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Abstract
In this paper, three Keller–Segel models are considered from the point of Lie
symmetry analysis, conservation laws, symmetry reduction, and exact solutions. By
means of Lie symmetry analysis, we first obtain all the symmetries for the three
models. Based on the obtained symmetries, many non-trivial and explicit
conservation laws for the three models are obtained with the help of Ibragimov’s new
conservation theorem. Applying the characteristic equations of the obtained
symmetries, symmetry reductions and exact solutions are obtained, including
solutions expressed by rational functions and Bessel functions.
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1 Introduction
The famous chemotaxis model was proposed by Keller and Segel in the 1970s to describe
the aggregation of cellular slime molds Dictyostelium discoideum in response to the chem-
ical cyclic adenosine monophosphate [1, 2]. In its simplified form, Keller–Segel model
reads

⎧
⎨

⎩

ut = ∇ · (d∇u – δu∇φ(v)),

εvt = α�v + f (u, v),
(1.1)

where u and v denote the cell density and chemical concentration, respectively. d > 0 and
α ≥ 0 are cell and chemical diffusion coefficients, respectively. δ > 0 is called the chemo-
tactic coefficient measuring the strength of the chemical signal. Here φ(v) is referred to as
the chemosensitivity function describing the signal detection mechanism and f (u, v) is a
function characterizing the chemical growth and degradation. In (1.1), ε denotes 0 or 1.
When ε = 1, (1.1) is called parabolic-parabolic Keller–Segel model; when ε = 0, (1.1) is
called elliptic-parabolic Keller–Segel model. Keller–Segel models are used to describe a
wide range of processes in biology, ecology, medicine, and so on. The readers are referred
to [3–14] for more details about biological motivation and mathematical introduction of
Eq. (1.1).
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System (1.1) with linear law φ(v) = v, ε = 1, f (u, v) = βu – λv has the form

⎧
⎨

⎩

ut = duxx – δ(uvx)x,

vt = αvxx + βu – λv,
(1.2)

and is also called the minimum chemotaxis model, see a review article [6]. When d = δ = 1,
λ = 0, system (1.2) becomes of the form in [8, 9]:

⎧
⎨

⎩

ut = uxx – (uvx)x,

vt = αvxx + βu.
(1.3)

For the integrable case α = 2, an exact solution of (1.3) has been derived in [8], more exact
solutions of (1.3) have been derived in [9].

System (1.1) with logarithmic sensitivity φ(v) = ln v, ε = 1, f (u, v) = βu – λv is expressed
by

⎧
⎨

⎩

ut = duxx – δ( uvx
v )x,

vt = αvxx + βu – λv,
(1.4)

and has prominent specific applications. For the special case α = 0, λ = 0 of (1.4), Keller
and Segel [10] performed theoretical analysis to interpret the propagating travelling bands
of bacterial chemotaxis experimentally observed in [11, 12].

It is known that Lie symmetry analysis is a powerful and systematic method for dealing
with partial differential equations (PDEs) [15–21]. Lie symmetry analysis has also been ex-
tended to fractional partial differential equations (FPDEs) in recent years [22–25]. More-
over, this method has had a profound impact on both pure and applied areas of mathe-
matics, physics, mechanics, etc. Based on the symmetries of a PDE or a FPDE, many other
important properties of the equation such as integrability, conservation laws, reduction
equations, and exact solutions can be considered successively [18–25]. For the special case
φ(v) = v, ε = 0, f (u, v) = βu – λv, Lie symmetry analysis and self-similar solutions are con-
sidered in [26], and a natural continuation of [26] for a (1 + 2)-dimensional Keller–Segel
model is considered in [27, 28]. As far as we know, Lie symmetry analysis and conserva-
tion laws of (1.2), (1.3), and (1.4) have not been studied. To provide more information for
understanding the three models, we will study symmetry, conservation laws, symmetry
reductions, and exact solutions of (1.2), (1.3), and (1.4).

The rest of the paper is organized as follows. In Sect. 2, Lie symmetry analysis of the
three models is performed. In Sect. 3, formal Lagrangian and adjoint systems of the three
models are derived to obtain the conservation laws. In Sect. 4, non-trivial and explicit
conservation laws are derived. In Sect. 5, we use the symmetry to get symmetry reductions
and new exact solutions of the three models. The last section is a short summary and
discussion.

2 Symmetry analysis of (1.2), (1.3), and (1.4)
Recall that the geometric vector field of system (1.1) is as follows:

V = ξ (x, t, u, v)
∂

∂x
+ τ (x, t, u, v)

∂

∂t
+ φ(x, t, u, v)

∂

∂u
+ ψ(x, t, u, v)

∂

∂v
, (2.1)
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where the coefficient functions ξ (x, t, u, v), τ (x, t, u, v), φ(x, t, u, v), and ψ(x, t, u, v) are to be
determined later. Equation (2.1) is also called a symmetry of (1.1).

If the vector field (2.1) generates a symmetry of the three systems (1.2), (1.3), and (1.4),
then V must satisfy the Lie symmetry condition

⎧
⎨

⎩

pr(m) V (�1)|�1=0 = 0,

pr(n) V (�2)|�2=0 = 0,
(2.2)

where pr(m) V denotes the mth prolongation of V , and �1 = ut – duxx + δ(uvx)x, �2 = vt –
αvxx – βu + λv for system (1.2), �1 = ut – uxx + (uvx)x, �2 = vt – αvxx – βu for system (1.3),
�1 = ut – duxx +δ( uvx

v )x, �2 = vt –αvxx –βu +λv for system (1.4), respectively. For example,
in view of system (1.2), we have

pr(2) V = φ
∂

∂u
+ ψ

∂

∂v
+ φt ∂

∂ut
+ ψ t ∂

∂vt
+ φx ∂

∂ux
+ ψx ∂

∂vx
+ φxx ∂

∂uxx
+ ψxx ∂

∂vxx
, (2.3)

where the coefficient functions are given by

φx = Dx(φ – ξux – τut) + ξuxx + τuxt ,

φt = Dt(φ – ξux – τut) + ξuxt + τutt ,

φxx = Dxx(φ – ξux – τut) + ξuxxx + τutxx,

ψx = Dx(ψ – ξvx – τvt) + ξvxx + τvxt ,

ψ t = Dt(ψ – ξvx – τvt) + ξvxt + τvtt ,

ψxx = Dxx(ψ – ξvx – τvt) + ξvxxx + τvxxt ,

Dx and Dt are total differential operators with respect to x and t, respectively. Then, in
terms of the Lie symmetry analysis method, we can obtain all of the geometric vector
fields of the three systems.

(i) For system (1.2), the vector field for an arbitrary value of λ is

V1 =
∂

∂x
, V2 =

∂

∂t
, V3 = e–λt ∂

∂v
. (2.4)

When λ = 0, in addition to (2.4), there is another vector

V4 =
x
2

∂

∂x
+ t

∂

∂t
– u

∂

∂u
.

(ii) For system (1.3), the vector field is

V1 =
∂

∂x
, V2 =

∂

∂t
, V3 =

∂

∂v
, V4 =

x
2

∂

∂x
+ t

∂

∂t
– u

∂

∂u
. (2.5)

(iii) For system (1.4), the vector field for an arbitrary value of λ is

V1 =
∂

∂x
, V2 =

∂

∂t
, V3 = u

∂

∂u
+ v

∂

∂v
. (2.6)
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When λ = 0, in addition to (2.6), there is another vector

V4 =
x
2

∂

∂x
+ t

∂

∂t
– u

∂

∂u
. (2.7)

Moreover, it is necessary to show that the vector fields of the systems are closed under
the Lie racket, respectively. Taking (2.5) for an example, we have

[V1, V2] = 0, [V1, V3] = 0, [V1, V4] =
1
2

V1,

[V2, V3] = 0, [V2, V4] = V2, [V3, V4] = 0.

So, the vector field of (1.3) is spanned by a four-dimensional Lie algebra. In fact, the vector
fields of (1.2) and (1.4) are also spanned by finite dimensional Lie algebra.

3 Formal Lagrangians and adjoint systems
The construction of explicit forms of conservation laws plays an important role in the
study of nonlinear science, as they are used for the development of appropriate numerical
methods and for mathematical analysis, in particular, existence, uniqueness, and stability
analysis [29–31]. In addition, the existence of a large number of conservation laws of a
partial differential equation (system) is a strong indication of its integrability. There are
many methods to get the conservation laws of differential equations, such as Noether’s
theorem [32], the partial Noether approach [33], and so on [34–38]. Among those, the
new conservation theorem given by Ibragimov is one of the most frequently used methods
since it does not require the existence of classical Lagrangians and can be used to find
conservation laws associated with the known Lie, Lie–Bäcklund, or non-local symmetries
[34, 39].

3.1 A general theorem on conservation laws
To derive conservation laws of systems (1.2), (1.3), and (1.4), we use the following new
conservation theorem proved in [32, 33].

Theorem 1 Every Lie point, Lie–Bäcklund, and non-local symmetry

X = ξ i(x, u, u(1), . . .)
∂

∂xi + ηs(x, u, u(1), . . .)
∂

∂us

of a system of m equations

Fs(x, u, u(1), . . . , u(N)) = 0, s = 1, . . . , m, (3.1)

with n independent variables x = (x1, . . . , xn) and m dependent variables u = (u1, . . . , um)
provides a conservation law for system (3.1) and the corresponding adjoint system

F∗
s (x, u, v, u(1), v(1), . . . , u(N), v(N)) ≡ δ(viFi)

δus = 0, s = 1, . . . , m. (3.2)
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Then the elements of the conservation vector T = (T1, . . . , Tn) are defined by the following
expression:

Ti = ξ iL + W s
[

∂L
∂us

i
– Dxj

(
∂L
∂us

ij

)

+ Dxj Dxk

(
∂L

∂us
ijk

)

– · · ·
]

+ Dxj
(
W s)

[
∂L
∂us

ij
– Dxk

(
∂L

∂us
ijk

)

+ Dxk Dxr

(
∂L

∂us
ijkr

)

– · · ·
]

+ Dxj Dxk
(
W s)

[
∂L

∂us
ijk

– Dxr

(
∂L

∂us
ijkr

)

+ · · ·
]

+ · · · , (3.3)

with

W s = ηs – ξ ius
i , s = 1, . . . , m. (3.4)

3.2 Formal Lagrangians and adjoint systems
According to the method of constructing Lagrangians in [32, 33], the formal Lagrangian
of system (1.2) is

L = Z�1 + ω�2 = Z(ut – duxx + δuxvx + δuvxx) + ω(vt – αvxx – βu + λv), (3.5)

where Z and ω are two new dependent variables with respect to x and t. Following the
idea in [32, 33], the adjoint system of system (1.2) is

⎧
⎨

⎩

�∗
1 = δL

δu = 0,

�∗
2 = δL

δv = 0,
(3.6)

where δ
δu and δ

δv are Euler operators,

δ

δu
=

∂

∂u
– Dx

∂

∂ux
– Dt

∂

∂ut
+ Dxx

∂

∂uxx
,

δ

δv
=

∂

∂v
– Dx

∂

∂vx
– Dt

∂

∂vt
+ Dxx

∂

∂vxx
.

(3.7)

Substituting (3.5) and (3.7) into system (3.6), the adjoint system for system (1.2) is ex-
pressed as follows:

⎧
⎨

⎩

�∗
1 ≡ Zt + dzxx + δZxvx + βω = 0,

�∗
2 ≡ ωt + αωxx – δZxxu – δZxux – λω = 0.

(3.8)

The formal Lagrangian of system (1.3) is

L = Z�1 + ω�2 = Z(ut – uxx + uxvx + uvxx) + ω(vt – αvxx – βu), (3.9)

and the adjoint system for system (1.3) is
⎧
⎨

⎩

�∗
1 ≡ Zt + zxx + Zxvx + βω = 0,

�∗
2 ≡ ωt + αωxx – Zxxu – Zxux = 0.

(3.10)
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In a similar way with system (1.2), the formal Lagrangian of system (1.4) is

L = Z�1 + ω�2

= Z
(

ut – duxx + δ
uxvx

v
+ δ

uvxx

v
– δ

uv2
x

v2

)

+ ω(vt – αvxx – βu + λv), (3.11)

and the adjoint system for system (1.4) is

⎧
⎨

⎩

�∗
1 ≡ Zt + dZxx + δ Zxvx

v + βω = 0,

�∗
2 ≡ ωt + αωxx – δ Zxux

v – δ Zxxu
v – λω = 0.

(3.12)

4 Conservation laws for systems (1.2), (1.3), and (1.4)
4.1 Conservation laws for system (1.2)
There are three symmetries for system (1.2). Based on Theorem 1, there is a conservation
law corresponding to every symmetry. For Lie symmetry V1 = ∂

∂x , the characteristic func-
tions are W 1 = –ux, W 2 = –vx, and the conservation law of system (1.2) and adjoint system
(3.8) derived by V1 is

X1 = Zut + ωvt – βωu + λωv – duxZx + δuvxzx – αvxωx,

T1 = –Zux – ωvx.
(4.1)

For Lie symmetry V2 = ∂
∂t , the characteristic functions are W 1 = –ut , W 2 = –vt , and the

conservation law of system (1.2) and adjoint system (3.8) derived by V2 is

X2 = –δZutvx – dutZx + δuvtZx – αvtωx + dZuxt – δZuvxt + αωvxt ,

T2 = –dZuxx + δZuxvx + δZuvxx – αωvxx – βωu + λωv.
(4.2)

For Lie symmetry V3 = e–λt ∂
∂v , the characteristic functions are W 1 = 0, W 2 = e–λt , and

the conservation law of system (1.2) and adjoint system (3.8) derived by V3 is

X3 =
1

eλt (–δuZx + αωx),

T3 =
1

eλt ω.
(4.3)

In the above expressions of the conservation laws of systems (1.2) and (3.8), Z and ω

are arbitrary solutions of system (3.8). If we can find exact solutions of (3.8), explicit con-
servation laws of (1.2) can be obtained by substituting them to the above expressions. For
example,

Z = C1 + C2eλt ,

ω = –
λC2

β
eλt ,
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where C1 and C2 are nonzero constants, is a solution of (3.8). By substituting it to (4.2),
we can obtain an explicit conservation law of (1.2) corresponding to symmetry V2:

X2 = –
1
β

(
δC1βutvx + δC2βeλtutvx – dC1βuxt – dC2βeλtuxt

+ δC1βuvxt + δC2βeλtuvxt + αC2λeλtvxt
)
,

T2 =
1
β

(
–dC1βuxx – dC2βeλtuxx + δC1βuxvx + δC2βeλtuxvx + δC1βuvxx

+ δC2βeλtuvxx + αC2λeλtvxx + λβC2eλtu – λ2C2eλtv
)
.

4.2 Conservation laws for system (1.3)
There are four symmetries for system (1.3). Next we will study a conservation law for the
system consisting of (1.3) and (3.10) according to Theorem 1. For Lie symmetry V1 = ∂

∂x ,
the characteristic functions are W 1 = –ux, W 2 = –vx, and the conservation law of system
(1.3) and its adjoint system (3.10) derived by V1 is

X1 = Zut + ωvt – βωu – uxZx + uvxzx – αvxωx,

T1 = –Zux – ωvx.
(4.4)

For Lie symmetry V2 = ∂
∂t , the characteristic functions are W 1 = –ut , W 2 = –vt , and the

conservation law of system (1.3) and its adjoint system (3.10) derived by V2 is

X2 = –Zutvx – utZx + uvtZx – αvtωx + Zuxt – Zuvxt + αωvxt ,

T2 = –Zuxx + Zuxvx + Zuvxx – αωvxx – βωu.
(4.5)

For Lie symmetry V3 = ∂
∂v , the characteristic functions are W 1 = 0, W 2 = 1, and the

conservation law of system (1.3) and its adjoint system (3.10) derived by V3 is

X3 = –Zxu + αωx,

T3 = ω.
(4.6)

For Lie symmetry V4 = x
2

∂
∂x + t ∂

∂t – u ∂
∂u , the characteristic functions are W 1 = –u – x

2 ux –
tut , W 2 = – x

2 vx – tvt , and the conservation law of system (1.3) and its adjoint system (3.10)
derived by V4 is

X4 = –uZx +
x
2
ωvt +

α

2
ωvx +

3
2

Zux +
x
2

Zut –
β

2
xωu –

3
2

uZvx

–
1
2

xuxZx – tutzx –
α

2
xωxvx – tαvtωx + tZuxt + tαωvxt – tzutvx

+
1
2

xuvxZx + tuvtZx – tuZvxt ,

T4 = –tZuxx + tZuxvx + tZuvxx – tαωvxx – tβωu – Zu –
1
2

xZux –
1
2

xωvx.

(4.7)

In the above expressions of the conservation laws of systems (1.3) and (3.10), Z and ω

are arbitrary solutions of system (3.10). If we can find exact solutions of (3.10), explicit
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conservation laws of (1.3) can be obtained by substituting them to the above expressions.
For example,

Z = t,

ω = –
1
β

,

is a solution of (3.10). By substituting it to (4.7), we can obtain an explicit conservation law
of (1.3) corresponding to symmetry V4:

X4 = –
α

2β
vx +

x
2

tut + t2uxt –
3
2

tuvx –
x

2β
vt +

1
2

xu – t2utvx

– t2uvxt –
α

β
tvxt +

3
2

tux,

T4 = –t2uxx + t2uxvx + t2uvxx + t
α

β
vxx –

1
2

xtux +
1

2β
xvx.

(4.8)

4.3 Conservation laws for system (1.4)
There are three symmetries for system (1.4) with an arbitrary value of λ. Next we will study
a conservation law for the system consisting of (1.4) and (3.12) according to Theorem 1.
For Lie symmetry V1 = ∂

∂x , the characteristic functions are W 1 = –ux, W 2 = –vx, and the
conservation law of system (1.4) and its adjoint system (3.12) derived by V1 is

X1 = Zut + ωvt – βωu + λωv – duxZx +
δu
v

vxzx – αvxωx,

T1 = –Zux – ωvx.
(4.9)

For Lie symmetry V2 = ∂
∂t , the characteristic functions are W 1 = –ut , W 2 = –vt , and the

conservation law of system (1.4) and its adjoint system (3.12) derived by V2 is

X2 = –
δZ
v

utvx – dutZx +
δZu
v2 vtvx +

δu
v

vtZx – αvtωx

+ dZuxt –
δZu

v
vxt + αωvxt ,

T2 = –dZuxx +
δZ
v

uxvx +
δZ
v

uvxx –
δZu
v2 v2

x – αωvxx – βωu + λωv.

(4.10)

For Lie symmetry V3 = u ∂
∂u + v ∂

∂v , the characteristic functions are W 1 = u, W 2 = v, and
the conservation law of system (1.4) and its adjoint system (3.12) derived by V3 is

X3 =
δZu

v
vx + duZx – δuZx + αωxv – dZux – αωvx,

T3 = uZ + ωv.
(4.11)

For the case λ = 0, there is another symmetry V4 = x
2

∂
∂x + t ∂

∂t – u ∂
∂u , the characteristic

functions are W 1 = –u – x
2 ux – tut , W 2 = – x

2 vx – tvt , and the conservation law of system
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(1.4) and its adjoint system (3.12) with λ = 0 derived by V4 is

X4 =
3d
2

Zux – αtωxvt –
α

2
xvxωx – dtutZx –

d
2

xZxux + dtZuxt +
1
2

xZut

+ αtωvxt –
δt
v

Zuvxt +
δt
v

uvtZx +
δx
2v

uvxZx –
δt
v

Zutvx +
1
2

xωvt

–
β

2
xωu –

3δ

2v
Zuvx – duZx +

α

2
ωvx +

δt
v2 Zuvtvx,

T4 = –dtZuxx +
δt
v

Zuxvx +
δt
v

Zuvxx –
δt
v2 Zuv2

x – αtωvxx

– βtωu – Zu –
1
2

xZux –
1
2

xωvx.

(4.12)

In the above expressions of the conservation laws of systems (1.4) and (3.12), Z and ω

are arbitrary solutions of system (3.12). If we can find exact solutions of (3.12), explicit
conservation laws of (1.4) can be obtained by substituting them to the above expressions.
For example,

Z = eλt ,

ω = –
λ

β
eλt ,

is a solution of (3.12). By substituting it to (4.11), we can obtain an explicit conservation
law of (1.4) corresponding to symmetry V3:

X3 = –
eλt

βv
(–βδuvx + βduxv – λαvvx),

T3 = –
eλt

β
(–βu + λv).

(4.13)

Remark 1 Here we should point out that all the conservation laws obtained in this section
are non-trivial and have been checked by Maple software.

5 Symmetry reductions and exact solutions
In Sect. 2, we have obtained the Lie symmetries of (1.2), (1.3), and (1.4). In this section, we
will investigate the symmetry reductions and exact solutions for the three equations. Since
(1.3) is a special case of (1.2), and its solutions have been studied in [9], we mainly focus
on the reductions of (1.2) and (1.4). Using the obtained symmetries (2.1), similarity vari-
ables and symmetry reductions can be found by solving the corresponding characteristic
equation

dx
ξ (x, t, u, v)

=
dt

τ (x, t, u, v)
=

du
φ(x, t, u, v)

=
dv

ψ(x, t, u, v)
.

5.1 Symmetry reductions and exact solutions of (1.2)
For Lie symmetry V1 = ∂

∂x , we can obtain

u = u(t),

v = v(t).
(5.1)
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Substituting (5.1) to (1.2), we can obtain the exact solutions of (1.2) as follows:

u = M2,

v =
β

λ
M2 + M1e–λt ,

(5.2)

where M1 and M2 are arbitrary constants.
For Lie symmetry V2 = ∂

∂t , we can obtain

u = u(x),

v = v(x).
(5.3)

Substituting (5.3) to (1.2), we can obtain the following reduction equations:

–duxx + δ(uvx)x = 0,

u = –
1
β

(αvxx – λv).
(5.4)

Taking the second equation of (5.4) into the first equation, after simplification we can get

dαvxx – dλv –
1
2
δαv2

x +
1
2
δλv2 = 0, (5.5)

so an exact solution of (1.2) can be found by solving (5.5).
For Lie symmetry V3 = e–λt ∂

∂v , we can obtain

u = u(x, t),

v = M0.
(5.6)

Substituting (5.6) to (1.2), we can obtain the following solutions:

u =
λ

β
M0,

v = M0.
(5.7)

From the symmetry V4 = x
2

∂
∂x + t ∂

∂t – u ∂
∂u for the special case λ = 0, we can obtain

u =
1
t

F ,

v = G,
(5.8)

where F = F(θ ), G = G(θ ), θ = x2

t . Substituting (5.8) to (1.2), we can obtain the following
reduction equations:

–F – θF ′ – 4dθF ′′ – 2dF ′ + 2δFG′ + 4δθ
(
FG′)′ = 0,

–θG′ – 4αθG′′ – 2αG′ – βF = 0.
(5.9)

If we can find solutions of (5.9), new solutions of (1.3) can also be obtained.
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To compare with the result for (1.3) in [9], we only consider the symmetry cV1 + V2 =
c ∂

∂x + ∂
∂t , where c is a constant. From the corresponding characteristic equation dx

c = dt
1 ,

we can obtain

u = u(θ ),

v = v(θ ),
(5.10)

where θ = x – ct. Substituting (5.10) to (1.3), we can obtain the following reduction equa-
tions:

cuθ + uθθ – (uθ vθ + uvθθ ) = 0,

u = –
1
β

(cvθ + αvθθ ).
(5.11)

The first equation of (5.11) can be integrated once and becomes

cu + uθ – uvθ + N = 0, (5.12)

where N is an arbitrary constant. Taking the second equation of (5.11) into (5.12), one can
obtain

–αvθθθ – cαvθθ – cvθθ – c2vθ + αvθ vθθ + cv2
θ + N = 0. (5.13)

Equation (5.13) is exactly the same as (5) in [9] and a lot of traveling solutions have been
found.

5.2 Symmetry reductions and exact solutions of (1.4)
For Lie symmetry V1 = ∂

∂x , we can obtain

u = u(t),

v = v(t).
(5.14)

Substituting (5.14) to (1.4), we can obtain the exact solutions of (1.4) as follows:

u = M2,

v =
β

λ
M2 + M1e–λt ,

(5.15)

where M1 and M2 are arbitrary constants.
For Lie symmetry V2 = ∂

∂t , we can obtain

u = u(x),

v = v(x).
(5.16)
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Substituting (5.16) to (1.4), we can obtain the following reduction equations:

–duxx + δ

(
uvx

v

)

x
= 0,

u = –
–αvxx + λv

β
.

(5.17)

When d = δ, we can find a solution for (1.4) as follows:

u =
α – λM2

1
2βM2

1

(
e

2(x+M2)
M1 + 1

)
√

–M3e
2(x+M2)

–M1 ,

v = –
1
2

√

–M3e
2(x+M2)

–M1
(
e

2(x+M2)
M1 + 1

)
,

(5.18)

where M1, M2, and M3 are constants, M1 �= 0, M3 < 0.
For Lie symmetry V3 = u ∂

∂u + v ∂
∂v , we can obtain

u = vF ,

v = v,
(5.19)

where F = F(x, t). Substituting (5.19) to (1.4), we can obtain the following reduction equa-
tions:

vtF + vFt + (δ – d)vxxF + (δ – 2d)vxFx – dvFxx = 0,

vt – αvxx – βvF + λv = 0.
(5.20)

To solve (5.20) is difficult, so we set

F = F(θ ),

v = v(θ ),
(5.21)

where θ = C1x + C2t, C1 and C2 are constants. Taking (5.21) into (5.20), one can get

C2v′F + C2vF ′ + (δ – d)C2
1v′′F + (δ – 2d)C2

1v′F ′ – dC2
1vF ′′ = 0,

C2v′ – αC2
1v′′ – βvF + λv = 0.

(5.22)

When δ = d, we can find a solution for (1.4) as follows:

F = M1e
C2θ

dC2
1 ,

v = M2e
C2θ

2αC2
1 Bessel J

(
d
√

C2
2 + 4λαC2

1
C2α

,
2dC1

√
M1β

C2
√

α
e

C2θ

2dC2
1

)

+ M3e
C2θ

2αC2
1 Bessel Y

(
d
√

C2
2 + 4λαC2

1
C2α

,
2dC1

√
M1β

C2
√

α
e

C2θ

2dC2
1

)

.

(5.23)
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An exact solution of (1.4) can be derived from (5.19) and (5.23) as follows:

u = M1M2e
C2(2α+d)(C1x+C2t)

2dαC2
1 Bessel J

(
d
√

C2
2 + 4λαC2

1
C2α

,
2dC1

√
M1β

C2
√

α
e

C2(C1x+C2t)
2dC2

1

)

+ M1M3e
C2(2α+d)(C1x+C2t)

2dαC2
1

× Bessel Y
(

d
√

C2
2 + 4λαC2

1
C2α

,
2dC1

√
M1β

C2
√

α
e

C2(C1x+C2t)
2dC2

1

)

,

v = M2e
C2(C1x+C2t)

2αC2
1 Bessel J

(
d
√

C2
2 + 4λαC2

1
C2α

,
2dC1

√
M1β

C2
√

α
e

C2(C1x+C2t)
2dC2

1

)

+ M3e
C2(C1x+C2t)

2αC2
1 Bessel Y

(
d
√

C2
2 + 4λαC2

1
C2α

,
2dC1

√
M1β

C2
√

α
e

C2(C1x+C2t)
2dC2

1

)

.

(5.24)

The two-dimensional and three-dimensional physical interpretations of solution (5.24)
are presented in Figs. 1–4 by considering the values

C1 = 1, C2 = 1, M1 = 1, M2 = 1, M3 = 1,

α = 1, β = 1, d = 1, λ =
15
4

.
(5.25)

From the symmetry V4 = x
2

∂
∂x + t ∂

∂t – u ∂
∂u for the special case λ = 0, we can obtain

u =
1
t

F ,

v = G,
(5.26)

where F = F(θ ), G = G(θ ), θ = x2

t . Substituting (5.26) to (1.4), we can obtain the following
reduction equations:

–F – θF ′ – 4dθF ′′ – 2dF ′ + 2δ
FG′

G
+ 4δθ

(
FG′

G

)′
= 0,

–θG′ – 4αθG′′ – 2αG′ – βF = 0.
(5.27)

Figure 1 The solution u with the values in (5.25)
when t = 0
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Figure 2 The solution v with the values in (5.25)
when t = 0

Figure 3 The solution u with the values in (5.25)

Figure 4 The solution v with the values in (5.25)
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Remark 2 The solutions of reduction equations (5.5), (5.9), and (5.27) are difficult to find.
It remains open to solve the three equations.

6 Conclusions
In summary, by performing Lie symmetry analysis on equations (1.2), (1.3), and (1.4), we
obtain their Lie symmetries and find that their Lie symmetries are spanned by finite di-
mensional Lie algebra. According to the relationship between symmetry and conservation
laws given by Ibragimov, many explicit and non-trivial conservation laws for the three
equations are derived. These conservation laws may be useful for the explanation of some
practical problems. Using the associated characteristic equation of the obtained symme-
try, equations (1.2) and (1.4) are reduced to several ordinary differential equations. New
explicit solutions of the two equations have been derived by solving the reduction equa-
tions. However, some of the reduction equations have not been solved analytically, the
solutions of them will be our sustained concern in the future.
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