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Abstract
By introducing a delayed fractional-order differential equation model, we deal with
the dynamics of the stability and Hopf bifurcation of a paddy ecosystem with three
main components: rice, weeds, and inorganic fertilizer. In the system, there exists an
equilibrium for rice and weeds extinction and an equilibrium for rice extinction or
weeds extinction. We obtain sufficient conditions for the stability and Hopf
bifurcation by analyzing their characteristic equation. Some numerical simulations
validate our theoretical results.
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1 Introduction
Rice is one of the major grain crops in the world. China is the largest rice producer and
consumer country in the world, where over 60% of the population is staple food for rice.
Throughout the world rice producing countries, it is a major research topic to improve rice
yield and quality. Obviously, there are a lot of factors affecting the production of rice, such
as weed, insect, microorganism, inorganic fertilizer, light intensity, moisture, and so on.
These factors interact and transform each other to form a complex nonlinear relationship.
It is a common research method to analyze the interaction of all factors in a population
system by using mathematical models [1–11]. As far as we know, there are only a few
mathematical models that have been established for paddy ecosystems [12–14].

A differential equation model of a paddy ecosystem in fallow season was proposed by
Xiang et al. [14]. They revealed the interaction between weeds and inorganic fertilizer and
found that in the system, there exists a stable node, an unstable saddle point, or a saddle-
node point. By considering the effects of herbivores on the paddy ecosystem in fallow
season, Xiang, Wu, and Zhou found that the content of inorganic fertilizer is improved
by putting some herbivores into the paddy ecosystem in fallow season. They also found
that the system can exhibit Hopf bifurcation phenomenon and gave the critical value of
Hopf bifurcation by taking a system parameter as the bifurcation parameter [13]. Wang
et al. [12] further studied the interaction of rice, weeds, and inorganic fertilizer in a paddy
ecosystem. They discussed the existence and stability of equilibria in a paddy ecosystem.
They also found that there exist Hopf bifurcations in such a system.
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The three models mentioned have been restricted to integer-order (delay) differential
equations [12–14]. In recent more than 20 years, the research of fractional-order differen-
tial equations has been the concern of many scholars. According to the study and numeri-
cal experiments in different fields such as physical, mechanical, and engineering problems,
many phenomena can be described more successfully by using factional-order differential
equation models. In view of this, some scholars have used fractional differential equations
to study the interaction relationship of biological populations [15–20]. Recently, some re-
searchers have also concerned about the existence of Hopf bifurcation of fractional-order
models [21–27]. Abdelouahab et al. [21] obtained the Hopf bifurcation conditions of a
three-dimensional fractional-order system without time delay, and Li et al. [23] obtained
the Hopf bifurcation conditions of a four-dimensional fractional-order system without
time delay. For general delayed fractional-order systems, the Hopf bifurcation conditions
were proposed by Xiao et al. [26] in 2017.

It is of practical significance to study whether there exists a Hopf bifurcation in a paddy
ecosystem. If a Hopf bifurcation exists in a paddy ecosystem, the stability of the system
will be destroyed. An unstable paddy ecosystem brings difficulties and uncertainties to
management of rice production. Therefore, we want to delay or eliminate the Hopf bifur-
cation by using the existence conditions of Hopf bifurcation. On the other hand, in case
the paddy ecosystem has come up with a Hopf bifurcation, we should try to harvest rice
at the peak of its biomass to increase rice yield.

In this paper, we establish a factional-order differential equation model with delay for
the interaction among the main components of a paddy ecosystem. We give a detailed
stability analysis of the system equilibria and study the existence of Hopf bifurcation by
using the Hopf bifurcation conditions proposed by Xiao et al. [26].

2 Preliminaries
Considering a general delayed fractional-order system

DαY (t) = F
(
Y (t), Y (t – τ )

)
(1)

the time delay τ > 0, where Y (t) = (y1(t), y2(t), . . . , yn(t))T ∈ R
n, and Dα is the Caputo frac-

tional derivative defined as

Dαf (t) =
1

�(m – α)

∫ t

0
(t – s)m–α–1f (m)(s) ds,

where �(q) =
∫ ∞

0 e–ttq–1 dt is the gamma function, m ∈ N, and m – 1 < α < m. When α = m,
Dαf (t) = f (m)(t). In this paper, we suppose 0 < α ≤ 1.

The equilibrium Y ∗ of system (1) is the solution to equation F(Y , Y ) = 0.
The corresponding linearized system of (1) at an equilibrium Y ∗ is of the form

DαX(t) = AX(t) + BX(t – τ ). (2)

The characteristic equation of system (2) is

�(λ) = det
(
λαE – A – Be–λτ

)
= 0.
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If τ = 0, then system (2) is simplified as

DαX(t) = MX(t), (3)

where the coefficient matrix M = A + B.
Based on the characteristic equation �(λ) = 0 and the coefficient matrix M, we have the

following stability result on the delayed fractional-order system (2) [28].

Lemma 1 If α ∈ (0, 1), then all the eigenvalues λ of M satisfy | arg(λ)| > π/2, and the char-
acteristic equation �(λ) = 0 has no purely imaginary roots for any τ > 0, then the zero
solution of system (2) is Lyapunov globally asymptotically stable.

The Hopf bifurcation conditions were proposed in [26] for the general delayed
fractional-order system (1). If the following conditions hold, then system (1) undergoes a
Hopf bifurcation at the equilibrium Y ∗ when τ = τ0.

(1) All the eigenvalues of the coefficient matrix M of the linearized system of (1) satisfy
| arg(λ)| > απ/2.

(2) The characteristic equation �(λ) = 0 of the linearized system of (1) has a pair of
purely imaginary roots ±iω0 when τ = τ0.

(3) d Re(λ(τ ))
dτ

|τ=τ0 > 0, where Re(·) denotes the real part of a complex number.

3 Fractional-order model of a paddy ecosystem
Wang et al. [12] have considered the following paddy ecosystem with three main compo-
nents, rice, weeds, and inorganic fertilizer:

⎧
⎪⎨

⎪⎩

ṙ(t) = c1s1u(t)r(t) – d1r(t),
ṗ(t) = c2s2u(t)p(t) – d2p(t),
u̇(t) = b + d1r(t – τ ) + d2p(t – τ ) – s1u(t)r(t) – s2u(t)p(t) – d3u(t),

(4)

where r(t) and p(t) denote the rice and weeds biomasses per unit area at time t, respec-
tively, and u(t) denotes the inorganic fertilizer content per unit area at time t. The system
can reflect the interactions among rice, weeds, and inorganic fertilizer. The first two equa-
tions in system (4) indicate that the growth of rice r(t) and weeds p(t) are affected by soil
fertility u(t), light and other factors si, and there is natural death d1r(t) and d2p(t) for the
rice and weeds. The coefficients c1 and c2 represent rice and weeds utilization rate of inor-
ganic fertilizer, light energy, and other factors, respectively. The third equation in system
(4) shows that the inorganic fertilizer in soil partly comes from fertilization b and partly
comes from organic fertilizer such as decaying leaves of rice and weeds, d1r(t – τ ) and
d2p(t – τ ), which can be transformed to inorganic fertilizer after some time τ by micro-
bial. Natural loss d3u(t) also reduces the content of inorganic fertilizers in soil.

Using the Caputo fractional-order derivative of order α ∈ (0, 1), a fractional-order de-
layed paddy ecosystem is established as follows:

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Dαr(t) = c1s1u(t)r(t) – d1r(t),
Dαp(t) = c2s2u(t)p(t) – d2p(t),
Dαu(t) = b + c3d1r(t – τ ) + c4d2p(t – τ ) – s1u(t)r(t)

– s2u(t)p(t) – d3u(t),

(5)
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where c3 and c4 are the conversion rates from organic fertilizer d1r(t – τ ) and d2p(t – τ )
to inorganic fertilizer u(t), respectively. The meaning of other symbols in system (5) are
consistent with system (4). Similarly, the parameters in system (5) are nonnegative and
satisfy the following conditions: 0 < ci < 1, b ≥ 0, τ ≥ 0, si > 0, and di > 0. We also introduce
the following notation [12]:

θ1 =
d1

c1s1
, θ2 =

d2

c2s2
,

where θ1 is called the relative mortality of rice, and θ2 is called the relative mortality of
weeds.

4 The stability of equilibria and Hopf bifurcation
Similarly to [12], system (5) always has an equilibrium for rice and weeds extinction

(
r∗

1 , p∗
1, u∗

1
)

=
(

0, 0,
b
d3

)
.

If b/d3 > θ1, then system (5) has an equilibrium for weeds extinction

(
r∗

2 , p∗
2, u∗

2
)

=
(

b – d3θ1

s1θ1(1 – c1c3)
, 0, θ1

)
.

If b/d3 > θ2, then system (5) still has an equilibrium for rice extinction

(
r∗

3 , p∗
3, u∗

3
)

=
(

0,
b – d3θ2

s2θ2(1 – c2c4)
, θ2

)
.

For an equilibrium (r∗, p∗, u∗) of system (5), we make a coordinate transformation x =
r – r∗, y = p – p∗, z = u – u∗; then system (5) can be converted to

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Dαx(t) = c1s1(u∗ – θ1)x(t) + c1s1r∗z(t) + c1s1x(t)z(t),
Dαy(t) = c2s2(u∗ – θ2)y(t) + c2s2p∗z(t) + c2s2y(t)z(t),
Dαz(t) = c3d1x(t – τ ) – s1u∗x(t) + c4d2y(t – τ ) – s2u∗y(t)

– (s1r∗ + s2p∗ + d3)z(t) – s1x(t)z(t) – s2y(t)z(t).

(6)

Obviously, the linearized system of (6) is

⎧
⎪⎪⎪⎨

⎪⎪⎪⎩

Dαx(t) = c1s1(u∗ – θ1)x(t) + c1s1r∗z(t),
Dαy(t) = c2s2(u∗ – θ2)y(t) + c2s2p∗z(t),
Dαz(t) = c3d1x(t – τ ) – s1u∗x(t) + c4d2y(t – τ )

– s2u∗y(t) – (s1r∗ + s2p∗ + d3)z(t).

(7)

Its characteristic equation is

�(λ) =

∣∣∣
∣∣
∣∣

λα – c1s1(u∗ – θ1) 0 –c1s1r∗

0 λα – c2s2(u∗ – θ2) –c2s2p∗

s1u∗ – c3d1e–λτ s2u∗ – c4d2e–λτ λα + s1r∗ + s2p∗ + d3

∣∣∣
∣∣
∣∣

= 0. (8)
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When the time delay τ = 0, the coefficient matrix of system (7) is

M =

⎛

⎜
⎝

c1s1(u∗ – θ1) 0 c1s1r∗

0 c2s2(u∗ – θ2) c2s2p∗

c3d1 – s1u∗ c4d2 – s2u∗ –s1r∗ – s2p∗ – d3

⎞

⎟
⎠ . (9)

Next, we consider the stability of the three equilibria of system (5).
Case (I) for the equilibrium (r∗

1 , p∗
1, u∗

1). At this case, we have the following conclusion of
the stability of the equilibrium.

Theorem 1 If b/d3 < min{θ1, θ2}, then the equilibrium for rice and weeds extinction of sys-
tem (5) (r∗

1 , p∗
1, u∗

1) is locally asymptotically stable. Otherwise, if b/d3 > min{θ1, θ2}, then the
equilibrium (r∗

1 , p∗
1, u∗

1) is unstable.

Proof At the equilibrium (r∗
1 , p∗

1, u∗
1), by (8) the characteristic equation of the linearized

system is

�(λ) =

∣∣
∣∣
∣∣
∣

λα – c1s1(u∗
1 – θ1) 0 0

0 λα – c2s2(u∗
1 – θ2) 0

s1u∗
1 – c3d1e–λτ s2u∗

1 – c4d2e–λτ λα + d3

∣∣
∣∣
∣∣
∣

= 0.

So the eigenvalues satisfy λα
1 = –d3, λα

2 = c1s1(b/d3 –θ1), and λα
3 = c2s2(b/d3 –θ2). Therefore

the characteristic equation �(λ) = 0 has no purely imaginary roots for any τ > 0.
Similarly, the eigenvalues of the coefficient matrix M are λ1 = –d3 < 0, λ2 =

c1s1(b/d3 – θ1), and λ3 = c2s2(b/d3 – θ2).
If b/d3 < min{θ1, θ2}, then the eigenvalues of the matrix M λ2 < 0 and λ3 < 0. By Lemma 1

the equilibrium (0, 0, 0) of system (7) is Lyapunov globally asymptotically stable. Therefore,
the equilibrium (r∗

1 , p∗
1, u∗

1) of system (5) is locally asymptotically stable.
If b/d3 > min{θ1, θ2}, then at least one of the eigenvalues λ2 and λ3 of the matrix M is

positive. Therefore the equilibrium (r∗
1 , p∗

1, u∗
1) is unstable under this condition. �

Case (II) for the equilibrium (r∗
2 , p∗

2, u∗
2).

To discuss the stability of the other two equilibria, we introduce the polynomial of degree
4 with real coefficients a = (1, a1, a2, a3, a4)

fa(ξ ) = ξ 4 + a1ξ
3 + a2ξ

2 + a3ξ + a4 (10)

and the cubic polynomial equation

ν3 – a2ν
2 + (a1a3 – 4a4)ν + 4a2a4 – a2

1a4 – a2
3 = 0. (11)

If a1 > 0, a2 < 0, a3 > 0, and a4 > 0, then 4a2a4 – a2
1a4 – a2

3 < 0. Hence equation (11) must
have a positive real root, denoted by νa. It is noted that equation (11) can also be expressed
in the form

(
a1ν

2
– a3

)2

– 4
(

a2
1

4
– a2 + ν

)(
ν2

4
– a4

)
= 0. (12)
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Therefore from equation (12) it follows that the positive real root νa must satisfy
ν2

a
4 – a4 ≥ 0 . Let

Ma =

√
a2

1
4

– a2 + νa, Na =
√

ν2
a

4
– a4 (13)

and

�a =
a2

1
2

– a2 – νa – a1Ma + 4 sgn

(
a1νa

2
– a3

)
Na, (14)

where sgn(·) is the sign function.

Lemma 2 Suppose that ai > 0 (i = 1, 3, 4). If a2 < 0 and �a ≥ 0, then there are only two
positive real roots of the equation fa(ξ ) = ξ 4 + a1ξ

3 + a2ξ
2 + a3ξ + a4 = 0. If a2 ≥ 0, or a2 < 0

and �a < 0, then the equation fa(ξ ) = 0 has no positive real root.

Proof The polynomial fa(ξ ) can be decomposed into the product of two quadratic poly-
nomials

f1(ξ ) = ξ 2 +
(

a1

2
– Ma

)
ξ +

νa

2
– sgn

(
a1νa

2
– a3

)
Na

and

f2(ξ ) = ξ 2 +
(

a1

2
+ Ma

)
ξ +

νa

2
+ sgn

(
a1νa

2
– a3

)
Na.

The discriminants of the polynomials f1(ξ ) and f2(ξ ) are �a and

�1 =
a2

1
2

– a2 – νa + a1Ma – 4 sgn

(
a1νa

2
– a3

)
Na,

respectively. If �a ≥ 0, then the equation f1(ξ ) = 0 has two real roots ξa1 and ξa2. From

ξa1 + ξa2 = –
a1

2
+ Ma > 0 and ξa1ξa2 =

νa

2
– sgn

(
a1νa

2
– a3

)
Na > 0

we haven ξa1 > 0 and ξa2 > 0.
If �1 ≥ 0, then the equation f2(ξ ) = 0 has two real roots ξa3 and ξa4. From

ξa3 + ξa4 = –
a1

2
– Ma < 0 and ξa3ξa4 =

νa

2
+ sgn

(
a1νa

2
– a3

)
Na > 0

we have ξa3 < 0 and ξa4 < 0.
Therefore equation fa(ξ ) = 0 has only two positive real roots.
Otherwise, if ai > 0 (i = 1, 3, 4) and a2 ≥ 0, it is obvious that the equation fa(ξ ) = 0 has no

positive real root. If ai > 0 (i = 1, 3, 4), a2 < 0, and �a < 0, then the equation f1(ξ ) = 0 has
no real root, and so the equation fa(ξ ) = 0 has no positive real root. �
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Let the coefficients of polynomial (10) be as follows:

a1 = 2
(
s1r∗

2 + d3
)

cos
απ

2
, a2 =

(
s1r∗

2 + d3
)2 + 2s1r∗

2d1 cos(απ ), (15)

a3 = 2s1r∗
2d1

(
s1r∗

2 + d3
)

cos
απ

2
, a4 = s2

1r∗2
2 d2

1
(
1 – c2

1c2
3
)
. (16)

Since 0 < α < 1, we have that a1 > 0, a3 > 0, and a4 > 0.
The conclusion of the stability of the equilibrium (r∗

2 , p∗
2, u∗

2) is as follows.

Theorem 2 Suppose that b/d3 > θ1.
(I) If θ1 > θ2, then the equilibrium (r∗

2 , p∗
2, u∗

2) is unstable.
(II) If θ1 < θ2 and a2 ≥ 0, or θ1 < θ2, a2 < 0, and �a < 0, then the equilibrium (r∗

2 , p∗
2, u∗

2)
is locally asymptotically stable for τ ≥ 0.

(III) If θ1 < θ2, a2 < 0, and �a > 0, then there exists a positive number τa such that when
τ ∈ [0, τa), the equilibrium (r∗

2 , p∗
2, u∗

2) is locally asymptotically stable; when τ > τa,
the equilibrium (r∗

2 , p∗
2, u∗

2) is unstable; and a Hopf bifurcation emerges at τ = τa.

Proof By (8) the characteristic equation of the linearized system is

(
λα – c2s2(θ1 – θ2)

)(
λ2α +

(
s1r∗

2 + d3
)
λα + s1r∗

2d1
(
1 – c1c3e–λτ

))
= 0.

It has one real eigenvalue satisfying λα
1 = c2s2(θ1 – θ2), the real part of which cannot be

zero. Its other eigenvalues are the roots of the equation

λ2α +
(
s1r∗

2 + d3
)
λα + s1r∗

2d1
(
1 – c1c3e–λτ

)
= 0. (17)

By (9) the characteristic equation of the coefficient matrix M is

(
λ – c2s2(θ1 – θ2)

)(
λ2 +

(
s1r∗

2 + d3
)
λ + s1r∗

2d1(1 – c1c3)
)

= 0.

It has one real eigenvalue λ1 = c2s2(θ1 – θ2). Its other eigenvalues are

λ2,3 =
1
2

(
–
(
s1r∗

2 + d3
) ±

√(
s1r∗

2 + d3
)2 – 4s1r∗

2d1(1 – c1c3)
)

.

Obviously, the real parts of λ2,3 are less than zero.
(I) If θ1 > θ2, then the eigenvalue of the coefficient matrix M λ1 > 0. It indicates that the

equilibrium (r∗
2 , p∗

2, u∗
2) is unstable.

(II) If θ1 < θ2, then the real eigenvalue of the coefficient matrix M λ1 < 0. So the eigen-
values λj of M satisfy | arg(λj)| > π

2 > απ
2 (j = 1, 2, 3).

Assume that equation (17) has a purely imaginary root λ = iξ = ξ (cos π
2 + i sin π

2 ) (ξ > 0).
Substituting it into (17) gives

ξ 2α(cosαπ + i sinαπ ) +
(
s1r∗

2 + d3
)
ξα

(
cos

απ

2
+ i sin

απ

2

)

+ s1r∗
2d1(1 – c1c3 cos τξ + ic1c3 sin τξ ) = 0.
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Separating its real and imaginary parts yields

ξ 2α cosαπ + ξα
(
s1r∗

2 + d3
)

cos
απ

2
+ s1r∗

2d1(1 – c1c3 cos τξ ) = 0

and

ξ 2α sinαπ + ξα
(
s1r∗

2 + d3
)

sin
απ

2
+ c1c3s1r∗

2d1 sin τξ = 0.

So we have

cos τξ =
ξ 2α cosαπ + ξα(s1r∗

2 + d3) cos απ
2 + s1r∗

2d1

c1c3s1r∗
2d1

, (18)

sin τξ = –
ξ 2α sinαπ + ξα(s1r∗

2 + d3) sin απ
2

c1c3s1r∗
2d1

. (19)

Since sin2 τξ + cos2 τξ = 1, we have

(
ξ 2α cosαπ + ξα

(
s1r∗

2 + d3
)

cos
απ

2
+ s1r∗

2da1

)2

+
(

ξ 2α sinαπ + ξα
(
s1r∗

2 + d3
)

sin
απ

2

)2

= c2
1c2

3s2
1r∗2

2 d2
1,

that is,

fa
(
ξα

)
= ξ 4α + a1ξ

3α + a2ξ
2α + a3ξ

α + a4 = 0, (20)

where ai (i = 1, 2, 3, 4) are given in (15) and (16); note that a1, a3, a4 > 0. If a2 ≥ 0, or a2 < 0
and �a < 0, then the equation fa(ξ ) = 0 has no positive real root by Lemma 2. This leads to
that equation (20) has no any positive real number ξ . Therefore the real parts of any roots
of (17) must be negative for any τ > 0. This shows that the equilibrium (r∗

2 , p∗
2, u∗

2) is locally
asymptotically stable for any τ ≥ 0.

(III) If θ1 < θ2, a2 < 0, and �a > 0, then the equation fa(ξ ) = 0 has two unequal positive
real roots by Lemma 2; denote the larger root by ξ+. So equation (20) has a positive real
root ξa satisfying ξα

a = ξ+.
Notice that sin τaξa < 0 from (19). If cos τaξa > 0, then from (19) we have

τa =
2π

ξa
–

1
ξa

arcsin
ξ 2α

a sinαπ + ξα
a (s1r∗

2 + d3) sin απ
2

c1c3s1r∗
2d1

. (21)

If cos τaξa < 0, then we have

τa =
π

ξa
+

1
ξa

arcsin
ξ 2α

a sinαπ + ξα
a (s1r∗

2 + d3) sin απ
2

c1c3s1r∗
2d1

. (22)

Next, we verify the transversal condition. Taking the derivative of λ with respect to τ in
(17), we have

dλ

dτ
= –

c1c3s1r∗
2d1λe–λτ

2αλ2α–1 + α(s1r∗
2 + d3)λα–1 + c1c3s1r∗

2d1τe–λτ
.
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So we obtain

(
dλ

dτ

)–1∣∣
∣∣
λ=iξa

= –
[

2αλ2α–2eλτ + α(s1r∗
2 + d3)λα–2eλτ

c1c3s1r∗
2d1

+
τ

λ

]∣∣
∣∣
λ=iξa

= –
αξα–2

a
c1c3s1r∗

2d1

[
2ξα

a

(
cos

π

2
+ i sin

π

2

)2α–2

eiξaτa

+
(
s1r∗

2 + d3
)(

cos
π

2
+ i sin

π

2

)α–2

eiξaτa

]
–

τa

iξa
.

Thus, its real part is

Re

{(
dλ

dτ

)–1∣∣∣
∣
λ=iξa

}
= –

αξα–2
a

c1c3s1r∗
2d1

[
2ξα

a
(
cos(α – 1)π cos ξaτa – sin(α – 1)π sin ξaτa

)

+
(
s1r∗

2 + d3
)
(

cos
(α – 2)π

2
cos ξaτa – sin

(α – 2)π
2

sin ξaτa

)]

=
αξα–2

a
c1c3s1r∗

2d1

[
cos ξaτa

(
2ξα

a cosαπ +
(
s1r∗

2 + d3
)

cos
απ

2

)

– sin ξaτa

(
2ξα

a sinαπ +
(
s1r∗

2 + d3
)

sin
απ

2

)]
.

Substituting (18) and (19) into this expression, we obtain

Re

{(
dλ

dτ

)–1∣∣∣
∣
λ=iξa

}
=

αξα–2
a

(c1c3s1r∗
2d1)2

[
2ξ 3α

a + 3
(
s1r∗

2 + d3
)

cos
απ

2
ξ 2α

a

+
(
s1r∗

2 + d3
)2

ξα
a + s1r∗

2d1

(
2ξα

a cosαπ +
(
s1r∗

2 + d3
)

cos
απ

2

)]

=
αξα–2

a
2(c1c3s1r∗

2d1)2

(
4ξ 3α

a + 3a1ξ
2α
a + 2a2ξ

α
a + a3

)

=
αξα–2

a f ′(ξ+)
2(c1c3s1r∗

2d1)2 .

Since ξ+ is the larger single root of the equation fa(ξ ) = 0 and the highest order power coef-
ficient of the polynomial is positive, we have f ′(ξ+) > 0. Therefore the transversal condition
is satisfied, and thus a Hopf bifurcation occurs at τ = τa. �

Remark 1 From (15) we know that if (s1r∗
2 +d3)2 ≥ 2s1r∗

2d1, then a2 ≥ 0. When (s1r∗
2 +d3)2 <

2s1r∗
2d1, we let

αa = 1 –
1
π

arccos
(s1r∗

2 + d3)2

2s1r∗
2d1

. (23)

Obviously, if 0 < α < αa, then a2 > 0. Otherwise, if αa < α < 1, then a2 < 0.

Case (III) for the equilibrium (r∗
3 , p∗

3, u∗
3).
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To discuss the stability of the equilibrium (r∗
3 , p∗

3, u∗
3), similarly to case (II), we introduce

a polynomial of degree 4 with real coefficients q = (1, q1, q2, q3, q4) as follows:

fq(ξ ) = ξ 4 + q1ξ
3 + q2ξ

2 + q3ξ + q4, (24)

where

q1 = 2
(
s2p∗

3 + d3
)

cos
απ

2
, q2 =

(
s2p∗

3 + d3
)2 + 2s2p∗

3d2 cosαπ , (25)

q3 = 2s2p∗
3d2

(
s2p∗

3 + d3
)

cos
απ

2
, q4 = s2

2p∗2
3 d2

2
(
1 – c2

2c2
4
)
. (26)

Since 0 < α < 1, it is obvious that q1 > 0, q3 > 0, and q4 > 0.
Similarly to case (II), we have the following stability conclusion of the equilibrium

(r∗
3 , p∗

3, u∗
3) .

Theorem 3 Suppose that b/d3 > θ2.
(I) If θ1 < θ2, then the equilibrium (r∗

3 , p∗
3, u∗

3) is unstable.
(II) If θ1 > θ2 and q2 ≥ 0, or θ1 > θ2, q2 < 0, and �q < 0, then the equilibrium (r∗

3 , p∗
3, u∗

3)
is locally asymptotically stable for τ ≥ 0.

(III) If θ1 > θ2 , q2 < 0, and �q > 0, then there exists a positive number τq such that the
equilibrium (r∗

3 , p∗
3, u∗

3) is locally asymptotically stable for τ ∈ [0, τq) and unstable
when τ > τq. A Hopf bifurcation emerges at the equilibrium (r∗

3 , p∗
3, u∗

3) when τ = τq.

The proof of Theorem 3 is similar to Theorem 2 and is omitted here.

Remark 2 From (25) we know that if (s2p∗
3 + d3)2 ≥ 2s2p∗

3d2, then q2 ≥ 0. When
(s2p∗

3 + d3)2 < 2s2p∗
3d2, we let

αq = 1 –
1
π

arccos

(
(s2p∗

3 + d3)2

2s2p∗
3d2

)
. (27)

Obviously, if 0 < α < αq, then q2 > 0. Otherwise, if αq < α < 1, then aq < 0.

5 Examples
In this section, we give two examples to confirm our theoretical results obtained in Sect. 4
and use the predictor–corrector scheme to calculate their numerical solutions [29]. In
system (5), we let α = 0.98, c1 = 0.8, c2 = 0.1, c3 = 0.9, c4 = 0.6, s1 = 0.6, s2 = 0.1, d1 = 0.9,
d2 = 0.1, and d3 = 0.1.

First, we take b = 1.1. System (5) has three equilibria: the equilibrium for rice and weeds
extinction (0, 0, 11), the equilibrium for weeds extinction (2.8968, 0, 1.875), and the equi-
librium for rice extinction (0, 0.1064, 10). By computing we have b/d3 = 11, θ1 = 1.875,
θ2 = 10, and a2 ≈ 0.2562 > 0. So the inequality b/d3 > θ2 > θ1 holds. By Theorem 2 the
equilibrium (2.8968, 0, 1.875) is asymptotically stable for any τ ≥ 0 as illustrated in Fig. 1
(where τ = 13.5). By Theorems 1 and 3 the equilibria (0, 0, 11) and (0, 0.1064, 10) are un-
stable.

In succession, we take b = 0.3 again. System (5) has two equilibria: the equilib-
rium for rice and weeds extinction (0, 0, 3) and the equilibrium for weeds extinction
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Figure 1 The asymptotical stability of (r∗2 ,p∗
2 ,u

∗
2) = (2.8968, 0, 1.875). The parameters of system (5) are c1 = 0.8,

c2 = 0.1, c3 = 0.9, c4 = 0.6, s1 = 0.6, s2 = 0.1, b = 1.1, d1 = 0.9, d2 = 0.1, d3 = 0.1, α = 0.98, and τ = 13.5; the initial
values are r(t) = 0.1, p(t) = 1, u(t) = 2 (t ∈ [–τ , 0])

(0.3571, 0, 1.875). Because b/d3 = 3, θ1 = 1.875, and θ2 = 10, the inequality θ2 > b/d3 > θ1

holds. By Theorem 1 the equilibrium (0, 0, 3) is unstable. From (15) and (16) we have
a1 ≈ 0.0197, a2 ≈ –0.2862, a3 ≈ 0.0038, a4 ≈ 0.0179. Equation (11) has a positive real
root νa ≈ 0.2677. From (13) we obtain Ma ≈ 0.7443 and Na ≈ 7.8279. Because the dis-
criminant �a ≈ 0.000866 > 0 and a2 < 0, the equation fa(ξ ) = 0 has two unequal positive
real roots by Lemma 2, and the larger root ξ+ ≈ 0.3819. So equation (20) has a positive real
root ξa satisfying ξα

a = ξ+. Substituting ξa into (18), we get cos τξa ≈ 0.3677 > 0. So we ob-
tain the Hopf bifurcation critical value τa ≈ 13.5888 by using (21). Therefore, by Theorem
2 the equilibrium (0.3571, 0, 1.875) is asymptotically stable when τ ∈ [0, 13.5888) as illus-
trated in Fig. 2 (where τ = 13.5); Otherwise, the equilibrium (0.3571, 0, 1.875) is unstable,
and a Hopf bifurcation emerges at τ ≈ 13.5888 (see Fig. 3, where τ = 13.59).

6 Conclusions
We have proposed a delayed fractional-order differential equation model that reflects the
interaction among rice, weeds, and inorganic fertilizer in a paddy ecosystem. If α = 1 and
c3 = c4 = 1, then system (5) degenerates into system (4), which was studied in [12]. The
equilibria and their existence conditions of system (5) are the same as those of system (4),
where those conditions are related to the relative mortality of rice and weeds, θ1 and θ2, and
to the ratio of fertilizer supply and loss b/d3, but not to other parameters. Under the condi-
tion b/d3 < min{θ1, θ2}, there is a unique stable equilibrium (0, 0, u∗

1) in each of the two sys-
tems. If b/d3 > max{θ1, θ2}, then each of the two systems has three equilibria: the equilib-
rium for rice and weeds extinction (0, 0, u∗

1), the equilibrium for weeds extinction (r∗
2 , 0, u∗

2),
and the equilibrium for rice extinction (0, p∗

3, u∗
3), where the equilibrium (0, 0, u∗

1) is unsta-
ble, and (r∗

2 , 0, u∗
2) is also unstable when θ1 > θ2, or (0, p∗

3, u∗
3) is unstable when θ1 < θ2. Under

the condition θ1 < b/d3 < θ2, there exist two equilibria (0, 0, u∗
1) and (r∗

2 , 0, u∗
2). Under the

condition θ2 < b/d3 < θ1, there exist two equilibria (0, 0, u∗
1) and (0, p∗

3, u∗
3).
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Figure 2 The asymptotical stability with delay τ = 13.5. The parameters of system (5) are c1 = 0.8, c2 = 0.1,
c3 = 0.9, c4 = 0.6, s1 = 0.6, s2 = 0.1, b = 0.3, d1 = 0.9, d2 = 0.1, d3 = 0.1, and α = 0.98; the initial values are
r(t) = 0.1, p(t) = 1, u(t) = 2 (t ∈ [–τ , 0]). The Hopf bifurcation critical value τa ≈ 13.5888. It depicts the
asymptotical stability of the equilibrium (r∗2 ,p∗

2 ,u
∗
2)≈ (0.3571, 0, 1.875) with time delay τ = 13.5 < τa

Figure 3 A periodic oscillation with delay τ = 13.59. The parameters of system (5) are c1 = 0.8, c2 = 0.1,
c3 = 0.9, c4 = 0.6, s1 = 0.6, s2 = 0.1, b = 0.3, d1 = 0.9, d2 = 0.1, d3 = 0.1, and α = 0.98; the initial values are
r(t) = 0.1, p(t) = 1, u(t) = 2 (t ∈ [–τ , 0]). The Hopf bifurcation critical value τa ≈ 13.5888. It depicts a periodic
oscillation bifurcating from the equilibrium (r∗2 ,p∗

2 ,u
∗
2) ≈ (0.3571, 0, 1.875) with time delay τ = 13.59 > τa

We also generalize the conditions of stabilities of equilibria and Hopf bifurcation ob-
tained by Wang et al. [12]. If we take α = 1 and c3 = c4 = 1, then we have a1 = a3 = 0,
a2 = (s1r∗

2 + d3)2 – 2s1r∗
2d1, and a4 = s2

1r∗2
2 d2

1(1 – c2
1) from (15) and (16). Equation (11) has a

positive root νa = 2√a4. So we obtain �a = –a2 – 2√a4 from (14). If �a < 0, then we have

(
s1r∗

2 + d3
)2 > 2s1r∗

2d1

(
1 –

√
1 – c2

1

)
.
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It is condition (5) of Theorem 2 in [12]. Similarly, from �a > 0 we can obtain condition
(6) in [12]. Moreover, substituting α = 1 and c3 = 1 into the Hopf bifurcation critical value
formulas (21) and (22), we can obtain formulas (12) and (13) in [12], respectively.
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