic solutions for the fully third-order ODE

u′′′(t) = f
(
t, u(t), u′(t), u′′(t)

)
, t ∈R. (1.3)

By applying the fixed point theorem of cone expansion or compression type, the author es-
tablished some existence results of positive ω-periodic solutions of Eq. (1.3). However, all
these works contain no delay terms, and few researchers consider the existence of positive
periodic solutions for the third-order delayed Eq. (1.1). In this paper, we show the existence
of positive ω-periodic solutions for the third-order delayed Eq. (1.1) when 0 < M < ( 2π√

3ω
)3

and f satisfies some order conditions. The discussion is based on the theory of fixed point
index.

The rest of this paper is organized as follows. In Sect. 2, we introduce some preliminary
facts and establish the existence of ω-periodic solution for third-order linear differential
equation with delay. In Sect. 3, we prove two existence theorems of positive ω-periodic
solutions for the third-order delayed Eq. (1.1).

2 Preliminaries
Let Cω(R) denote the Banach space of all continuous ω-periodic function u(t) with norm
‖u‖C = max0≤t≤ω |u(t)|. We denote by C+

ω(R) the cone of positive functions in Cω(R).
Letting M > 0, we first consider the linear third-order boundary value problem (BVP)

⎧
⎪⎪⎨

⎪⎪⎩

u′′′(t) + Mu(t) = 0, t ∈ [0,ω],

u(i)(0) = u(i)(ω), i = 0, 1,

u′′(0) = u′′(ω) + 1.

(2.1)

By Lemma 2.1 of [1] the BVP (2.1) has a unique solution. The solution �(t) of BVP (2.1)
has the following property (see Lemma 2.2 of [11] for details).

Lemma 1 ([11], Lemma 2.2) Let 0 < M < ( 2π√
3ω

)3. Then the solution � of the BVP (2.1) is
positive on [0,ω].

Secondly, for any h ∈ Cω(R), we consider the existence of an ω-periodic solution of the
linear third-order ordinary differential equation

u′′′(t) + Mu(t) = h(t), t ∈R. (2.2)

For Eq. (2.2), we have the following lemma.

Lemma 2 ([11], Lemma 2.1) Let M > 0. Then for any h ∈ Cω(R), the linear Eq. (2.2) has a
unique ω-periodic solution u(t) expressed by

u(t) =
∫ t

t–ω

�(t – s)h(s) ds := (Ph)(t), t ∈R. (2.3)

Moreover, P : Cω(R) → Cω(R) is a completely continuous linear operator.
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Remark 1 By Lemma 1, �(t) > 0 for every t ∈ [0,ω] when 0 < M < ( 2π√
3ω

)3. Combining this
fact with Lemma 2 we have that P : Cω(R) → Cω(R) is a positive operator when 0 < M <
( 2π√

3ω
)3.

Now, let M > 0 and M1 > 0. For any h ∈ Cω(R), we consider the existence of an ω-periodic
solution of the linear third-order ordinary differential equation

u′′′(t) + Mu(t) + M1u(t – τ ) = h(t), t ∈ R. (2.4)

Lemma 3 Let 0 < M < ( 2π√
3ω

)3 and 0 < M1 < M. Then Eq. (2.4) has a unique ω-periodic
solution u ∈ Cω(R) given by

u(t) = (I + P ◦ B1)–1
∫ t

t–ω

�(t – s)h(s) ds, t ∈R, (2.5)

where B1 : Cω(R) → Cω(R) is defined by

B1u(t) = M1u(t – τ ).

Proof By the definition of B1, it is easy to see that B1 is a linear bounded operator and
‖B1‖ ≤ M1. Equation (2.4) is equivalent to the equation

u′′′(t) + Mu(t) = h(t) – B1u(t), t ∈R. (2.6)

By Lemma 2, Eq. (2.6) has a unique ω-periodic solution given by

u(t) =
∫ t

t–ω

�(t – s)
[
h(s) – B1u(s)

]
ds

=
∫ t

t–ω

�(t – s)h(s) ds –
∫ t

t–ω

�(t – s)B1u(s) ds.

From this equation we obtain

(I + P ◦ B1)u(t) =
∫ t

t–ω

�(t – s)h(s) ds, t ∈ R. (2.7)

By (2.3), for any h ∈ Cω(R), we have

∣∣(Ph)(t)
∣∣ ≤

∫ t

t–ω

∣∣�(t – s)
∣∣ · ∣∣h(s)

∣∣ds

≤
∫ t

t–ω

�(t – s) ds · ‖h‖C

=
∫ ω

0
�(t) dt · ‖h‖C

=
1
M

‖h‖C .

This implies that

‖P‖ ≤ 1
M

.
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Hence ‖P ◦ B1‖ ≤ ‖P‖ · ‖B1‖ ≤ M1
M < 1. So, (I + P ◦ B1)–1 exists, and

∥
∥(I + P ◦ B1)–1∥∥ ≤ 1

1 – ‖P ◦ B1‖ ≤ M
M – M1

.

Hence from (2.7) we have

u(t) = (I + P ◦ B1)–1
∫ t

t–ω

�(t – s)h(s) ds, t ∈R,

which is the unique ω-periodic solution of Eq. (2.4). This completes the proof of
Lemma 3. �

By Lemma 1, if 0 < M < ( 2π√
3ω

)3, then the solution of Eq. (2.1) �(t) > 0 for every t ∈ [0,ω].
In this case, let �∗ = maxt∈[0,ω] �(t), �∗ = mint∈[0,ω] �(t), and σ = �∗

�∗ ; then 0 < σ < 1. Define
the operator Q : Cω(R) → Cω(R) by

(Qh)(t) = (I + P ◦ B1)–1
∫ t

t–ω

�(t – s)h(s) ds, t ∈ R. (2.8)

We first prove that Q is a positive operator.

Lemma 4 Let 0 < M < ( 2π√
3ω

)3 and 0 < M1 < σ 2M. Then Q : Cω(R) → Cω(R) is a positive
operator, where Q is defined by (2.8).

Proof By Lemma 2 and Remark 1, for any h ∈ C+
ω(R), we have (Ph)(t) ≥ σ (Ph)(s) for t, s ∈R.

Particularly,

(Ph)(t) ≥ σε0, (Ph)(t) ≤ 1
σ

ε0, ∀t ∈R,

where ε0 = (Ph)(0) ≥ 0 is regarded as a constant. Since

(I + P ◦ B1)–1 =
∞∑

i=0

(–1)i(P ◦ B1)i =
∞∑

i=0

(P ◦ B1)2i(I – P ◦ B1),

by (2.8) we only need to prove that (I – P ◦ B1)P is positive. In fact, for any h ∈ C+
ω(R), we

have

(I – P ◦ B1)(Ph)(t)

= (Ph)(t) – (P ◦ B1)(Ph)(t)

≥ σε0 –
1
σ

(P ◦ B1)ε0

≥ σε0 –
M1

σM
ε0

=
(

σ –
M1

σM

)
ε0 ≥ 0, ∀t ∈R.

This implies that (I – P ◦ B1)P is positive. Therefore Q : Cω(R) → Cω(R) is a positive op-
erator. This completes the proof of Lemma 4. �
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Choose the cone K in C+
ω(R) by

K =
{

u ∈ C+
ω(R) : u(t) ≥ σu(s),∀t, s ∈R

}
. (2.9)

Then we have the following lemma.

Lemma 5 Let 0 < M < ( 2π√
3ω

)3 and 0 < M1 < σ 2M. Then Q : K → K is completely continu-
ous, where Q is defined by (2.8).

Proof For any h ∈ K , by (2.8) we have

(Qh)(t) = (I + P ◦ B1)–1
∫ t

t–ω

�(t – s)h(s) ds, t ∈ R,

namely,

(I + P ◦ B1)(Qh)(t) =
∫ t

t–ω

�(t – s)h(s) ds, t ∈R,

which implies

(I + P ◦ B1)(Qh)(s) ≤ �∗
∫ s

s–ω

h(θ ) dθ = �∗
∫ ω

0
h(θ ) dθ .

On the other hand, for any t ∈R, we have

(I + P ◦ B1)(Qh)(t) ≥ �∗
∫ t

t–ω

h(θ ) dθ = �∗
∫ ω

0
h(θ ) dθ .

From the two inequalities it follows that

(I + P ◦ B1)(Qh)(t) ≥ σ (I + P ◦ B1)(Qh)(s), ∀t, s ∈R.

By Lemmas 2 and 4 it is easy to see that (I + P ◦B1)–1 is a bounded positive operator. Hence
Q : K → K is completely continuous. This completes the proof of Lemma 5. �

Applying the fixed point index theory in cones to prove the existence of ω-periodic so-
lutions of Eq. (1.1), we recall some concepts and conclusions on the fixed point index in
[2, 4]. Let E be a Banach space, and let K ⊂ E be a closed convex cone in E. Assume that
� is a bounded open subset of E with boundary ∂� and K ∩ ∂� = θ , where θ denotes the
zero element in E. Let A : K ∩ � → K be a completely continuous mapping. If Au �= u for
any u ∈ K ∩ ∂�, then the fixed point index i(A, K ∩ �, K) is defined. If i(A, K ∩ �, K) �= 0,
then A has a fixed point in K ∩ �. The following lemmas can be found in [4].

Lemma 6 Let � be a bounded open subset of E with θ ∈ �, and let A : K ∩ � → K be a
completely continuous mapping. If

λAu �= u, u ∈ K ∩ ∂�, 0 < λ ≤ 1,

then i(A, K ∩ �, K) = 1.
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Lemma 7 Let � be a bounded open subset of E, and let A : K ∩ � → K be a completely
continuous mapping. If there exists e ∈ K \ {θ} such that

u – Au �= μe, ∀u ∈ K ∩ ∂�,μ ≥ 0,

then i(A, K ∩ �, K) = 0.

3 Existence of positive periodic solutions
Theorem 1 Let f (t, x, y) : R×R

+ ×R
+ → R

+ be continuous and ω-periodic in t. Suppose
that 0 < M < ( 2π√

3ω
)3 and f satisfies the following conditions:

(H1) there exist a1 > 0 and a2 > 0 with a1 + a2 < M and δ > 0 such that

f (t, x, y) ≤ a1x + a2y

for any t ∈R and x, y ∈ [0, δ];
(H2) there exist b1 > 0 and b2 > 0 with b1 + b2 > M and h0 ∈ C+

ω(R) such that

f (t, x, y) ≥ b1x + b2y – h0(t)

for any t ∈R and x, y ∈R
+.

Then Eq. (1.1) has at least one positive ω-periodic solution.

Proof Let M1 ≥ 0. Equation (1.1) is equivalent to the equation

u′′′(t) + Mu(t) + M1u(t – τ ) = f
(
t, u(t), u(t – τ )

)
+ M1u(t – τ ), t ∈R.

Let F(u)(t) = f (t, u(t), u(t – τ )) + M1u(t – τ ). Then by condition (H1) F : C+
ω(R) → C+

ω(R) is
bounded. If 0 < M1 < σ 2M, then by Lemma 3 and 5 we get that A = Q ◦ F : C+

ω(R) → C+
ω(R)

is completely continuous, where Q is defined by (2.8). For any 0 < r < R < +∞, let

�r =
{

u ∈ C+
ω(R) : ‖u‖C < r

}
, �R =

{
u ∈ C+

ω(R) : ‖u‖C < R
}

.

Clearly, �r and �R are bounded open subsets of C+
ω(R). We show that A has a fixed point

in K ∩ (�R \ �r) when r is small enough and R is large enough.
Let r ∈ (0, δ). We prove that λAu �= u for any u ∈ K ∩ ∂�r and 0 < λ ≤ 1, where K is

defined by (2.9). In fact, if there exist u0 ∈ K ∩ ∂�r and 0 < λ0 ≤ 1 such that

λ0Au0 = u0,

then

u′′′
0 (t) + Mu0(t) + M1u0(t – τ ) = λ0F(u0)(t), t ∈R,

namely,

u′′′
0 (t) + Mu0(t) ≤ f

(
t, u0(t), u0(t – τ )

)
, t ∈R.
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Since u0 ∈ K ∩ ∂�r , it follows that

u0(t) ≤ ‖u0‖C = r < δ, u0(t – τ ) ≤ ‖u0‖C = r < δ.

Hence by condition (H1) we have

u′′′
0 (t) + Mu0(t) ≤ a1u0(t) + a2u0(t – τ ), t ∈R.

Integrating both sides of this inequality from 0 to ω and using the periodicity of u0, we
have

M
∫ ω

0
u0(t) dt ≤ a1

∫ ω

0
u0(t) dt + a2

∫ ω

0
u0(t – τ ) dt

= (a1 + a2)
∫ ω

0
u0(t) dt.

Since u0 ∈ K , it follows that u0(t) ≥ σu0(s) for any t, s ∈R. Hence

(M – a1 – a2)σωu0(s) ≤ (M – a1 – a2)
∫ ω

0
u0(t) dt ≤ 0, ∀s ∈R. (3.1)

Since M > a1 + a2, σ > 0, and ω > 0, (3.1) implies that u0(s) ≤ 0 for any s ∈ R, which con-
tracts to u0 ∈ K ∩ ∂�r . Hence A satisfies the conditions of Lemma 6. By Lemma 6 we
have

i(A, K ∩ �r , K) = 1. (3.2)

On the other hand, let e(t) ≡ 1 for any t ∈R. Then e ∈ K \ {θ}. We show that u – Au �= μe
for any u ∈ K ∩ ∂�R and μ ≥ 0 when R is large enough. In fact, if there exist u1 ∈ K ∩ ∂�R

and μ1 ≥ 0 such that

u1 – Au1 = μ1e,

then u1 – μ1e = Au1. Hence

u′′′
1 (t) + Mu1(t) – μ1(M + M1) = f

(
t, u1(t), u1(t – τ )

)
, t ∈R.

By condition (H2) we have

u′′′
1 (t) + Mu1(t) ≥ b1u1(t) + b2u1(t – τ ) – h0(t), t ∈R.

Integrating both sides of this inequality from 0 to ω and using the periodicity of u1, we
have

M
∫ ω

0
u1(t) dt ≥ b1

∫ ω

0
u1(t) dt + b2

∫ ω

0
u1(t – τ ) dt –

∫ ω

0
h0(t) dt

= (b1 + b2)
∫ ω

0
u1(t) dt –

∫ ω

0
h0(t) dt,
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namely,

(b1 + b2 – M)
∫ ω

0
u1(t) dt ≤

∫ ω

0
h0(t) dt ≤ ω‖h0‖C .

Since u1 ∈ K and u1(t) ≥ σu1(s) for any t, s ∈R, we have

(b1 + b2 – M)ωσu1(s) ≤ ω‖h0‖C ,

namely,

‖u1‖C ≤ 1
σ (b1 + b2 – M)

‖h0‖C := R.

Let R > max{r, R}. Then A satisfies the conditions of Lemma 7 in �R. By Lemma 7 we have

i(A, K ∩ �R, K) = 0. (3.3)

Combining (3.2) with (3.3), we have

i
(
A, K ∩ (�R \ �r), K

)
= i(A, K ∩ �R, K) – i(A, K ∩ �r , K) = –1 �= 0.

Hence A has at least one fixed point in K ∩(�R \�r), which is a positive ω-periodic solution
of Eq. (1.1). This completes the proof of Theorem 1. �

Theorem 2 Let f (t, x, y) : R×R
+ ×R

+ → R
+ be continuous and ω-periodic in t. Suppose

that 0 < M < ( 2π√
3ω

)3 and f satisfies the following conditions:
(H3) there exist b1 > 0 and b2 > 0 with b1 + b2 > M and δ > 0 such that

f (t, x, y) ≥ b1x + b2y

for any t ∈R and x, y ∈ [0, δ];
(H4) there exist a1 > 0 and a2 > 0 with a1 + a2 < M and h1 ∈ C+

ω(R) such that

f (t, x, y) ≤ a1x + a2y + h1(t)

for any t ∈R and x, y ∈R
+.

Then Eq. (1.1) has at least one positive ω-periodic solution.

Proof Let F(u)(t) = f (t, u(t), u(t – τ )) + M1u(t – τ ), and A = Q◦F . Then A : C+
ω(R) → C+

ω(R)
is completely continuous when 0 ≤ M1 < σ 2M. For any 0 < r < R < +∞, we prove that A
has a fixed point in K ∩ (�R \ �r) when r is small enough and R is large enough.

Let r ∈ (0, δ), and let e(t) ≡ 1 for any t ∈ R. Then e ∈ K \ {θ}. If there exist u0 ∈ K ∩ ∂�r

and μ0 ≥ 0 such that u0 – Au0 = μ0e, namely, u0 – μ0e = Au0, then by the definition of A
and Lemma 3 u0 satisfies

u′′′
0 (t) + Mu0(t) – μ0(M + M1) = f

(
t, u0(t), u0(t – τ )

)
, t ∈R,
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that is,

u′′′
0 (t) + Mu0(t) ≥ f

(
t, u0(t), u0(t – τ )

)
, t ∈R.

Since u0 ∈ K ∩ ∂�r , it follows that

u0(t) ≤ ‖u0‖C = r < δ, u0(t – τ ) ≤ ‖u0‖C = r < δ.

Hence by condition (H3) we have

u′′′
0 (t) + Mu0(t) ≥ b1u0(t) + b2u0(t – τ ), t ∈R.

Integrating both sides of this inequality from 0 to ω and using the periodicity of u0, we
have

M
∫ ω

0
u0(t) dt ≥ b1

∫ ω

0
u0(t) dt + b2

∫ ω

0
u0(t – τ ) dt

= (b1 + b2)
∫ ω

0
u0(t) dt.

Since u0 ∈ K , it follows that u0(t) ≥ σu0(s) for any t, s ∈R. Hence

(M – b1 – b2)
∫ ω

0
u0(t) dt ≥ (M – b1 – b2)σωu0(s) ≥ 0, ∀s ∈R. (3.4)

Since M < b1 + b2, σ > 0, and ω > 0, (3.4) implies that u0(s) ≤ 0 for any s ∈ R, which con-
tracts to u0 ∈ K ∩ ∂�r . Hence A satisfies the conditions of Lemma 7. By Lemma 7 we
have

i(A, K ∩ �r , K) = 0. (3.5)

On the other hand, we show that A satisfies the condition of Lemma 6 in K ∩ �R when
R is large enough. In fact, if there exist u1 ∈ K ∩ ∂�R and 0 < λ1 ≤ 1 such that

λ1Au1 = u1,

then we have

u′′′
1 (t) + Mu1(t) + M1u1(t – τ ) = λ1F(u1)(t), t ∈R.

By condition (H4) we have

u′′′
1 (t) + Mu1(t) ≤ a1u1(t) + a2u1(t – τ ) + h1(t), t ∈ R.

Integrating both sides of this inequality from 0 to ω and using the periodicity of u1, we
have

M
∫ ω

0
u1(t) dt ≤ a1

∫ ω

0
u1(t) dt + a2

∫ ω

0
u1(t – τ ) dt +

∫ ω

0
h1(t) dt

= (a1 + a2)
∫ ω

0
u1(t) dt +

∫ ω

0
h1(t) dt,
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that is,

(M – a1 – a2)
∫ ω

0
u1(t) dt ≤

∫ ω

0
h1(t) dt ≤ ω‖h1‖C .

Since u1 ∈ K , u1(t) ≥ σu1(s) for any t, s ∈R, we have

(M – a1 – a2)ωσu1(s) ≤ ω‖h1‖C ,

that is,

‖u1‖C ≤ 1
σ (M – a1 – a2)

‖h1‖C := R∗.

Let R > max{r, R∗}. Then A satisfies the conditions of Lemma 6. By Lemma 6 we have

i(A, K ∩ �R, K) = 1. (3.6)

Combining (3.5) with (3.6), we have

i
(
A, K ∩ (�R \ �r), K

)
= i(A, K ∩ �R, K) – i(A, K ∩ �r , K) = 1 �= 0.

Hence A has at least one fixed point in K ∩(�R \�r), which is a positive ω-periodic solution
of Eq. (1.1). This completes the proof of Theorem 2. �

4 Conclusion
In this paper, by utilizing the fixed point index in cones, we prove the existence of positive
periodic solutions for the general third-order Eq. (1.1). The results are obtained in the case
that f satisfies some order conditions. A similar method can be used to prove the existence
of positive periodic solutions for other differential equations.
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