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Abstract
In this paper, by combining graph theory with coincidence degree theory as well as
Lyapunov functional method, sufficient conditions to guarantee the existence and
global exponential stability of periodic solutions of the complex-valued neural
networks of neutral type are established. In our results, the assumption on the
boundedness for the activation function in (Gao and Du in Discrete Dyn. Nat. Soc.
2016:Article ID 1267954, 2016) is removed and the other inequality conditions in (Gao
and Du in Discrete Dyn. Nat. Soc. 2016:Article ID 1267954, 2016) are replaced with
new inequalities.
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1 Introduction
Because in a lot of practical applications complex signals often occur and the complex-
valued neural networks are preferable and practical, hence, up to now, there has been
increasing research interest in the stability of equilibrium point and periodic solutions of
complex-valued neural networks, for example, see [2–17] and the references therein.

On the other hand, time delays have been extensively studied in last decades due to their
potential existence in many fields [12, 13, 18–20]. Up to now, the dynamical behaviors of
neural networks of neutral type have been extensively investigated and a lot of interesting
results on the global asymptotic stability and global exponential stability of equilibrium
point and periodic solutions for neural networks of neutral type have been published, for
example, see [18, 21–28] and the references therein.

But so far, very few studies have been reported on the dynamical behaviors of complex-
valued neural networks of neutral type with time delays [1, 29]. This motivates us to
carry out a study on dynamical behaviors of complex-valued neural networks of neu-
tral type. Recently, in [1], the authors discussed the existence and exponential stability
of periodic solutions for the following delayed complex-valued neural networks of neutral
type:

d[Knzn(t)]
dt

= –dn(t)zn(t) +
l∑

j=1

bnj(t)Fj
(
zj(t)

)
+

l∑

j=1

enj(t)Gj
(
zj
(
t – τnj(t)

))
+ Pn(t), (1)
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where n ∈ L = {1, 2, . . . , l}, l is a positive integer,

Knzn(t) = Knun(t) + iKnvn(t),

Knun(t) = un(t) – cnun(t – τ ),

Knvn(t) = vn(t) – cnvn(t – τ ),

τ , cn ∈ R with |cn| �= 1, dn(t) ≥ 0 is the self feedback connection weight, and enj(t), bnj(t) are
complex-valued connection weights, Fj(zj) and Gj(zj) : C → C are the activation functions
of the neurons. Pn(t) ∈ C is the external input, τnj ≥ 0 corresponds to the transmission
delays with τ ′

nj ≤ σ < 1, τnj ≤ σ ∗.
In [1], first, by means of using coincidence degree theory and the a priori estimate

method of periodic solutions, under the assumptions that the activation functions were
bounded, a sufficient condition on the existence of periodic solutions was established for
system (1). Then, by constructing an appropriate Lyapunov functional, a sufficient condi-
tion to guarantee the global exponential stability of periodic solutions to system (1) was
obtained.

In recent years, graph theory has been applied to studying global asymptotic stability of
discrete-time Cohen–Grossberg neural networks with finite and infinite delays [30] and
the existence and global stability of periodic solutions for coupled networks [31–35]. Some
sufficient conditions on the existence and global stability of equilibrium point and periodic
solutions for some neural networks and coupled networks have been established [30–36].

Recently, without applying the a priori estimate method of periodic solutions, we have
established some criteria to guarantee the existence of periodic solutions for neural net-
works with time delays by combining coincidence degree theory with Lyapunov functional
method or linear matrix inequality method [14, 15, 37].

However, so far, the results on the existence and global exponential stability of periodic
solutions for delayed complex-valued neural networks of neutral type have not been ob-
tained by combining coincidence degree theory with graph theory as well as Lyapunov
functional method.

The objective of this paper is to establish new criteria to guarantee the existence and
global exponential stability of periodic solutions of system (1) by removing the assumption
on the boundedness for the activation functions in [1] and replacing inequality conditions
in [1] with new inequality conditions, by combining coincidence degree theory with graph
theory as well as Lyapunov functional method.

Thus the contribution of our paper lies in the following two aspects: (1) Combination of
coincidence degree theory with graph theory as well as Lyapunov functional is introduced
to study the existence and exponential stability of periodic solutions for delayed complex-
valued neural networks of neutral type; (2) Novel sufficient conditions to guarantee the
existence and global exponential stability of periodic solutions for system (1) are derived
by removing the limitation on the boundedness for the activation functions in [1] and
replacing inequality conditions in [1] with new inequality conditions.

The paper is organized as follows. Some preliminaries and lemmas are introduced in
Sect. 2. In Sect. 3, a sufficient condition is derived to guarantee the existence of periodic
solutions of system (1). In Sect. 4, a sufficient condition is established to guarantee ex-
ponential stability of periodic solutions for system (1). In Sect. 5, an example is stated to
prove the effectiveness of our theoretical results.
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2 Preliminaries
Let zn(t) = un(t) + ivn(t), Fj(zj(t)) = FR

j (uj(t), vj(t)) + iFI
j (uj(t), vj(t)), Gj(zj(t – τnj(t))) =

GR
j (uj(t – τnj(t)), vj(t – τnj(t))) + iGI

j (uj(t – τnj), vj(t – τnj(t))) = GR
j (ut

j , vt
j ) + iGI

j (ut
j , vt

j ),
uj(t – τnj(t)) = ut

j , vj(t – τnj(t)) = vt
j , bnj(t) = bR

nj(t) + ibI
nj(t), enj(t) = eR

nj(t) + ieI
nj(t), Pn(t) =

PR
n (t) + iPI

n(t). After separating each state variable, the connection weight, the activation
function, and the external input into its real and imaginary parts, then system (1) can be
rewritten as follows:

d[Knun(t)]
dt

= –dn(t)un(t) +
l∑

j=1

bR
njF

R
j
(
uj(t), vj(t)

)
–

l∑

j=1

bI
njF

I
j
(
uj(t), vj(t)

)

+
l∑

j=1

eR
nj(t)GR

j
(
ut

j , vt
j
)

–
l∑

j=1

eI
nj(t)GI

j
(
ut

j , vt
j
)

+ PR
n (t),

d[Knvn(t)]
dt

= –dn(t)vn(t) +
l∑

j=1

bR
njF

I
j
(
uj(t), vj(t)

)
+

l∑

j=1

bI
njF

R
j
(
uj(t), vj(t)

)

+
l∑

j=1

eR
nj(t)GI

j
(
ut

j , vt
j
)

+
l∑

j=1

eI
nj(t)GR

j
(
ut

j , vt
j
)

+ PI
n(t).

(2)

The initial values of system (2) are

un(s) = φn(s), vn(s) = ψn(s), s ∈ [–σ , 0],σ = max
{
τ , max

t∈[0,ω],1≤j≤l

{
τnj(t)

}}
.

Let | · | be the Euclidean norm for R and L = {1, 2, . . . , l}. We introduce the notations as
follows:

(1) F = mint∈[0,ω]{|F(x)|}, F = maxt∈[0,ω]{|F(t)|}, where F(t) is a continuous ω-periodic
function with ω > 0;

(2)

Amjδ = bR
nj
[
lR
j + lI

j +
∣∣FR

j (0, 0)
∣∣δ2] + bI

nj
[
kR

j + kI
j +

∣∣FI
j (0, 0)

∣∣δ2]

+ eR
nj
[
qR

j + qI
j +

∣∣GR
j (0, 0)

∣∣δ2] + eI
nj
[
pR

j + pI
j +

∣∣GI
j (0, 0)

∣∣δ2] + δ2PR
n ,

Anj = bR
nj
(
lR
j + lI

j
)

+ bI
nj
(
kR

j + kI
j
)

+ eR
nj
(
qR

j + qI
j
)

+ eI
nj
(
pR

j + pI
j
)
,

Bmjδ = bR
nj
(
lR
j + lI

j + δ2∣∣FR
j (0, 0)

∣∣) + bI
nj
(
kR

j + kI
j + δ2∣∣FI

j (0, 0)
∣∣)

+ eR
nj
(
qR

j + qI
j + δ2∣∣GR

j (0, 0)
∣∣) + eI

nj
(
pR

j + pI
j + δ2∣∣FI

j (0, 0)
∣∣),

Bnj = bR
nj
(
lR
j + lI

j
)

+ bI
nj
(
kR

j + kI
j
)

+ eR
nj
(
qR

j + qI
j
)

+ eI
nj
(
pR

j + pI
j
)
,

A∗
njδ = bR

nj
[
kR

j + kI
j +

∣∣FI
j (0, 0)

∣∣δ2] + bI
nj
[
lR
j + lI

j +
∣∣FR

j (0, 0)
∣∣δ2]

+ eR
nj
[
pR

j + pI
j +

∣∣GI
j (0, 0)

∣∣δ2] + eI
nj
[
qR

j + qI
j +

∣∣GR
j (0, 0)

∣∣δ2] + δ2PI
n,

A∗
nj = bR

nj
(
kR

j + kI
j
)

+ bI
nj
(
lR
j + lI

j
)

+ eR
nj
(
pR

j + pI
j
)

+ eI
nj
(
qR

j + qI
j
)
,

B∗
njδ = bR

nj
(
kR

j + kI
j + δ2∣∣FI

j (0, 0)
∣∣) + bI

nj
(
lR
j + lI

j + δ2∣∣FR
j (0, 0)

∣∣)

+ eR
nj
(
pR

j + pI
j + δ2∣∣GI

j (0, 0)
∣∣) + eI

nj
(
qR

j + qI
j + δ2∣∣FR

j (0, 0)
∣∣),
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B∗
nj = bR

nj
(
kR

j + kI
j
)

+ bI
nj
(
lR
j + lI

j
)

+ eR
nj
(
qI

j + qR
j
)

+ eI
nj
(
qR

j + qI
j
)
,

Enj = eR
njq

R
j + eI

njp
R
j + eR

njp
I
j + eI

njq
I
j , Fnj = eR

njq
I
j + eI

njp
I
j + eR

njp
R
j + eI

njq
R
j ,

Unj = bR
nj
(
lR
j + kI

j
)

+ bI
nj
(
kR

j + lI
j
)
, Vnj = bR

nj
(
lI
j + kR

j
)

+ bI
nj
(
kI

j + lR
j
)
.

Throughout this paper, we always assume that
(h1) There exist positive constants lR

n , lI
n, kR

n , kI
n, qR

n , qI
n, pR

n , pI
n such that, for

∀(x1, y1), (x2, y2) ∈ R × R, n ∈ L,

∣∣FR
n (x1, y1) – FR

n (x2, y2)
∣∣ ≤ lR

n |x1 – x2| + lI
n|y1 – y2|,

∣∣FI
n(x1, y1) – FI

n(x2, y2)
∣∣ ≤ kR

n |x1 – x2| + kI
n|y1 – y2|,

∣∣GR
n(x1, y1) – GR

n(x2, y2)
∣∣ ≤ qR

n |x1 – x2| + qI
n|y1 – y2|,

∣∣GI
n(x1, y1) – GI

n(x2, y2)
∣∣ ≤ pR

n |x1 – x2| + pI
n|y1 – y2|.

(h2) dn(t), bR
nj(t), bI

nj(t), eR
nj(t), eI

nj(t), PR
n (t), PI

n(t) (n ∈ L) are all continuous ω-periodic
functions.

(h3) (1 + |cn|)(Unj + Enj
1–σ

) <
2dj

l – |cj|
l dj – Ajn – |cj|Bjn.

(h4) (1 + |cn|)(Vnj + Fnj
1–σ

) <
2dj

l – |cj|
l dj – A∗

jn – |cj|B∗
jn.

Lemma 2.1 (Gaines and Mawhin [38]) Suppose that X∗ and Z∗ are two Banach spaces
and L∗ : D(L∗) ⊂ X∗ → Z∗ is a Fredholm operator with index zero. Moreover, � ⊂ X∗ is an
open bounded set and N∗ : � → Z∗ is L∗-compact on �. If the following conditions hold:

(a) L∗u �= λN∗u, ∀u ∈ ∂� ∩ D(L∗), ∀λ ∈ (0, 1),
(b) QN∗u �= 0, ∀u ∈ ∂� ∩ Ker L∗,
(c) degB(J∗QN∗,� ∩ Ker L∗, 0) �= 0,

where J∗ : Im Q → Ker L∗ is an isomorphism, then the equation L∗u = N∗u has a solution
on � ∩ D(L∗).

Definition 2.1 (Graph theory [39]) A directed graph g = (U , K) contains a set U =
{1, 2, . . . , n} of vertices and a set K of arcs (i, j) leading from initial vertex i to terminal ver-
tex j. A subgraph � of g is said to be spanning if � and g have the same vertex set. A sub-
graph � is unicyclic if it is a disjoint union of rooted trees whose roots form a directed
cycle. For a weighted digraph g with l vertices, we define the weight matrix B = (b∗

ij)n×n

whose entry b∗
ij > 0 is equal to the weight of arc (j, i) if it exists, and 0 otherwise. A digraph

g is strongly connected if, for any pair of distinct vertices, there exists a directed path from
one to the other. The Laplacian matrix of (g, B) is defined as L = (qij)l×l , where qij = –b∗

ij for
i �= j and qij =

∑
k �=i b∗

ik for i = j.

Lemma 2.2 ([39]) Suppose that l ≥ 2 and c∗
k denotes the cofactor of the kth diagonal ele-

ment of the Laplacian matrix of (g, B). Then

l∑

k,h=1

c∗
kb∗

khGkh(xk , xh) =
∑

Q∈�

W (Q)
∑

(k,h)∈K (CQ)

Ghk(uh, uk),
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where Gkh(uk , uh) is an arbitrary function, Q is the set of all spanning unicyclic graphs of
(g, B), W (Q) is the weight of Q, CQ denotes the directed cycle of Q, and K(CQ) is the set of
arcs in CQ. In particular, if (g, B) is strongly connected, then c∗

k > 0 for 1 ≤ k ≤ l.

Remark 1 If (u1(t), u2(t), . . . , ul(t), v1(t), v2(t), . . . , vl(t))T is an ω periodic solution of system
(2), then (z1(t), z2(t), . . . , zl(t))T , where zn(t) = uR

n(t) + ivI
n(t), n = 1, 2, . . . , l, must be an ω

periodic solution to system (1). Thus, in order to show the existence of periodic solutions
of system (1), we only need to show the existence of periodic solutions of system (2). For
proving the global exponential stability of periodic solutions of system (1), we only need
to prove the global exponential stability of periodic solutions of system (2).

Lemma 2.3 (Lemma 2.1 [40]) If |cn| < 1, n = 1, 2, . . . , l, then the inverse of difference opera-
tor Bn denoted by B–1

n exists and

∥∥B–1
n

∥∥ ≤ 1
1 – |cn| .

3 The existence of periodic solutions
Lemma 3.1 For any λ ∈ (0, 1), we are concerned with the following system:

d[Knun(t)]
dt

= λ

{
–dn(t)un(t) +

l∑

j=1

bR
nj(t)FR

j
(
uj(t), vj(t)

)

–
l∑

j=1

bI
nj(t)FI

j
(
uj(t), vj(t)

)

+
l∑

j=1

eR
nj(t)GR

j
(
ut

j , vt
j
)

–
l∑

j=1

eI
nj(t)GI

j
(
ut

j , vt
j
)

+ PR
n (t)

}
,

d[Knvn(t)]
dt

= λ

{
–dn(t)vn(t) +

l∑

j=1

bR
nj(t)FI

j
(
uj(t), vj(t)

)

+
l∑

j=1

bI
nj(t)FR

j
(
uj(t), vj(t)

)

+
l∑

j=1

eR
nj(t)GI

j
(
ut

j , vt
j
)

+
l∑

j=1

eI
nj(t)GR

j
(
ut

j , vt
j
)

+ PI
n(t)

}
.

(3)

Then the periodic solutions of system (3) are bounded and the boundary must be indepen-
dent of the choice of λ under assumptions (h1)–(h4) if the periodic solutions of system (3)
exist. Namely, there exists a positive constant M such that

∥∥(
u(t), v(t)

)T∥∥ =
∥∥(

u1(t), u2(t), . . . , ul(t), v1(t), v2(t), . . . , vl(t)
)T∥∥ ≤ M,

where

∥∥(
u(t), v(t)

)T∥∥ =
l∑

m=1

max
t∈[0,ω]

(∣∣um(t)
∣∣ +

∣∣vm(t)
∣∣).
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Proof From (h3) and (h4), it follows that there exists a positive number δ such that
(h5) (1 + |cn|)(Unj + Enj

1–σ
) <

2dj
l – |cj|

l dj – Ajnδ – |cj|Bjnδ – lδ2PR
n – δ.

(h6) (1 + |cn|)(Vnj + Fnj
1–σ

) <
2dj

l – |cj|
l dj – A∗

jnδ – |cj|B∗
jnδ – lδ2PI

n – δ.
Suppose that (u(t), v(t))T = (u1(t), u2(t), . . . , ul(t), v1(t), v2(t), . . . , vl(t))T is one ω-periodic
solution of system (3) for some λ ∈ (0, 1). Let Vn(t) = V1n(t) + V2n(t),

V1n(t) =
[
Knun(t)

]2 +
[
Knvn(t)

]2,

where

V2n(t) = λ

{
|cn|

∫ t

t–τ

( l∑

j=1

Bnjδ + δ2PR
n

)
u2

n(s) ds

+
(1 + |cn|)

1 – σ

l∑

j=1

Enj

∫ t

t–τnj(t)
u2

j (s) ds

+
(1 + |cn|)

1 – σ

l∑

j=1

Fnj

∫ t

t–τnj(t)
v2

j (s) ds

+ |cn|
∫ t

t–τ

( l∑

j=1

B∗
njδ + δ2PI

n

)
v2

n(s) ds

}
.

Then we have, along with the solutions of system (3),

dV1n(t)
dt

= λ
[
un(t) – cnun(t – τ )

]
(

–dn(t)un(t) +
l∑

j=1

bR
nj(t)FR

j
(
uj(t), vj(t)

)

–
l∑

j=1

bI
nj(t)FI

j
(
uj(t), vj(t)

)
+

l∑

j=1

eR
nj(t)GR

j
(
ut

j , vt
j
)

–
l∑

j=1

eI
nj(t)GI

j
(
ut

j , vt
j
)

+ PR
n (t)

)

+
[
vn(t) – cnvn(t – τ )

]
(

–dn(t)vn(t) +
l∑

j=1

bR
nj(t)FI

j
(
uj(t), vj(t)

)

+
l∑

j=1

bI
nj(t)FR

j
(
uj(t), vj(t)

)
+

l∑

j=1

eR
nj(t)GI

j
(
ut

j , vt
j
)

+
l∑

j=1

eI
nj(t)GR

j
(
ut

j , vt
j
)

+ PI
n(t)

)

≤ λ

{
(
–2dn + |cn|dn

)
u2

n(t) + |cn|dnu2
n(t – τ )

+ 2
[∣∣un(t)

∣∣ + |cn|
∣∣un(t – τ )

∣∣]
( l∑

j=1

bR
nj
[
lR
j
∣∣uj(t)

∣∣ + lI
j
∣∣vj(t)

∣∣ +
∣∣FR

j (0, 0)
∣∣]
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+
l∑

j=1

bI
nj
[∣∣FI

j (0, 0)
∣∣ + kR

j
∣∣uj(t)

∣∣ + kI
j
∣∣vj(t)

∣∣]

+
l∑

j=1

eR
nj
[
GR

j
∣∣ut

j
∣∣ + qI

j
∣∣vt

j
∣∣ +

∣∣GR
j (0, 0)

∣∣]

+
l∑

j=1

eI
nj
[
pR

j
∣∣ut

j
∣∣ + pI

j
∣∣vt

j
∣∣ +

∣∣GI
j (0, 0)

∣∣] + PR
n

)

+
(
–2dn + |cn|dn

)
v2

n(t) + |cn|dnv2
n(t – τ ) + 2

[∣∣vn(t)
∣∣ + |cn|

∣∣vn(t – τ )
∣∣]

×
( l∑

j=1

bR
nj
[
kR

j
∣∣uj(t)

∣∣ + kI
j
∣∣vj(t)

∣∣ +
∣∣FI

j (0, 0)
∣∣]

+
l∑

j=1

bI
nj
[∣∣FR

j (0, 0)
∣∣ + lR

j
∣∣uj(t)

∣∣ + lI
j
∣∣vj(t)

∣∣]

+
l∑

j=1

eR
nj
[
pR

j
∣∣ut

j
∣∣ + pI

j
∣∣vt

j
∣∣ +

∣∣GI
j (0, 0)

∣∣]

+
l∑

j=1

eI
nj
[
qR

j
∣∣ut

j
∣∣ + qI

j
∣∣vt

j
∣∣ +

∣∣GR
j (0, 0)

∣∣] + PI
n

)}
. (4)

From (4), by using the inequality 2|ab| ≤ a2 + b2 (a, b = un(t), un(t – τ ), vn(t),
vn(t – τ ), uj(t), vj(t), ut

j , vt
j ), 2un(t)|FR

j (0, 0)| ≤ |FR
j (0, 0)|[δ2u2

n(t) + 1
δ2 ], 2un(t)|FI

j (0, 0)| ≤
|FI

j (0, 0)|[δ2u2
n(t) + 1

δ2 ], 2un(t)|GI
j (0, 0)| ≤ |GI

j (0, 0)|[δ2u2
n(t) + 1

δ2 ], 2un(t)|GR
j (0, 0)| ≤

|GR
j (0, 0)|[δ2u2

n(t) + 1
δ2 ], 2un(t)PR

n ≤ PR
n [u2

n(t)δ2 + 1
δ2 ], it follows that

dV1n(t)
dt

≤ λ

{(
–2dn + |cn|dn +

l∑

j=1

Anjδ

)
u2

n(t) + |cn|
( l∑

j=1

Bnjδ + δ2PR
n

)
u2

n(t – τ )

+
l∑

j=1

(
1 + |cn|

)(
bR

njl
R
j + bI

njk
R
j
)
u2

j (t) +
(
1 + |cn|

) l∑

j=1

(
bR

njl
I
j + bI

njk
I
j
)
v2

j (t)

+
(
1 + |cn|

) l∑

j=1

(
eR

njq
R
j + eI

njp
R
j
)(

ut
j
)2 +

(
1 + |cn|

) l∑

j=1

(
eR

njq
I
j + eI

njp
I
j
)(

vt
j
)2

+

(
–2dn + |cn|dn +

l∑

j=1

A∗
njδ

)
v2

n(t) + |cn|
( l∑

j=1

B∗
njδ + δ2PI

n

)
v2

n(t – τ )

+
l∑

j=1

(
1 + |cn|

)(
bR

njk
R
j + bI

njl
R
j
)
v2

j (t) +
(
1 + |cn|

) l∑

j=1

(
bR

njk
I
j + bI

njl
I
j
)
u2

j (t)

+
(
1 + |cn|

) l∑

j=1

(
eR

njp
R
j + eI

njq
R
j
)(

vt
j
)2 +

(
1 + |cn|

) l∑

j=1

(
eR

njp
I
j + eI

njq
I
j
)(

ut
j
)2

}

+ λN , (5)

where N is a positive constant.
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Since

dV2n(t)
dt

= λ

{
1 + |cn|
1 – σ

l∑

j=1

{
Enju2

j (t) – Enjx2
j
(
t – τij(t)

)(
1 – τ ′

nj(t)
)

+ Fnjv2
j (t) – Fnjv2

j
(
t – τnj(t)

)(
1 – τ ′

nj(t)
)}

+ |cn|
l∑

j=1

(
Bnjδ + δ2PR

n
)
u2

n(t) – |cn|
l∑

j=1

(
Bnjδ + δ2PR

n
)
u2

n(t – τ )

+ |cn|
l∑

j=1

(
B∗

njδ + δ2PI
n
)
v2

n(t) – |cn|
l∑

j=1

(
B∗

njδ + δ2PI
n
)
v2

n(t – τ )

}

≤ λ

l∑

j=1

{
Enj(1 + |cn|)

1 – σ
u2

j (t) – Enj
(
1 + |cn|

)
u2

j
(
t – τnj(t)

)

+
Fnj(1 + |cn|)

1 – σ
v2

j (t) –
(
1 + |cn|

)
Fnjv2

j
(
t – τnj(t)

)}

+ |cn|
l∑

j=1

(
Bnjδ + δ2PR

n
)
u2

n(t) – |cn|
l∑

j=1

(
Bnjδ + δ2PR

n
)
u2

n(t – τ )

+ |cn|
l∑

j=1

(
B∗

njδ + δ2PI
n
)
v2

n(t) – |cn|
l∑

j=1

(
B∗

njδ + δ2PI
n
)
v2

n(t – τ )}, (6)

from (5) and (6), we have

dVn(t)
dt

≤ λ

{[
–2dn + |cn|dn +

l∑

j=1

Anjδ + |cn|
( l∑

j=1

Bnjδ + δ2PR
n

)]
u2

n(t)

+
(
1 + |cn|

) l∑

j=1

(
Unj +

Enj

1 – σ

)
u2

j (t) +
(
1 + |cn|

) l∑

j=1

(
Vnj +

Fnj

1 – σ

)
v2

j (t)

+

[
–2dn + |cn|dn +

l∑

j=1

A∗
njδ + |cn|

( l∑

j=1

B∗
njδ + δ2PI

n

)]
v2

n(t)

}
+ λN

= λ

l∑

j=1

{[
–2

dn

l
+ |cn|dn

l
+ Anjδ + |cn|

(
Bnjδ + lδ2PR

n
)

+ δ

]
u2

n(t)

+ |cn|)
l∑

j=1

(Vnj +
(
1 + |cn|

)(
Unj +

Enj

1 – σ

)
u2

j (t)

+
(
1 + |cn|

)(
Vnj +

Fnj

1 – σ

)
v2

j (t)

+
[

–2
dn

l
+ |cn|dn

l
+ A∗

njδ + |cn|
(
B∗

njδ + lδ2PI
n
)

+ δ

]
v2

n(t)

– δ
[
u2

n(t) + v2
n(t)

]
+ N

}
. (7)
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By using (h5) and (h6), from (7), it follows that

dVn(t)
dt

≤ λ

l∑

j=1

{[
2

dj

l
– |cj|dj

l
– Ajnδ – |cj|(Bjnδ + lδ2PR

j – δ

]
u2

j (t))

–
[

2
dn

l
– |cn|dn

l
– Anjδ – |cn|

(
Bnjδ + lδ2PR

n
)

– δ

]
u2

n(t)
}

+ λ

l∑

j=1

{[
2

dj

l
– |cj|dj

l
– A∗

jnδ – |cj|
(
B∗

jnδ + lδ2PI
j
)

– δ

]
v2

j (t)

–
[

2
dn

l
– |cn|dn

l
– A∗

njδ – |cn|
(
B∗

njδ + lδ2PI
n
)

– δ

]
v2

n(t)
}

– δ
[
u2

n(t) + v2
n(t)

]
+ N}. (8)

Letting bnj = 1 (n �= j), bnj = 0, n = j, Gnj(u2
n(t), u2

j (t)) = [2
dj
l – |cj| dj

l – Ajnδ – |cj|(Bjnδ + lδ2PR
j ) –

δ]u2
j (t)–[2 dn

l – |cn| dn
l –Anjδ – |cn|(Bnjδ + lδ2PR

n )–δ]u2
n(t) and pn(u2

n(t)) = [2 dn
l – |cn| dn

l –Anjδ –

|cn|(Bnjδ + lδ2PR
n ) –δ]u2

n(t); b∗
nj = 1 (n �= j), b∗

nj = 0, n = j, G∗
nj(v2

n(t), v2
j (t)) = [2

dj
l – |cj| dj

l – A∗
jnδ –

|cj|(B∗
jnδ + lδ2PI

j ) – δ]v2
j (t) – [2 dn

l – |cn| dn
l – A∗

njδ – |cn|(B∗
njδ + lδ2PI

n) – δ]v2
n(t) and p∗

n(v2
n(t)) =

[2 dn
l – |cn| dn

l – A∗
njδ – |cn|(B∗

njδ + lδ2PI
n) – δ]v2

n(t), then we have, from (8),

dVn(t)
dt

≤ λ

{ l∑

j=1

bnjGnj
(
u2

n(t), u2
j (t)

)

+
l∑

j=1

b∗
njG

∗
nj
(
v2

n(t), v2
j (t)

)
–

l∑

j=1

δ
[
u2

n(t) + v2
n(t)

]
+

N
l

}
, (9)

Gnj
(
u2

n(t), u2
j (t)

)
= pj

(
u2

j (t)
)

– pn
(
u2

n(t)
)
, (10)

and

G∗
nj
(
v2

n(t), v2
j (t)

)
= p∗

j
(
v2

j (t)
)

– p∗
n
(
v2

n(t)
)
. (11)

We construct the following Lyapunov function for system (3):

V (t) =
l∑

n=1

c∗
nVn(t),

where c∗
n > 0 is the cofactor of the nth diagonal element of the Laplacian matrix of (g, B).

From (9), we have

dV (t)
dt

=
l∑

n=1

c∗
n

dVn(t)
dt

= λ

l∑

n=1

c∗
n

l∑

j=1

{
bnjGnj

(
u2

n(t), u2
j (t)

)
+ b∗

njG
∗
nj
(
v2

j (t), v2
j (t)

)

– δ
[
u2

n(t) + v2
n(t)

]
+ N

}
. (12)
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From Lemma 2.2, it follows that

l∑

n=1

l∑

j=1

c∗
nbnjGnj

(
u2

n(t), u2
j (t)

)
=

∑

Q∈�

W (Q)
∑

(n,j)∈K (C�)

Gnj
(
u2

n(t), u2
j (t)

)
, (13)

l∑

n=1

l∑

j=1

c∗
nb∗

njG
∗
nj
(
v2

n(t), v2
j (t)

)
=

∑

Q∈�

W (Q)
∑

(n,j)∈K (C�)

G∗
nj
(
v2

n(t), v2
j (t)

)
. (14)

By substituting (10) into (13) and substituting (11) into (14), it follows that, from the fact
W (Q) > 0,

l∑

n=1

l∑

j=1

c∗
nbnjGnj

(
u2

n(t), u2
j (t)

)

=
∑

Q∈�

W (Q)
∑

(n,j)∈K (C�)

[
pj

(
u2

j (t)
)

– pn
(
u2

n(t)
)] ≤ 0 (15)

and

l∑

n=1

l∑

j=1

c∗
nb∗

njG
∗
nj
(
v2

n(t), v2
j (t)

)

=
∑

Q∈�

W (Q)
∑

(n,j)∈K (C�)

[
p∗

j
(
v2

j (t)
)

– p∗
n
(
v2

n(t)
)] ≤ 0. (16)

Substituting (15) and (16) into (12) gives

dV (t)
dt

≤ λ

l∑

n=1

c∗
n

l∑

j=1

(
–δ

[
u2

n(t) + v2
n(t)

]
+ N

)
. (17)

Integrating (17) from 0 to ω gives

∫ ω

0

l∑

n=1

c∗
nδ

[
u2

n(s) + v2
n(s)

]
ds ≤ ωN

l∑

n=1

c∗
n. (18)

Integrating (17) from 0 to t gives

V (t) ≤ V (0) +
∫ t

0

l∑

n=1

c∗
nl

(
δ
[
u2

n(s) + v2
n(s)

]
+ N

)
ds

≤ V (0) +
∫ ω

0

l∑

n=1

c∗
nl

(
δ
[
u2

n(s) + v2
n(s)

]
+ N

)
ds. (19)

Substituting (18) into (19) gives

V (t) ≤ V (0) + 2lωN
l∑

n=1

c∗
n. (20)
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From (20) and the definitions of Vn(t) and V1n(t), we have

l∑

n=1

c∗
n
{[

un(t) – cnun(t – τ1)
]2 +

[
vn(t) – cnvn(t – τ1

]2}

≤ V (0) + 2lωN
l∑

n=1

c∗
n. (21)

Letting |un(ξ )| = maxt∈[0,ω] |un(t)|, |vn(η)| = maxt∈[0,ω] |vn(t)|, then from (21), it follows that

l∑

n=1

c∗
n
(
1 – |cn|

)2[u2
n(ξ ) + v2

n(η)
] ≤ V (0) + 2lωN

l∑

n=1

c∗
n.

Hence there exists a positive constant M such that ‖(u(t), v(t))T‖ ≤ M. This completes the
proof of Lemma 3.1. �

Theorem 3.1 Assume that (h1)–(h4) hold and |cn| < 1. Then system (2) has at least one ω

periodic solution.

Proof We will prove the existence of periodic solutions of system (2) by means of using
Lemma 2.1. We are concerned with the Banach spaces: X∗ = Z∗ = {(u(t), v(t))T ∈ C(R, R2l) :
u(t + ω) = u(t), v(t + ω) = v(t)} with the norm ‖(u(t), v(t))T‖ =

∑l
n=1 maxt∈[0,ω](|un(t)| +

|vn(t)|). Set L∗ : Dom L∗ ⊂ X∗ → X∗, L∗(u(t), v(t)) = ( d[K1u1(t)]
dt , d[K2u2(t)]

dt , . . . , d[Klul(t])
dt ,

d[K1v1(t)]
dt , d[K2v2(t)]

dt , . . . , d[Klv1(t)]
dt )T and

N∗(u(t), v(t)
)

=
(
f1(t), f2(t), . . . , fl(t), f ∗

1 (t), f ∗
2 (t), . . . , f ∗

l (t)
)
,

where, for n ∈ L,

fn(t) = –dn(t)un(t) +
l∑

j=1

bR
nj(t)FR

j
(
uj(t), vj(t)

)
–

l∑

j=1

bI
nj(t)FI

j
(
uj(t), vj(t)

)

+
l∑

j=1

eR
nj(t)GR

j
(
ut

j , vt
j
)

–
l∑

j=1

eI
nj(t)GI

j
(
ut

j , vt
j
)

+ PR
n (t),

f ∗
n (t) = –dn(t)vn(t) +

l∑

j=1

bR
nj(t)FI

j
(
uj(t), vj(t)

)
+

l∑

j=1

bI
nj(t)FR

j
(
uj(t), vj(t)

)

+
l∑

j=1

eR
nj(t)GI

j
(
ut

j , vt
j
)

+
l∑

j=1

eI
nj(t)GR

j
(
ut

j , vt
j
)

+ PI
n(t).

Thus Ker L∗ = {u = (u(t), v(t))T ∈ X∗ : u ∈ R2l}, Im L∗ = {w ∈ Z∗ :
∫ ω

0 w(t) dt = 0} is closed in
Z∗ and Dim Ker L∗ = 2l = Codim Im L∗. Hence, the operator L∗ is a Fredholm mapping of
index 0. We construct the projectors P∗ : X∗ ∩ Dom L∗ → Ker L∗ and Q∗ : Z∗ → Z∗ as

P∗u =
1
ω

∫ ω

0
u(t) dt, u ∈ X∗;

Q∗w =
1
ω

∫ ω

0
w(t) dt, w ∈ Z∗.
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Therefore, Lm P∗ = Ker L∗, Lm L∗ = Ker Q∗ = Im(I – Q∗). Moreover, the generalized in-
verse Kp of L∗ is given as Kp = (L∗)–1(

∫ t
0 w(s) ds). Since |cn| < 1, from Lemma 2.3, it is not

difficult to show that N∗ is L∗-compact on �. The concrete form of the operator equa-
tion L∗(u, v) = λN∗(u, v), (u, v)T ∈ X∗, λ ∈ (0, 1) is system (2). From Lemma 3.1, for every
periodic solution (u(t), v(t))T = (u1(t), u2(t), . . . , ul(t), v1(t), v2(t), . . . , vl(t))T of system (2),
there exists a positive constant M such that ‖(u(t), v(t))T‖ < M. We set � = {(u(t), v(t))T ∈
X∗ : ‖(u(t), v(t))T‖ < M}, M >

√
2Nl

∑l
n=1 c∗n

min1≤n≤l{c∗n} . Then, for each (u(t), v(t))T ∈ ∂� ∩ Dom L∗,
L∗(u(t), v(t)) �= λN∗(u(t), v(t)), λ ∈ (0, 1). Hence, condition (1) in Lemma 2.2 is satis-
fied. Secondly, we will show that when (u(t), v(t))T ∈ ∂� ∩ Ker L∗, Q∗N∗(u(t), v(t)) �= 0.
Since (u, v)T ∈ ∂� ∩ Ker L∗, (u, v)T is a constant vector with ‖(u, v)T‖ = M, then when
(u, v)T ∈ ∂� ∩ Ker L∗, Q∗N∗(u, v) = (f1(ξ1), f2(ξ2), . . . , fl(ξl), f ∗

1 (ξ1), f ∗
2 (ξ2), . . . , f ∗

l (ξl)), where
ξi (i = 1, 2, . . . , l) ∈ [0,ω]. When (u, v)T ∈ ∂� ∩ Ker L∗, we have

[un – cnun, vn – cnvn]
[
Q∗N∗(u, v)n

]T

= [un – cnun, vn – cnvn]
(
fn(ξn), f ∗

n (ξn)
)T

= (un – cnun)

[
–dn(ξn)un +

l∑

j=1

bR
nj(ξn)FR

j (uj, vj)

–
l∑

j=1

bI
nj(ξn)FI

j (uj, vj) +
l∑

j=1

eR
nj(ξn)GR

j (uj, vj) –
l∑

j=1

eI
nj(ξn)GI

j (uj, vj) + PR
n (ξn)

]

+ (vn – cnvn)

[
–dn(ξn)vn +

l∑

j=1

bR
nj(ξn)FI

j (uj, vj)

–
l∑

j=1

bI
nj(ξn)FR

j (uj, vj) +
l∑

j=1

eR
nj(ξn)GI

j (uj, vj) –
l∑

j=1

eI
nj(ξn)GR

j (uj, vj) + PI
n(ξn)

]

+ 0. (22)

It is obvious that

0 = |cn|
( l∑

j=1

Bnjδ + δ2PR
n

)
(
u2

n – u2
n
)

+
1 + |cn|
1 – σ

l∑

j=1

Enj
(
u2

j – u2
j
)

+ |cn|
( l∑

j=1

B∗
njδ + δ2PI

n

)
(
v2

n – v2
n
)

+
1 + |cn|
1 – σ

l∑

j=1

fnj
(
v2

j – v2
j
)
. (23)

Substituting (23) into (22) gives

[un – cnun, vn – cnvn]
[
QN(u, v)n

]T

= [un – cnun, vn – cnvn]
(
fn(ξn), f ∗

n (ξn)
)T

≤ (un – cnun)

[
–dn(ξn)un +

l∑

j=1

bR
nj(ξn)FR

j (uj, vj) –
l∑

j=1

bI
nj(ξn)FI

j (uj, vj)



Zhang and Cao Advances in Difference Equations  (2018) 2018:261 Page 13 of 23

+
l∑

j=1

eR
nj(ξn)GR

j (xj, yj) –
l∑

j=1

eI
nj(ξn)GI

j (uj, vj) + PR
n (ξn)

]

+ (vn – cnvn)

[
–dn(ξn)vn +

l∑

j=1

bR
nj(ξn)FI

j (uj, vj) +
l∑

j=1

bI
nj(ξn)FR

j (uj, vj)

+
l∑

j=1

eR
nj(ξn)GI

j (uj, vj) +
l∑

j=1

eI
nj(ξn)GR

j (uj, vj) + PI
n(ξn)

]

+ |cn|
( l∑

j=1

Bnjδ + δ2PR
n

)
(
u2

n – u2
n
)

+
1 + |cn|
1 – σ

l∑

j=1

Enj
(
u2

j – u2
j
)

+ |cn|(
l∑

j=1

B∗
njδ + δ2PI

n
(
v2

n – v2
n
)

+
1 + |cn|
1 – σ

l∑

j=1

fnj
(
v2

j – v2
j
)
. (24)

From (24), the same proofs as those of (7)–(17) give

l∑

n=1

c∗
n[un – cnyn, vn – cnvn]

[
Q∗N∗(u, v)n

]T

=
l∑

n=1

c∗
n[un – cnun, vn – cnvn]

(
fn(ξn), f ∗

n (ξm)
)T

≤
l∑

n=1

c∗
n

l∑

j=1

{[
2

dj

l
– |cj|dj

l
– Ajnδ – |cj|

(
Bjnδ + lδ2PR

j
)

– δ

]
u2

j

–
[

2
dn

l
– |cn|dn

l
– Anjδ – |cn|

(
Bnjδ + lδ2PR

n
)

– δ

]
u2

n

}

+
l∑

j=1

{[
2

dj

l
– |cj|dj

l
– A∗

jnδ – |cj|
(
B∗

jnδ + lδ2PI
j
)

– δ

]
v2

j

–
[

2
dn

l
– |cn|dn

l
– A∗

njδ – |cn|
(
B∗

njδ + lδ2PI
n
)

– δ

]
v2

n(t)
}

– δ
(
u2

n + v2
n
)

+ N}

≤
l∑

n=1

l∑

j=1

c∗
n
[
–δ

(
u2

n + v2
n
)

+ N
]
. (25)

Since
∑l

n=1(|un| + |vn|) = M, then

M2 ≤ l
l∑

n=1

(
u2

n + v2
n + 2|un||vn|

) ≤ 2l
l∑

n=1

(
u2

n + v2
n
)
.

Namely,

l∑

n=1

(
u2

n + v2
n
) ≥ M2

2l
. (26)
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Substituting (26) into (25) gives

l∑

n=1

c∗
n[un – cnyn, vn – cnvn]

[
Q∗N∗(u, v)n

]T

≤ – min
1≤n≤l

{
c∗

n
}M2

2
+ Nl

l∑

n=l

{
c∗

n
}

< 0. (27)

Thus when (u, v) ∈ ∂� ∩ Ker L∗, Q∗N∗(u, v) �= 0. Thus, condition (b) in Lemma 2.1 is sat-
isfied.

Thirdly, we show that when (u, v)T ∈ ∂� ∩ Ker L∗, deg{J∗Q∗N∗,� ∩ Ker L∗, 0} �= 0. We
construct a mapping H(u, v,μ∗) by setting

H
(
u, v,μ∗) = –μ∗(d1u1, d2u2, . . . , dlvl, d1v1, d2v2, . . . , dlvl)

+
(
1 – μ∗)(f1(ξ1), f2(ξ2), . . . , fl(ξl), f ∗

1 (ξ1), f ∗
2 (ξ2), . . . , f ∗

l (ξl)
)
,

where ∀(u, v,μ∗) ∈ ∂� ∩ Ker L∗ × [0, 1]. If when (u, v,μ∗) ∈ ∂� ∩ Ker L∗ = R2l ∩ Ker L∗,
H(u, v,μ∗) = 0, then for n ∈ L,

0 = –μ∗dnun +
(
1 – μ∗)fn(ξn) (28)

and

0 = –μ∗dnun +
(
1 – μ∗)f ∗

n (ξn). (29)

From (28) and (29), we have

0 = (un – cnun)
[
–μ∗dnun +

(
1 – μ∗)fn(ξn)

]

+ (vn – cnvn)
[
–μ∗dnvn +

(
1 – μ∗)f ∗

n (ξn)
]

≤ –(1 – cn)μ∗dnu2
n – (1 – cn)

(
1 – μ∗)dnu2

n + un

{ l∑

j=1

bR
nj(ξn)FR

j (uj, vj)

–
l∑

j=1

bI
nj(ξn)FI

j (uj, vj) +
l∑

j=1

eR
nj(ξn)GR

j (uj, vj) –
l∑

j=1

eI
nj(ξn)GI

j (uj, vj) + PR
n (ξn)]

}

– (1 – cn)μ∗dnv2
n – (1 – cn)

(
1 – μ∗)dnv2

n + vn

{ l∑

j=1

bR
nj(ξn)FI

j (uj, vj)

+
l∑

j=1

bI
nj(ξn)FR

j (uj, vj) +
l∑

j=1

eR
nj(ξn)GI

j (uj, vj) +
l∑

j=1

eI
nj(ξn)GR

j (uj, vj) + PI
n(ξn)

}

≤ – (1 – cn)dnu2
n + (1 – cn)

(
1 – μ∗)|un|

{ l∑

j=1

bR
nj
∣∣FR

j (uj, vj)
∣∣

+
l∑

j=1

bI
nj
∣∣FI

j (uj, vj)
∣∣ +

l∑

j=1

eR
nj
∣∣GR

j (uj, vj)
∣∣ +

l∑

j=1

eI
nj
∣∣GI

j (uj, vj)
∣∣ + PR

n

}
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– (1 – cn)dnv2
n + (1 – cn)

(
1 – μ∗)|vn|

{ l∑

j=1

bR
nj
∣∣GI

j (uj, vj)
∣∣

+
l∑

j=1

bI
nj
∣∣FR

j (uj, vj)
∣∣ +

l∑

j=1

eR
nj
∣∣GI

j (uj, vj)
∣∣ +

l∑

j=1

eI
nj
∣∣GR

j (uj, vj)
∣∣ + PI

n

}
. (30)

By the same proofs as those in (7)–(17), from (30), we obtain

–(1 – cn)dnu2
n + (1 – cn)

(
1 – μ∗)|un|

{ l∑

j=1

bR
nj
∣∣FR

j (uj, vj)
∣∣

+
l∑

j=1

bI
nj
∣∣FI

j (uj, vj)
∣∣ +

l∑

j=1

eR
nj
∣∣GR

j (uj, vj)
∣∣ +

l∑

j=1

eI
nj
∣∣GI

j (uj, vj)
∣∣ + PR

n

}

– (1 – cn)dnv2
n + (1 – cn)

(
1 – μ∗)|vn|{

l∑

j=1

bR
nj
∣∣FI

j (uj, vj)
∣∣

+
l∑

j=1

bI
nj|FR

j (uj, vj) +
l∑

j=1

eR
nj
∣∣GI

j (uj, vj)
∣∣ +

l∑

j=1

eI
nj
∣∣GR

j (uj, vj)
∣∣

< 0. (31)

Equation (31) contradicts (30), hence H(u, v,μ∗) �= 0 when (u, v,μ∗) ∈ ∂� ∩ R2l ∩ Ker L∗.
Hence, L∗(u, v,μ∗) is a homotopic mapping. Thus, we have

deg
(
J∗Q∗N∗(u, v,μ∗), ∂� ∩ Ker L∗, (0, 0, . . . , 0)

)

= deg
(
H(u, v, 0), ∂� ∩ Ker L∗, (0, 0, . . . , 0)

)

= deg
(
H(u, v, 1), ∂� ∩ Ker L∗, (0, 0, . . . , 0)

)

�= 0.

Thus condition (c) in Lemma 2.1 is satisfied. Hence the proof of Theorem 3.1 is com-
plete. �

4 Exponential stability
Theorem 4.1 Let the conditions in Theorem 3.1 be satisfied. Then the unique ω-periodic
solution of system (2) is globally exponentially stable.

Proof According to Theorem 3.1, system (2) has an ω-periodic solution. Let

(
u∗(t), v∗(t)

)T =
(
u∗

1(t), u∗
2(t), . . . , u∗

l (t), v∗
1(t), v∗

2(t), . . . , v∗
l (t)

)T

be an ω-periodic solution. From (h3) and (h4), it follows that there exist two positive num-
bers δ∗ and α such that

(h7) (1 + |cn|)(Unj + Enjeασ∗

1–σ
) < 2

dj
l – |cj|

l dj – Ajn – |cj|eατ Bjn – δ∗ – α
l [eατ (1 + c2

n) + 1 + |cn|].
(h8) (1 + |cn|)(Vnj + Fnjeασ∗

1–σ
) <

2dj
l – |cj|

l dj – A∗
jn – |cj|eατ B∗

jn – α
l [eατ (1 + c2

n) + 1 + |cn|] – δ∗.
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Let (u(t), v(t))T = (u1(t), u2(t), . . . , ul(t), v1(t), v2(t), . . . , vl(t))T be an arbitrary solution of
system (2). We define the following Lyapunov functional: Vn(t) = V1n(t) + V2n(t), n ∈ L,

V1n(t) = eαt(KnXn(t)
)2 + eαt(KnYn(t)

)2,

V2n(t) = |cn|
∫ t

t–τ

eα(s+τ )
l∑

j=1

BnjX2
n(s) ds

+
(1 + |cn|)

1 – σ

l∑

j=1

Enj

∫ t

t–τnj(t)
eα(s+σ∗)X2

j (s) ds

+
(1 + |cn|)

1 – σ

l∑

j=1

Fnj

∫ t

t–τnj(t)
eα(s+σ∗)Y 2

j (s) ds

+ |cn|
∫ t

t–τ

eα(s+τ )
l∑

j=1

B∗
njY

2
n (s) ds

+ α

∫ t

t–τ

(
1 + c2

n
)
eα(s+τ )X2

n(s) ds

+ α

∫ t

t–τ

(
1 + c2

n
)
eα(s+τ )Y 2

n (s) ds,

where Xn(t) = un(t) – u∗
n(t), Yn(t) = vn(t) – v∗

n(t). Then we can get, along with the solutions
of system (2),

dV1n(t)
dt

= eαt

{
[
Xm(t) – cnXn(t – τ )

]
(

–dn(t)Xn(t)

+
l∑

j=1

bR
nj(t)

[
FR

j
(
uj(t), vj(t)

)
– FR

j
(
u∗

j (t), v∗
j (t)

)]

–
l∑

j=1

bI
nj(t)

[
FI

j
(
uj(t), vj(t)

)
– FI

j
(
u∗

j (t), v∗
j (t)

)]

+
l∑

j=1

eR
nj(t)

[
GR

j
(
ut

j , vt
j
)

– GR
j
(
u∗t

j , v∗t
j

)]

–
l∑

j=1

eI
nj(t)

[
GI

j
(
ut

j , vt
j
)

– GI
j
(
u∗t

j , v∗t
j

)]
)

+
[
Yn(t) – cnvn(t – τ )

]
(

–dn(t)Yn(t)

+
l∑

j=1

bR
nj(t)

[
FI

j
(
uj(t), vj(t)

)
– FI

j
(
u∗

j (t), v∗
j (t)

)]

+
l∑

j=1

bI
nj(t)

[
FR

j
(
uj(t), vj(t)

)
– FR

j
(
u∗

j (t), v∗
j (t)

)]
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+
l∑

j=1

eR
nj(t)

[
GI

j
(
ut

j , vt
j
)

– GI
j
(
u∗t

j , v∗t
j

)]

+
l∑

j=1

eI
nj(t)

[
GR

j
(
ut

j , vt
j
)

– GR
j
(
u∗t

j , v∗t
j

)]
)}

+ αeαt{[Xn – cnXn(t – τ )
]2 +

[
Yn – cnYn(t – τ )

]2} (32)

and

dV2n(t)
dt

= eαt

{
1 + |cn|
1 – σ

l∑

j=1

(
Enjeασ∗

X2
j (t) – EnjX2

j
(
t – τnj(t)

)(
1 – τ ′

nj(t)
)

+ Fnjeασ∗
Y 2

j (t) – FnjY 2
j
(
t – τnj(t)

)(
1 – τ ′

nj(t)
))

+ |cn|
l∑

j=1

Bnjδeατ X2
n(t) – |cn|

l∑

j=1

BnjX2
n(t – τ )

+ |cn|
l∑

j=1

B∗
njδeατ Y 2

n (t) – |cn|
l∑

j=1

B∗
njY

2
n (t – τ )

+ α
(
1 + c2

n
)[

eατ X2
n(t) – X2

n(t – τ )
]

+ α
(
1 + c2

n
)[

eατ Y 2
n (t) – Y 2

n (t – τ )
]
}

. (33)

From (32) and (33), by using arguments similar to (7)–(17), we have

dVn(t)
dt

≤ eαt

{[
–2dn + |cn|dn +

l∑

j=1

Anj + |cn|eατ

l∑

j=1

Bnj

+ α
[
eατ

(
1 + c2

n
)

+ 1 + |cn|
]
]

X2
n(t)

+
(
1 + |cn|

) l∑

j=1

(
Unj +

Enjeασ∗

1 – σ

)
X2

j (t) +
(
1 + |cn|

) n∑

j=1

(
Vnj +

Fnjeασ∗

1 – σ

)
Y 2

j (t)

+

[
–2dn + |cn|dn +

l∑

j=1

A∗
nj + |cn|eατ

l∑

j=1

B∗
nj

+ α
[
eατ

(
1 + c2

n
)

+ 1 + |cn|
]
]

Y 2
n (t)

}

= eαt
l∑

j=1

{[
–2

dn

l
+

|cn|dn

l
+ Anj + |cn|eατ Bnj

+
α

l
[
eατ

(
1 + c2

n
)

+ 1 + |cn|
]

+ δ∗
]

X2
n(t)

+
(
1 + |cn|

)(
Unj +

Enjeασ∗

1 – σ

)
X2

j (t) +
(
1 + |cn|

)(
Vnj +

Fnjeασ∗

1 – σ

)
Y 2

j (t)
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+
[

–2
dn

l
+

|cn|
l

dn + A∗
nj + |cn|eατ B∗

nj

+
α

l
[
eατ

(
1 + c2

n
)

+ 1 + |cn|
]

+ δ∗
]

Y 2
n (t) – δ∗[X2

n(t) + Y 2
n (t)

]}
. (34)

By using (h7) and (h8), from (34), we obtain

dVn(t)
dt

≤ eαt
l∑

j=1

{[
2

dj

l
–

|cj|
l

dj – Ajn – |cj|eατ Bjn

–
α

l
[
eατ

(
1 + c2

n
)

+ 1 + |cn|
]

– δ∗
]

X2
j (t)

–
[

2
dn

l
–

|cn|
l

dn – Anj – |cn|eατ Bnj

–
α

l
[
eατ

(
1 + c2

n
)

+ 1 + |cn|
]

– δ∗
]

X2
n(t)

}

+
l∑

j=1

{[
2

dj

l
–

|cj|
l

dj – A∗
jn – |cj|eατ B∗

jn

–
α

l
[
eατ

(
1 + c2

n
)

+ 1 + |cn|
]

– δ∗
]

Y 2
j (t)

–
[

2
dn

l
–

|cn|
l

dn – A∗
nj – |cn|eατ B∗

nj

–
α

l
[
eατ

(
1 + c2

n
)

+ 1 + |cn|
]

– δ∗
]

Y 2
n (t)

}
– δ∗[X2

n(t) + Y 2
n (t)

]}. (35)

Letting enj = 1 (n �= j), enj = 0, n = j, Gnj(X2
n(t), X2

j (t)) = [2
dj
l – |cj|

l dj – Ajn – |cj|eατ Bjn –
α
l [eατ (1 + c2

n) + 1 + |cn|] – δ∗]X2
j (t) – [2 dn

l – |cn|
l dn – Anj – |cn|eατ Bnj – α

l [eατ (1 + c2
n) + 1 +

|cn|] – δ∗]X2
n(t) and pn(X2

n(t)) = [2 dn
l – |cn|

l dn – Anj – |cn|eατ Bnj – α
l [eατ (1 + c2

n) + 1 + |cn|] –

δ∗]X2
n(t); b∗

nj = 1 (n �= j), b∗
nj = 0, n = j, G∗

nj(Y 2
n (t), Y 2

j (t)) = [2
dj
l – |cj|

l dj – A∗
jnδ – |cj|eατ B∗

jn –
α
l [eατ (1 + c2

n) + 1 + |cn|] – δ∗]Y 2
j (t) – [ dn

l – |cn|
l dn – A∗

nj – |cn|eατ B∗
jn – α

l [eατ (1 + c2
n) + 1 + |cn|] –

δ∗]Y 2
n (t) and p∗

n(Y 2
n (t)) = [ dn

l – |cn|
l dn – A∗

nj – |cn|eατ B∗
nj – α

l [eατ (1 + c2
n) + 1 + |cn|] – δ∗]Y 2

n (t),
then we have from (35)

dVn(t)
dt

≤ eαt

{ l∑

j=1

enjGnj
(
X2

n(t), X2
j (t)

)

+
l∑

j=1

b∗
njG

∗
nj
(
Y 2

n (t), Y 2
j (t)

)
–

l∑

j=1

δ∗[X2
n(t) + Y 2

n (t)
]
}

, (36)

Gnj
(
X2

n , X2
j (t)

)
= pj

(
X2

j (t)
)

– pn
(
X2

n(t)
)
, (37)

and

G∗
nj
(
Y 2

n , Y 2
j (t)

)
= p∗

j
(
Y 2

j (t)
)

– p∗
n
(
Y 2

n (t)
)
. (38)
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From (36)–(38), using the same proofs as those of (7)–(17), we have

dV (t)
dt

≤ eαt
l∑

n=1

l∑

j=1

(
–c∗

nδ
∗[u2

n(t) + v2
n(t)

])
< 0.

The rest of the proof is similar to that of the corresponding part in global exponential
stability in [1] and it is omitted.

When cn = 0, system (1) and system (2) reduce, respectively, to the following complex-
valued neural networks with time delays and real-valued neural networks with time delays:

z′
n(t) = –dn(t)zn(t) +

l∑

j=1

bnj(t)Fj
(
zj(t)

)

+
l∑

j=1

enj(t)Gj(zj
(
t – τnj(t)

)
+ Pn(t) (39)

and

d[un(t)]
dt

= –dn(t)un(t) +
l∑

j=1

bR
njF

R
j
(
uj(t), vj(t)

)
–

l∑

j=1

bI
njF

I
j
(
uj(t), vj(t)

)

+
l∑

j=1

eR
nj(t)GR

j
(
ut

j , vt
j
)

–
l∑

j=1

eI
nj(t)GI

j
(
ut

j , vt
j
)

+ PR
n (t),

d[vn(t)]
dt

= –dn(t)vn(t) +
l∑

j=1

bR
njF

I
j
(
uj(t), vj(t)

)
+

l∑

j=1

bI
njF

R
j
(
uj(t), vj(t)

)

+
l∑

j=1

eR
nj(t)GI

j
(
ut

j , vt
j
)

+
l∑

j=1

eI
nj(t)GR

j
(
ut

j , vt
j
)

+ PI
n(t).

(40)

From Theorem 4.1, we can obtain the following corollary. �

Corollary 1 Assume that (h1) and (h2) hold. Further assume that
(h9)

Unj +
Enj

1 – σ
<

2dj

l
– Ajn.

(h10)

Vnj +
Fnj

1 – σ
<

2dj

l
– A∗

jn.

Then system (39) or system (40) has an ω-periodic solution which is globally exponentially
stable.

Remark 2 In [2, 14, 15], and [16], the existence and global exponential/asymptotic stability
of periodic solutions for complex-valued neural networks have been obtained by using
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coincidence degree theory, LMI method, and Lypunov functional method. In our paper,
by combining graph theory with coincidence degree theory to study periodic solutions,
we establish new sufficient conditions to guarantee the existence and global exponential
stability of periodic solutions for complex-valued neural networks. Hence, a new study
method of periodic solutions for neural networks is introduced in our paper.

Remark 3 In [1], the activation functions were assumed to be bounded, but in our paper,
the activation functions are not bounded; hence, our results of exponential stability of pe-
riodic solutions for complex-valued neural networks of neutral type are less conservative
than those obtained in [1].

Remark 4 Up to now, the results of exponential stability of periodic solutions for neural
networks with time delays have not been published by means of graph theory. Hence, our
work to study periodic solutions of neural networks by applying graph theory are novel
in comparison to those obtained by using only coincidence degree theory or fixed point
theorems.

Remark 5 So far, coincidence degree theory has been widely applied to investigate the ex-
istence of periodic solutions for neural networks. In recent years, combination of graph
theory with coincidence degree theory has been applied to studying the existence of peri-
odic solutions for coupled networks [31–35]. Recently, we have established some sufficient
conditions for the existence and global stability of periodic solutions for neural networks
by combining coincidence degree theory with Lyapunov functional method [14, 15, 37].
However, the results on the existence and global stability of periodic solutions for neural
networks have not been obtained by combining coincidence degree theory with graph the-
ory as well as Lyapunov functional method. Hence, our results on the existence and global
exponential stability of periodic solutions for neural networks by using graph theory are
novel and complementary to the existing papers.

Remark 6 So far, the existence result of periodic solutions has been different from that of
global exponential/asymptotic stability for dynamical systems and differential equations
by using coincidence degree theory or fixed point theorems in the existing papers. In our
paper, by combining coincidence degree theory with graph theory as well as Lyapunov
functional method, by constructing the same Lyapunov functionals in the proofs of the
existence of periodic solutions and global exponential stability of periodic solutions, we
can obtain novel identical sufficient conditions for the existence of periodic solutions and
global exponential stability of periodic solutions. Hence, our study method of periodic
solutions is new and our result of global exponential stability for neural networks is concise
and easy to verify.

5 Numerical examples
In this section, we give an example for showing our results.

Example 1 We consider the neutral-type system (2) with the following parameters:
n = 1, 2, cn = –0.1, l = 2, dn(t) = 10 + 0.5 sin 5t, bR

nj(t) = bI
nj(t) = eR

nj(t) = eI
nj(t) = PR

n (t) = PI
n(t) =

0.01 + 0.09 sin 5t, τnj(t) = 0.1(2 + sin 5t), FR
j (uj(t), vj(t)) = FI

j (uj(t), vj(t)) = GR
j (uj(t), vj(t)) =

0.01|uj(t)| + 0.01|vj(t)|, GI
j (uj(t), vj(t)) = 0.01|uj(t)| + 0.01|vj(t)|. Then, in Theorem 4.1,
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Figure 1 Global exponential stability of periodic solutions in Example 1

cn = –0.1, n = 1, 2, l = 2, dj = 10.5, dj = 9.5, bR
jn = bI

jn = eR
nj = eI

nj = 0.1, lR
n = lI

n = kR
n = kI

n =
qR

n = qI
n = pR

n = pI
n = 0.01, σ = 0.1, σ ∗ = 0.1.

Since the activation functions in [1] are bounded, while the activation functions in Ex-
ample 1 are not bounded, hence the global exponential stability of periodic solutions for
Example 1 cannot be verified by the result in [1].

It is easy to verify that

(
1 + |cn|

)(
Unj +

Enj

1 – σ

)
= 1.1(0.004 + 0.0044) = 0.00924,

2dj

l
–

|cj|
l

dj – Ajn – |cj|Bjn = 9.5 – 0.525 – 0.008 – 0.0008 = 8.9662,

(
1 + |cn|

)(
Vnj +

Fnj

1 – σ

)
= 1.1(0.004 + 0.0044) = 0.00924,

2dj

l
–

|cj|
l

dj – A∗
jn – |cj|B∗

jn = 9.5 – 0.525 – 0.008 – 0.0008 = 8.9662.

Hence

(
1 + |cn|

)(
Unj +

Enj

1 – σ

)
<

2dj

l
–

|cj|
l

dj – Ajn – |cj|Bjn,

(
1 + |cn|

)(
Vnj +

Fnj

1 – σ

)
<

2dj

l
–

|cj|
l

dj – A∗
jn – |cj|B∗

jn.
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Namely (h3) and (h4) in Theorem 4.1 are satisfied. Thus all the conditions in Theorem 4.1
are satisfied; therefore, by Theorem 4.1, system (2) in Example 1 has a unique 2π

5 periodic
solution which is globally exponentially stable.

The global exponential stability of periodic solutions of the neutral-type complex-valued
neural networks in Example 1 is shown in Fig. 1.

6 Conclusion
By combining graph theory with coincidence degree theory as well as Lyapunov functional
method, by constructing the same Lyapunov functionals in the proofs of the existence of
periodic solutions and global exponential stability of periodic solutions, novel identical
sufficient conditions on the existence of periodic solutions and global exponential stability
of periodic solutions for neutral-type complex-valued neural networks are established.
In our results, the assumption on the boundedness for the activation functions in [1] is
removed and the inequality conditions in [1] are replaced with new inequalities. Hence,
our results are less conservative than those obtained in [1] and easy to verify. In near future,
we will study nonlinear control of delayed systems [19, 20].
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