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Abstract
In this paper, we focus on developing Razumikhin technique for stability analysis of
impulsive differential equations with piecewise constant argument. Based on the
Lyapunov–Razumikhin method and impulsive control theory, we obtain some
Razumikhin-type theorems on uniform stability, uniform asymptotic stability, and
global exponential stability, which are rarely reported in the literature. The
significance and novelty of the results lie in that the stability criteria admit the
existence of piecewise constant argument and impulses, which may be either slight
at infinity or persistently large. Examples are given to illustrate the effectiveness and
advantage of the theoretical results.
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1 Introduction
Qualitative theories of impulsive differential equations (IDEs) have been investigated by
many researchers in the past three decades due to their potential applications in many
fields such as biology, engineering, economics, physics, and so on. Among these theories,
the stability problem is of great importance. By now a large number of results on stability
problem for various IDE have been obtained by some classical methods and techniques;
see [1–9] and the references therein.

In the 1980s, differential equations with piecewise constant argument (DEPCA) that
contain deviation of arguments were initially proposed for investigation by Cooke, Wiener,
Busenberg, and Shah [10–12]. Later, many interesting results have been obtained and ap-
plied efficiently to approximation of solutions and various models in biology, electronics,
and mechanics [13–17]. Such equations represent a hybrid of continuous and discrete dy-
namical systems and combine the properties of both differential and difference equations.
Akhmet [18–20] generalized the concept of DEPCA by considering arbitrary piecewise
constant functions as arguments; the proposed approach overcomes the limitations in the
previously used method of study, namely reduction to discrete equations. Afterward, the
results of the theory have been further developed [21, 22] and applied for qualitative anal-
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ysis and control problem of real models, for example, in neural network models with or
without impulsive perturbations [23–33], which have great significance in solving engi-
neering and electronic problems.

Razumikhin technique was originally proposed by Razumikhin [34, 35] for delay differ-
ential equations (DDE) and was generalized by other researchers to functional differen-
tial equations (FDE) and impulsive functional differential equations (IFDE) [36–44]. The
idea of Razumikhin technique is to build a relationship between history and current states
using Lyapunov functions, so it is usually called the Lyapunov–Razumikhin method. This
method avoids the construction of complicated Lyapunov functionals and provides a tech-
nically efficient way to study stability problems for delayed systems or impulsive delayed
systems. Considering that DEPCA is a delayed-type system, Akhmet et al. [41] investi-
gated the stability of DEPCA and established some Razumikhin-type theorems on uniform
stability and asymptotical stability and applied the results to a logistic equation, whereas
impulsive perturbations were not taken into consideration. To the best of our knowledge,
there have been few results on stability analysis obtained by the Lyapunov–Razumikhin
method for impulsive DEPCA.

Motivated by this discussion, in this paper, we develop the Lyapunov–Razumikhin
method for stability of impulsive differential equations with piecewise constant argument
and establish some Razumikhin-type theorems on uniform stability, uniform asymptotic
stability, and global exponential stability, which are rarely reported in the literature. To
overcome the difficulties created by piecewise constant argument and impulses, which
may be persistently large [44], as we will see, more complicated and interesting analysis
is demanded, in which a (persistent) impulsive control plays an important role to achieve
stability. This paper is organized as follows. In Sect. 2, we introduce some basic notations,
lemmas, and definitions. In Sect. 3, we present the main theoretical results. In Sect. 4,
we give some practical examples to illustrate the effectiveness and novelty of our results.
Finally, we conclude the paper in Sect. 5.

2 Preliminaries
Let R be the set of real numbers, R+ the set of positive real numbers, Z+ the set of non-
negative integers, and R

n the n-dimensional real space equipped with the Euclidean norm
| · |. Fix a real-valued sequence {θk} such that 0 = θ0 < θ1 < · · · < θk < · · · with θk → ∞ as
k → ∞.

We use the following sets of functions:
�1 = {ϕ(s) ∈ C(R+,R+), strictly increasing,ϕ(0) = 0, 0 < ϕ(s) < s, s > 0}
�2 = {ϕ(s) ∈ C(R+,R+), strictly increasing,ϕ(0) = 0}
�3 = {ϕ(s) ∈ C(R+,R+), strictly increasing,ϕ(0) = 0,ϕ(s) > s, s > 0}

Consider the following system with impulses and piecewise constant argument:

⎧
⎪⎪⎨

⎪⎪⎩

x′(t) = f (t, x(t), x(β(t))), t ≥ t0 ≥ 0, t �= θk ,

�x|t=θk = x(θk) – x(θ–
k ) = Ik(θk , x(θ–

k )), k ∈ Z+ – {0},
x(t0) = x0,

(1)

where x ∈R
n is the state vector, x(θ–

k ) = limt→θ–
k

x(t), and β(t) = θk for t ∈ [θk , θk+1), k ∈ Z+,
is the so-called piecewise constant argument.
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We need the following assumptions [41]:
(A1) f (t, x, y) : R+ ×R

n ×R
n →R

n is piecewise continuous with respect to t and is right-
continuous at the possible discontinuous points θk , k ∈ Z+ – {0}; f (t, 0, 0) = 0 for all
t ≥ 0, and f satisfies the Lipschitz condition

∣
∣f (t, x1, y1) – f (t, x2, y2)

∣
∣ ≤ l

(|x1 – x2| + |y1 – y2|
)

for all t ∈ R+ and x1, x2, y1, y2 ∈R
n, where l > 0 is a constant;

(A2) Ik(t, x) : R+ ×R
n →R

n is continuous with respect to t and x, Ik(θk , 0) = 0, and x1 �= x2

implies x1 + Ik(θk , x1) �= x2 + Ik(θk , x2) for all k ∈ Z+ – {0}.
(A3) there exists a positive constant θ such that θk+1 – θk ≤ θ for all k ∈ Z+;
(A4) lθ [1 + (1 + lθ )elθ ] < 1;
(A5) 3lθelθ < 1.

Notation 1 ([41]) K(l) = 1
1–lθ [1+(1+lθ )elθ ] .

Lemma 1 ([41]) Under assumptions (A1)–(A5),

∣
∣x

(
β(t)

)∣
∣ ≤ K(l)

∣
∣x(t)

∣
∣

for all t ≥ 0.

Definition 1 A function x(t) is called a solution of (1) on [t0,∞) if
(i) x(t) is continuous on each [θk , θk+1) ⊆ [t0,∞) and is right-continuous at t = θk ,

k ∈ Z+;
(ii) the derivative x′(t) exists for t ∈ [t0,∞) with the possible exception of the points θk ,

k ∈ Z+, where the right-hand derivatives exist;
(iii) system (1) is satisfied by x(t) on [t0,∞).

We give the following statement assertion on the existence and uniqueness of solutions
of the initial value problem (1).

Theorem 1 Assume that conditions (A1)–(A5) are fulfilled. Then, for every (t0, x0) ∈R+ ×
R

n, there exists a unique solution x(t) = x(t, t0, x0) of (1) on [t0,∞) such that x(t0) = x0.

Proof Existence. Without loss of generality, we assume that θk ≤ t0 < θk+1 for some k ∈ Z+.
Define the norm ‖x(t)‖ = max[θk ,θk+1] |x(t)|, take x0(t) = x0, t ∈ [θk , θk+1], and the sequence

xm+1 = x0 +
∫ t

t0

f
(
s, xm(s), xm(θk)

)
ds, t ∈ [θk , θk+1], m ≥ 0.

We easily obtain that

∥
∥xm+1(t) – xm(t)

∥
∥ ≤ (2lθ )m+1|x0|.

Thus, (A5) implies that the sequence {xm(t)} uniformly converges to a unique function
x(t) = x(t, t0, x0), and it is exactly the unique solution of the integral equation

x(t) = x0 +
∫ t

t0

f
(
s, x(s), x(θk)

)
ds
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on [θk , θk+1), which is equivalent to (1) on [θk , θk+1), and x(θ–
k+1) exists. Moreover, (A2) im-

plies that x(θk+1) = x(θ–
k+1) + Ik+1(θk+1, x(θ–

k+1)) also exists. Taking x(θk+1) as the new initial
value, by the same arguments as before we can get the solution x(t) of (1) on [θk+1, θk+2).
Since θk → ∞ as k → ∞, induction completes the proof.

Uniqueness. Denote by xj(t) = x(t, t0, xj
0), xj(t0) = xj

0, j = 1, 2, solutions of (1), where θk ≤
t0 < θk+1. We will show that, for each t ∈ [θk , θk+1), x1

0 �= x2
0 implies x1(t) �= x2(t). We have

x1(t) – x2(t) = x1
0 – x2

0 +
∫ t

t0

[
f
(
s, x1(s), x1(θk)

)
– f

(
s, x2(s), x2(θk)

)]
ds.

Hence

∣
∣x1(t) – x2(t)

∣
∣ ≤ ∣

∣x1
0 – x2

0
∣
∣ + lθ

∣
∣x1(θk) – x2(θk)

∣
∣ + l

∣
∣
∣
∣

∫ t

t0

∣
∣x1(s) – x2(s)

∣
∣ds

∣
∣
∣
∣.

The Gronwall–Bellman lemma yields that

∣
∣x1(t) – x2(t)

∣
∣ ≤ (∣

∣x1
0 – x2

0
∣
∣ + lθ

∣
∣x1(θk) – x2(θk)

∣
∣
)
elθ .

Particularly,

∣
∣x1(θk) – x2(θk)

∣
∣ ≤ (∣

∣x1
0 – x2

0
∣
∣ + lθ

∣
∣x1(θk) – x2(θk)

∣
∣
)
elθ . (2)

Thus

∣
∣x1(t) – x2(t)

∣
∣ ≤ elθ

[

1 +
lθelθ

1 – lθelθ

]
∣
∣x1

0 – x2
0
∣
∣. (3)

Assume on the contrary that there exists t ∈ [θk , θk+1) such that x1(t) = x2(t). Then

x1
0 – x2

0 =
∫ t

t0

[
f
(
s, x2(s), x2(θk)

)
– f

(
s, x1(s), x1(θk)

)]
ds.

Inequalities (2)–(3) and (A5) imply that

∣
∣x1

0 – x2
0
∣
∣ =

∣
∣
∣
∣

∫ t

t0

∣
∣f

(
s, x2(s), x2(θk)

)
– f

(
s, x1(s), x1(θk)

)∣
∣ds

∣
∣
∣
∣

≤ 2lθelθ

1 – lθelθ

∣
∣x1

0 – x2
0
∣
∣

<
∣
∣x1

0 – x2
0
∣
∣,

a contradiction. Especially, if x1(θ–
k+1) �= x2(θ–

k+1), then (A2) implies that x1(θk+1) �= x2(θk+1),
and by the same arguments as before we can conclude that also x1(t) �= x2(t) on [θk+1, θk+2),
and induction completes the proof of uniqueness. Thus, the proof of Theorem 1 is com-
plete. �

Remark 1 From the proof of Theorem 1 we can see that every solution of system (1) exists
uniquely and is piecewise continuous on [t0,∞). Moreover, every solution x(t) is right-
continuous at the possible discontinuous points θk , and x(θ–

k ) exists. In addition, system
(1) obviously has the zero solution.
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Definition 2 A function V : R+ ×R
n → R+ is said to belong to the class v0 if

(i) V is continuous on [θk , θk+1) ×R
n, k ∈ Z+ and V (t, 0) ≡ 0 for all t ∈R+;

(ii) V is continuously differentiable on [θk , θk+1) ×R
n, k ∈ Z+ and for each x ∈R

n, its
right-hand derivative exists at t = θk , k ∈ Z+.

Definition 3 Given a piecewise continuously differentiable Lyapunov function V (t, x) ∈
v0, the upper right-hand derivative of V with respect to system (1) is defined by

D+V (t, x, y) = lim sup
h→0+

1
h
[
V

(
t + h, x + hf (t, x, y)

)
– V (t, x)

]

for all t ∈ R+ and x, y ∈R
n. In particular, for t �= θk and x, y ∈R

n, we have

D+V (t, x, y) =
∂V (t, x)

∂t
+ gradT

x V (t, x)f (t, x, y).

Besides, several basic definitions such as uniform stability, uniform asymptotical stability,
and global weak exponential stability are the same as those in [1, 7], and so we omit them.

3 Main results
In this section, under the same assumptions, we obtain the stability of the zero solution of
system (1) based on the Lyapunov–Razumikhin method. Firstly, we present some uniform
stability results.

Theorem 2 Assume that there exist functions V ∈ v0, u, v ∈ �2, such that
(i) u(|x|) ≤ V (t, x) ≤ v(|x|), (t, x) ∈ [t0,∞) ×R

n;
(ii) for all t ∈ [θk , θk+1), k ∈ Z+, and x, y ∈R

n, V (β(t), y) ≤ V (t, x) implies that

D+V (t, x, y) ≤ 0;

(iii) for all k ∈ Z+ – {0} and x ∈R
n, we have V (θk , x + Ik(θk , x)) ≤ (1 + bk)V (θ–

k , x), where
bk ≥ 0 with

∑∞
k=1 bk < ∞.

Then the zero solution of (1) is uniformly stable.

Theorem 3 Assume that there exist functions V ∈ v0, u, v ∈ �2, ψ ∈ �1, and W ∈ �2 such
that

(i) u(|x|) ≤ V (t, x) ≤ v(|x|), (t, x) ∈ [t0,∞) ×R
n;

(ii) for all t ∈ [θk , θk+1), k ∈ Z+, and x, y ∈R
n, V (β(t), y) ≤ ψ–1(V (t, x)) implies that

D+V (t, x, y) ≤ g(t)W
(
V (t, x)

)
,

where g : [t0,∞) →R+ is locally integrable;
(iii) for all k ∈ Z+ – {0} and x ∈R

n, V (θk , x + Ik(θk , x)) ≤ ψ(V (θ–
k , x));

(iv) for all k ∈ Z+, infμ∈R+

∫ μ

ψ(μ)
ds

W (s) >
∫ θk+1
θk

g(s) ds.
Then the zero solution of (1) is uniformly stable.

Remark 2 We may observe that the two theorems generalize the existing corresponding
results, and their proofs can be formulated by combining the corresponding theorems in
[38] and [41], and so we omit them.
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Theorem 4 Assume that there exist functions V ∈ v0, u, v ∈ �2, ψ ∈ �3, and W ∈ �2 such
that

(i) u(|x|) ≤ V (t, x) ≤ v(|x|), (t, x) ∈ [t0,∞) ×R
n;

(ii) for all t ∈ [θk , θk+1), k ∈ Z+, and x, y ∈R
n, V (β(t), y) < ψ(V (t, x)) implies that

D+V (t, x, y) ≤ –g(t)W
(
V (t, x)

)
,

where g : [t0,∞) →R+ is locally integrable;
(iii) for all k ∈ Z+ – {0} and x ∈R

n, V (θk , x + Ik(θk , x)) ≤ ψ(V (θ–
k , x));

(iv) for all k ∈ Z+, supν∈R+

∫ ψ(ν)
ν

ds
W (s) <

∫ θk+1
θk

g(s) ds.
Then the zero solution of (1) is uniformly stable.

Proof For given ε > 0, we may choose δ > 0 such that ψ(v(δ)) < u(ε). For any t0 ≥ 0 and
|x0| < δ, we shall show that |x(t)| < ε, t ≥ t0. To show that this δ is the needed one, we
consider two cases where t0 = θi for some i ∈ Z+ and another one where t0 �= θj for all
j ∈ Z+.

First, let t0 = θm–1 for some m ∈ Z+ – {0}. For convenience, we take V (t) = V (t, x(t)),
D+V (t) = D+V (t, x(t), x(β(t))). We first claim that

V (t) ≤ v(δ), t ∈ [t0, θm). (4)

Clearly, V (t0) ≤ v(δ). If (4) does not hold, then there exist points t1 and t2, t0 ≤ t1 < t2 < θm,
such that V (t1) = v(δ) and V (t) > v(δ) for t ∈ (t1, t2]. Applying the mean-value theorem, we
get

V (t2) – V (t1)
t2 – t1

= D+V (t̂) > 0 (5)

for some t̂ ∈ (t1, t2). Since ψ(V (t̂)) > V (t̂) > v(δ) ≥ V (t0) = V (β(t̂)), it follows from condi-
tion (ii) that D+V (t̂) ≤ –g(t̂)W (V (t̂)) < 0, which contradicts (5), and so (4) holds. From (4)
and condition (iii) we obtain

V (θm) ≤ ψ
(
V

(
θ–

m
)) ≤ ψ

(
v(δ)

)
.

Using the same argument as before, we can prove that

V (t) ≤ ψ
(
v(δ)

)
, t ∈ [θm, θm+1). (6)

We now further claim that

V
(
θ–

m+1
) ≤ v(δ). (7)

Suppose not, that is, V (θ–
m+1) > v(δ). There are two cases: (a) V (t) > v(δ) for all t ∈ [θm, θm+1),

and (b) there exists t ∈ [θm, θm+1) such that V (t) ≤ v(δ). For case (a), we have ψ(V (t)) >
ψ(v(δ)) ≥ V (β(t)) for all t ∈ [θm, θm+1). By condition (ii) we get

D+V (t) ≤ –g(t)W
(
V (t)

)
, t ∈ [θm, θm+1).
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Integrating this inequality yields

∫ θm+1

θm

g(s) ds ≤
∫ V (θm)

V (θ–
m+1)

ds
W (s)

≤
∫ ψ(v(δ))

v(δ)

ds
W (s)

≤ sup
μ∈R+

∫ ψ(μ)

μ

1
W (s)

ds,

which is a contradiction with condition (iv). For case (b), we set

t̄ = sup
{

t ∈ [θm, θm+1)|V (t) ≤ v(δ)
}

.

Obviously, V (t̄) = v(δ) for t̄ < θm+1. Then there exists t̃ ∈ (t̄, θm+1) such that D+V (t̃) > 0,
whereas since ψ(V (t̃)) > ψ(v(δ)) ≥ V (β(t̃)), condition (ii) implies that D+V (t̃) < 0, a con-
tradiction. By now, we get the following statement:

V (t) ≤

⎧
⎪⎪⎨

⎪⎪⎩

v(δ), t ∈ [t0, θm),

ψ(v(δ)), t ∈ [θm, θm+1),

v(δ), t → θ–
m+1.

By the same argument as in the proofs of (6) and (7), in general, we can deduce that

V (t) ≤

⎧
⎪⎪⎨

⎪⎪⎩

v(δ), t ∈ [t0, θm),

ψ(v(δ)), t ∈ [θm+j–1, θm+j),

v(δ), t → θ–
m+j, j ∈ Z+ – {0}.

(8)

Hence from condition (i) and (8) we have

u
(∣
∣x(t)

∣
∣
) ≤ V (t) ≤ ψ

(
v(δ)

)
< u(ε), t ≥ t0,

which implies that |x(t)| < ε, t ≥ t0.
Now, let t0 ≥ 0 with t0 �= θi for any i ∈ Z+. By the idea in [41] and Lemma 1 we take

δ1 = δ
K (l) , where δ satisfies ψ(v(δ)) < u(ε). Then |x0| < δ1 implies |x(t)| < ε, t ≥ t0. We see

that the evaluation of δ1 is independent of t0. The proof of Theorem 4 is complete. �

Remark 3 It should be noted that Theorem 4 allows for significant increases in V at im-
pulse times, which may be persistently large (ψ(s) > s for s > 0) and appropriately con-
trolled by the length of impulsive intervals. So, the length of impulsive intervals cannot
be too small; in other words, the disturbed impulses cannot happen too frequently, with
the same idea as that in [44]; yet the impulse conditions presented in Theorem 4 are more
general than that in [44] and can be verified more easily and conveniently.

Now, we present uniform asymptotical stability and exponential stability results.

Theorem 5 Assume that there exist functions V ∈ v0, u, v ∈ �2, ψ ∈ �3, and W ∈ �2 such
that

(i) u(|x|) ≤ V (t, x) ≤ v(|x|), (t, x) ∈ [t0,∞) ×R
n;

(ii) for all k ∈ Z+ – {0} and x ∈R
n, V (θk , x + Ik(θk , x)) ≤ (1 + bk)V (θ–

k , x), where bk ≥ 0
with M̄ =

∑∞
k=1 bk < ∞.
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(iii) for all t ∈ [θk , θk+1), k ∈ Z+ and x, y ∈ R
n, V (β(t), y) < ψ(V (t, x)) implies that

D+V (t, x, y) ≤ –W
(|x|),

where ψ(s) > Ms for s > 0 with M =
∏∞

k=1(1 + bk).
Then the zero solution of (1) is uniformly asymptotically stable.

Proof Clearly, the conditions of Theorem 5 imply the uniform stability by Theorem 2.
First, let t0 = θm–1 for some m ∈ Z+ – {0}. We take V (t) = V (t, x(t)), D+V (t) = D+V (t, x(t),

x(β(t))) for convenience. For given ρ > 0, we choose δ > 0 such that Mv(δ) = u(ρ), and
|x(t0)| < δ implies that, for t ≥ t0,

V (t) ≤ Mv(δ) and
∣
∣x(t)

∣
∣ < ρ.

In what follows, we show that, for arbitrary ε, 0 < ε < ρ , there exists T = T(ε) > 0 such
that |x(t)| ≤ ε for t ≥ t0 + T if |x(t0)| < δ.

Obviously, there exists a number a > 0 such that ψ(s) – Ms > a for M–1u(ε) ≤ s ≤ Mv(δ).
Let N = N(ε) be the smallest positive integer such that M–1(u(ε) + Na) ≥ Mv(δ). Choose
tk = k( Mv(δ)(1+M̄)

γ
+ θ ) + θm–1, k = 1, 2, . . . , N , where

γ = inf
v–1(M–1u(ε))≤s≤ρ

W (s).

We will prove that

V (t) ≤ u(ε) + (N – k)a for t ≥ tk , k = 0, 1, . . . , N . (9)

We have V (t) ≤ Mv(δ) ≤ M–1(u(ε) + Na) ≤ u(ε) + Na for t ≥ t0 = θm–1. Hence (9) holds for
k = 0. Now, suppose that (9) holds for some 0 < k < N . Let us show that

V (t) ≤ u(ε) + (N – k – 1)a for t ≥ tk+1. (10)

Let Jk = [β(tk) + θ , tk+1]. We first claim that there exists t∗ ∈ Jk such that

V
(
t∗) ≤ M–1[u(ε) + (N – k – 1)a

]
. (11)

Otherwise, V (t) > M–1[u(ε) + (N – k – 1)a] for all t ∈ Jk . On the other side, V (t) ≤ u(ε) +
(N – k)a for t ≥ tk implies that

V
(
β(t)

) ≤ u(ε) + (N – k)a for t ≥ β(tk) + θ .

Hence, for t ∈ Jk ,

ψ
(
V (t)

)
> MV (t) + a ≥ u(ε) + (N – k)a ≥ V

(
β(t)

)
.

It follows from hypothesis (iii) and the definition of γ that

D+V (t) ≤ –W
(|x|) ≤ –γ for all t �= θi in Jk .
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We get

V (tk+1) ≤ V
(
β(tk) + θ

)
– γ

(
tk+1 – β(tk) – θ

)
+

∑

β(tk )+θ<θi≤tk+1

[
V (θi) – V

(
θ–

i
)]

≤ Mv(δ) – γ (tk+1 – tk – θ ) +
∞∑

i=1

biV
(
θ–

i
)

≤ Mv(δ) + Mv(δ)M̄ – Mv(δ)(1 + M̄) = 0,

a contradiction, and so (11) holds.
Let q = min{i ∈ Z+ : θi > t∗}. We claim that

V (t) ≤ M–1[u(ε) + (N – k – 1)a
]
, t∗ ≤ t < θq. (12)

If (12) does not hold, then there exists t̄ ∈ (t∗, θq) such that

V (t̄) > M–1[u(ε) + (N – k – 1)a
] ≥ V

(
t∗).

Thus, there exists t̃ ∈ (t∗, t̄) such that t̃ �= θi, D+V (t̃) > 0, and V (t̃) > M–1[u(ε)+(N –k –1)a].
However,

ψ
(
V (t̃)

)
> MV (t̃) + a > u(ε) + (N – k)a ≥ V

(
β(t̃)

)

implies that D+V (t̃) ≤ –γ < 0, a contradiction, so (12) holds.
From (12) and (ii) we have

V (θq) ≤ (1 + bq)V
(
θ–

q
) ≤ (1 + bq)M–1[u(ε) + (N – k – 1)a

]
.

Therefore, for all t ∈ [t∗, θq],

V (t) ≤ (1 + bq)M–1[u(ε) + (N – k – 1)a
]
.

Similarly, we can show that, for all t ∈ [θq, θq+1],

V (t) ≤ (1 + bq)(1 + bq+1)M–1[u(ε) + (N – k – 1)a
]
,

and by a simple induction we conclude that, for t ∈ [θq+i, θq+i+1], i = 0, 1, 2, . . . ,

V (t) ≤ (1 + bq)(1 + bq+1) · · · (1 + bq+i+1)M–1[u(ε) + (N – k – 1)a
]
.

Thus V (t) ≤ u(ε) + (N – k – 1)a for t ≥ t∗, and so (10) holds.
For k = N , we get

V (t) ≤ u(ε), t ≥ tN = N
[

Mv(δ)(1 + M̄)
γ

+ θ

]

+ θm–1.

Hence |x(t)| ≤ ε for t ≥ t0 +T , where T = N[ Mv(δ)(1+M̄)
γ

+θ ], proving the uniform asymptotic
stability for t0 = θm–1, m ∈ Z+ – {0}.



Xi Advances in Difference Equations  (2018) 2018:267 Page 10 of 16

Now, let t0 �= θi for any i ∈ Z+. Similar to the arguments in Theorem 4, taking δ1 = δ
K (ρ) ,

we obtain that |x(t0)| < δ1 implies |x(t)| < ε, t ≥ t0 + T . The proof of Theorem 5 is com-
plete. �

Theorem 6 Assume that there exist functions V ∈ v0, u, v, W ∈ �2 and constants η > 0,
μ > 1 such that

(i) u(|x|) ≤ V (t, x) ≤ v(|x|), (t, x) ∈ [t0,∞) ×R
n;

(ii) for all t ∈ [θk , θk+1), k ∈ Z+ and x, y ∈ R
n, eηβ(t)V (β(t), y) < μeηtV (t, x) implies that

D+V (t, x, y) ≤ –g(t)W
(
V (t, x)

)
,

where g : [t0,∞) →R+ is locally integrable;
(iii) for all k ∈ Z+ – {0} and x ∈R

n, V (θk , x + Ik(θk , x)) ≤ μV (θ–
k , x);

(iv) inft∈R+ g(t) inft∈R+
W (t)

t > 1
τ

lnμ, τ = infk∈Z+{θk+1 – θk}.
Then the zero solution of (1) is globally weakly exponentially stable.

Proof Set

h := inf
t∈R+

g(t) inf
t∈R+

W (t)
t

. (13)

Given a constant ε such that

0 < ε < min

{

h –
lnμ

τ
,η

}

, (14)

for any t0 ≥ 0, we shall prove that u(|x(t)|) ≤ φ(|x0|)e–ε(t–t0), t ≥ t0, where φ(R+,R+) ∈ �2.
We also consider two cases where t0 = θi for some i ∈ Z+ and where t0 �= θj for all j ∈ Z+.

First, let t0 = θm–1 for some m ∈ Z+ – {0}. We take V (t) = V (t, x(t)), D+V (t) = D+V (t, x(t),
x(β(t))) for convenience and define �(t) = V (t)eε(t–t0), t ≥ t0. We will further show that

�(t) ≤ v
(|x0|

)
, t ∈ [t0, θm). (15)

Clearly, �(t0) = V (t0) ≤ v(|x0|). If (15) does not hold, then there exist t1 and t2, t0 ≤ t1 <
t2 < θm, such that �(t1) = v(|x0|) and �(t) > v(|x0|) for t ∈ (t1, t2]. Applying the mean-value
theorem, we get

�(t2) – �(t1)
t2 – t1

= D+�(t̂) > 0 (16)

for some t̂ ∈ (t1, t2), and �(t̂) > v(|x0|) ≥ �(t0) = �(β(t̂)). From the definition of �, together
with (14), we have

eηβ(t̂)V
(
β(t̂)

)
< eηt̂V (t̂) < μeηt̂V (t̂).
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It follows from condition (ii), (13), and (14) that

D+�(t̂) =
D+V (t̂)

V (t̂)
eε(t̂–t0)V (t̂) + V (t̂)εeε(t̂–t0)

≤ �(t̂)
[

ε – g(t̂)
W (V (t̂))

V (t̂)

]

≤ �(t̂)(ε – h) < 0,

which contradicts (16), and so (15) holds. From (15) and condition (iii) we obtain

�(θm) ≤ μ�
(
θ–

m
) ≤ μv

(|x0|
)
.

Using the same argument as before, we can prove that

�(t) ≤ μv
(|x0|

)
, t ∈ [θm, θm+1). (17)

We now further claim that

�
(
θ–

m+1
) ≤ v

(|x0|
)
. (18)

Suppose not, that is, �(θ–
m+1) > v(|x0|). There are two cases: (a) �(t) > v(|x0|) for all t ∈

[θm, θm+1), and (b) there exists some t ∈ [θm, θm+1) such that �(t) ≤ v(|x0|). In case (a),
we have μ�(t) > μv(|x0|) ≥ �(β(t)) for all t ∈ [θm, θm+1), which implies that μeηtV (t) >
eηβ(t)V (β(t)), t ∈ [θm, θm+1). By condition (ii) we get

D+�(t) = D+V (t)eε(t–t0) + V (t)εeε(t–t0)

≤ �(t)
[

ε – g(t)
W (V (t))

V (t)

]

≤ �(t)(ε – h), t ∈ [θm, θm+1).

Integrating this inequality yields that

(h – ε)τ ≤
∫ �(θm)

�(θ–
m+1)

ds
s

≤
∫ μv(|x0|)

v(|x0|)
ds
s

= lnμ,

which is a contradiction with (14). For case (b), we set

t̄ = sup
{

t ∈ [θm, θm+1)|�(t) ≤ v
(|x0|

)}
.

Obviously, t̄ < θm+1 and �(t̄) = v(|x0|). Then there exists t̃ ∈ (t̄, θm+1) such that D+�(t̃) > 0,
whereas for all t ∈ [t̄, θm+1), we have μ�(t) ≥ μv(|x0|) ≥ �(β(t)), which implies μV (t)eηt ≥
V (β(t))eηβ(t), and by condition (ii) we get D+�(t) < 0, t ∈ [t̄, θm+1), which is also a contra-
diction. By now, we get the following statement:

�(t) ≤

⎧
⎪⎪⎨

⎪⎪⎩

v(|x0|), t ∈ [t0, θm),

μv(|x0|), t ∈ [θm, θm+1),

v(|x0|), t → θ–
m+1.
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By the same argument as in the proofs of (17) and (18), in general, we can deduce that

�(t) ≤

⎧
⎪⎪⎨

⎪⎪⎩

v(|x0|), t ∈ [t0, θm),

μv(|x0|), t ∈ [θm+j–1, θm+j),

v(|x0|), t → θ–
m+j, j ∈ Z+ – {0}.

(19)

Hence we have �(t) ≤ μv(|x0|) for all t ≥ t0, which implies that

u
(∣
∣x(t)

∣
∣
) ≤ V (t) = �(t)e–ε(t–t0) ≤ μv

(|x0|
)
e–ε(t–t0), t ≥ t0.

Now, let t0 �= θi for any i ∈ Z+. Similarly to the arguments in Theorem 4, we can obtain

u
(∣
∣x(t)

∣
∣
) ≤ μv

(
K(l)|x0|

)
e–ε(t–t0), t ≥ t0.

The proof of Theorem 6 is complete. �

4 Examples
In this section, we give some examples to illustrate the theoretical results obtained in the
previous section.

Example 1 Consider the system

⎧
⎨

⎩

x′(t) = –ax(t) + bx(β(t)), t ≥ 0,

x(θk) = px(θ–
k )), k ∈ Z+ – {0},

(20)

where a > 0, p > 1, b ∈R are some constants, satisfying a – |b|p > 0, θk+1 – θk > ln p
a–|b|p .

Let V (t, x) = |x|, ψ(s) = ps, W (s) = s. Then

V
(
θk , x + Ik(θk , x)

)
=

∣
∣x(θk)

∣
∣ = p

∣
∣x

(
θ–

k
)∣
∣ = ψ

(
V

(
θ–

k , x
))

,

and for all t �= θk , V (β(t), x(β(t))) < pV (t, x), which means that |x(β(t))| < p|x(t)| implies

V ′(t, x)|(20) ≤ –a
∣
∣x(t)

∣
∣ + |b|∣∣x(

β(t)
)∣
∣ ≤ (

–a + |b|p)∣
∣x(t)

∣
∣ = –g(t)W

(
V (t, x)

)
,

where g(t) = a – |b|p > 0. For all k ∈ Z+,

sup
ν∈R+

∫ pν

ν

ds
W (s)

= ln p =
(
a – |b|p) ln p

a – |b|p <
∫ θk+1

θk

g(s) ds.

Therefore by Theorem 4 the zero solution of system (20) is uniformly stable.
In particular, let a = e0.3 + 1, p = e0.3, b = 1, and θk = 0.6k. Then the simulation of system

(20) is shown in Fig. 1, which illustrates the stability of zero solution.

Example 2 Consider the system

⎧
⎨

⎩

x′(t) = –a(t)x(t) + b(t)x(β(t)), t ≥ 0,

x(θk) = x(θ–
k )) + Ik(θk , x(θ–

k )), k ∈ Z+ – {0},
(21)
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Figure 1 Simulation of system (20)

where a(t) and b(t) are continuous functions on [0, +∞) satisfying a(t) ≥ a > 0 and |b(t)| ≤
b, Ik(t, x) ∈ C(R+ ×R

n,Rn) satisfy |x + Ik(t, x)| ≤ (1 + bk)|x| for t ∈ R+, x ∈ R
n, with bk ≥ 0

and
∑∞

k=1 bk < ∞. Also suppose that a – bM > 0 with M =
∏∞

k=1(1 + bk).
Let V (t, x) = |x|,ψ(s) = qMs, where q > 1 is such that a – bqM > 0. Then

V
(
θk , x + Ik(θk , x)

)
=

∣
∣x(θk)

∣
∣ ≤ (1 + bk)

∣
∣x

(
θ–

k
)∣
∣ = (1 + bk)V

(
θ–

k , x
)
,

and for all t �= θk , V (β(t), x(β(t))) < ψ(V (t, x)), which means |x(β(t))| < qM|x(t)|, implies
that

V ′(t, x)|(21) ≤ –a(t)
∣
∣x(t)

∣
∣ +

∣
∣b(t)

∣
∣
∣
∣x

(
β(t)

)∣
∣ ≤ –(a – bqM)

∣
∣x(t)

∣
∣.

Therefore by Theorem 5 the zero solution of system (21) is uniformly asymptotically sta-
ble.

Example 3 Consider the system
⎧
⎨

⎩

x′(t) = –a(t)x(t) + b(t)x(β(t)), t ≥ 0,

x(θk) = px(θ–
k )), k ∈ Z+ – {0},

(22)

where a(t) and b(t) are continuous functions on [0, +∞), p > 1 is a given constant, and
there exist constants γ > 0 and η > 0 such that eβ(t)(a(t) – γ ) ≥ p|b(t)|eηt for all t ≥ 0. Also,
suppose that γ (θk+1 – θk) > ln p for all k ∈ Z+.

Let V (t, x) = |x|, W (t) = γ t, and g(t) ≡ 1. Then

V
(
θk , x + Ik(θk , x)

)
= p

∣
∣x

(
θ–

k
)∣
∣ = pV

(
θ–

k , x
)
,

and for all t �= θk , eηβ(t)V (β(t), x(β(t))) < peηtV (t, x), which means eηβ(t)|x(β(t))| < peηt|x(t)|,
implies that

V ′(t, x)|(22) ≤ –a(t)
∣
∣x(t)

∣
∣ +

∣
∣b(t)

∣
∣
∣
∣x

(
β(t)

)∣
∣ ≤ –γ

∣
∣x(t)

∣
∣ = –g(t)W

(
V (t, x)

)
.

Also,

inf
t∈R+

g(t) inf
t∈R+

W (t)
t

= γ >
ln p

infk∈Z+{θk+1 – θk} .
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Figure 2 Simulation of system (22) with stable
parameters

Figure 3 Simulation of system (22) with unstable
parameters

Therefore by Theorem 6 the zero solution of system (22) is globally weakly exponentially
stable.

In particular, let p = e0.5, γ = 1, η = 0.2, b(t) = sin t, θk = 0.6k, and a(t) = 1 +
| sin t|e0.2t+0.5–0.6k , t ∈ [θk , θk+1), k ∈ Z+. Then the simulation of system (22) is shown in
Fig. 2, which illustrates the global exponential stability of zero solution. In addition, if we
let θk = 0.4k and other parameters be fixed, then it will go against the required conditions.
In this case, Fig. 3 tells us that the system becomes unstable, which shows the sharpness
of our results.

Remark 4 On one hand, the stability of the systems in the examples may not be obtained
by the results in existing references due to the existence of both impulse and piecewise
constant argument. So the results in this paper are more general than those in the refer-
ences. On the other hand, it should be noted that in the three systems, the sequence {θk}
needs to satisfy conditions (A3), (A4), and (A5). I particular, in Examples 1 and 3, consider-
ing the presence of persisting impulses, we give the lower bound of θ (e.g., θk+1 –θk > ln p

a–|b|p
in Example 1), and, in fact, the range of the parameter θ is constructed for the stability of
zero solution in Examples 1 and 3.

5 Conclusion
In this paper, we have derived several stability theorems for nonlinear systems with
impulses and piecewise constant argument by employing the- Lyapunov-Razumikhin
method and impulsive control theory. Examples are also given to show the effectiveness
and novelty of the results. The theoretical results obtained can be applied to study the
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stability problem of many nonlinear impulsive models with piecewise constant argument
such as neural networks, population models, and other biological models. However, our
results are based on the fact that the piecewise constant argument in systems is of retarded
type, so it is interesting to develop the Lyapunov–Razumikhin technique to impulsive sys-
tems with piecewise constant argument of advanced type or hybrid type, which requires
further research in the future.
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