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Abstract
In this paper, we consider a model of plant virus propagation with two delays and
Holling type II functional response. The stability of the positive equilibrium and the
existence of Hopf bifurcation are analyzed by choosing τ1 and τ2 as bifurcation
parameters, respectively. Using the center manifold theory and normal form method,
we discuss conditions for determining the stability and the bifurcation direction of
the bifurcating periodic solution. Finally, we carry out numerical simulations to
illustrate the theoretical analysis.
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1 Introduction
As we know, plants play a vital role in the everyday life of all organisms on earth. Some-
times, however, plants become infected with a virus, which can have a devastating effect on
the ecosystem that depends on it. An insect-vector can cause the transmission of the virus
from plant to plant. The propagation characteristics and epidemiology of plant viruses
were studied in [1, 2]. In [3], the transmission pathways of plant viruses were analyzed in
detail from the perspective of plants and media; the authors established a model of plant
infections disease and analyzed the dynamics of the model.

Although there are many models that describe the interaction between vectors and hu-
mans, there are not as many that describe the relationship between plants and vectors. Re-
cently, Jackson and Chen-Charpentier [4] have proposed a plant virus propagation model
with the functional response Holling type II of the following form:

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎩

dS
dt = μK + dI – μS – βY

1+αY S,
dI
dt = βY

1+αY S – (d + μ + γ )I,
dR
dt = γ I – μR,
dX
dt = � – β1IX

1+α1I – mX,
dY
dt = β1IX

1+α1I – mY ,

(1.1)

where S(t), I(t), R(t), X(t), and Y (t) denote the susceptible plants, infected plants, recov-
ered plants, susceptible insect vectors, and infected insect vectors, respectively. The total
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number of plants will be denoted by the fixed positive constant K , K = S + I + R, and the to-
tal number of insects will be denoted by N = X + Y . The parameters β ,β1,α,α1,μ, m,γ ,�,
and d are positive real numbers; β is the infection rate of plants due to vectors, β1 is the
infection rate of vectors due to plants, α is the saturation constant of plants due to vectors,
α1 is the saturation constant of vectors due to plants, μ is the natural death rate of plants,
m is the natural death rate of vectors, γ is the recovery rate of plants, � is the replenishing
rate of vectors (birth and/or immigration), and d is the death rate of infected plants due
to the disease.

In the model (1.1) the authors make the following assumptions [4]:
(1) The susceptible plants can be infected only by the infected insect vectors. This model

does not consider that infection can be transmitted from plant to plant. The interaction
between the insects and the plants is modeled using Holing type II since insects can only
bite a limited number of plants.

(2) The total number of plants is denoted by the fixed positive constant K , because in
one area, one can always keep the total number fixed by adding a new plant when a plant
has died. The new plant shares the same characteristics of the plant it replaced before it
was infected.

(3) The replenishment rate of insect vectors is a positive constant �, and all of the new
born vectors are susceptible.

(4) A susceptible vector can be infected only by an infected plant host, and after it is
infected, it will hold the virus for the rest of its life. Further, there is no vertical transmission
of the virus, and vectors cannot transmit the virus to another vector.

Notice that adding dX
dt and dY

dt yields dN
dt = � – mN , where N = X + Y , and N −→ �

m as
t −→ ∞.

So equation (1.1) can be reduced to the following equations:

⎧
⎪⎪⎨

⎪⎪⎩

dS
dt = μ(K – S) – βY

1+αY S + dI,
dI
dt = βY

1+αY S – ωI,
dY
dt = β1I

1+α1I ( �
m – Y ) – mY ,

(1.2)

where ω = d + μ + γ .
In [4], the authors analyzed the stability of equilibria with the basic reproduction number

using the generation matrix approach. Considering time for the virus to enter the plant
cells and to spread in the plant and time for the virus to infect the insect, the authors
proposed the model with two discrete delays:

⎧
⎪⎪⎨

⎪⎪⎩

dS
dt = μ(K – S) – βY (t–τ1)

1+αY (t–τ1) S(t – τ1) + dI,
dI
dt = βY (t–τ1)

1+αY (t–τ1) S(t – τ1) – ωI,
dY
dt = β1I(t–τ2)

1+α1I(t–τ2) ( �
m – Y (t – τ2)) – mY ,

(1.3)

where τ1 is the time it takes a plant to become infected after contagion, and τ2 is the time
it takes a vector to become infected after contagion.

Since the delay differential equations are extensively used in the practical life, it is very
important to study the stability of differential equations with delays. Recently, a great deal
of scholars have achieved very good research results in terms of multidelay differential
equations [5–15].
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In our paper, we continue the work of Jackson and Chen-Charpentier [4]. Viewing delays
as bifurcation parameters, we discuss the stability of equilibrium and the existence of Hopf
bifurcation of system (1.3) in four cases: (1) τ1 = 0, τ2 = 0; (2) τ1 > 0, τ2 = 0; (3) τ1 = τ2 = τ >
0; (4) τ1 ∈ (0, τ10), τ2 > 0, τ1 �= τ2. When τ1 �= τ2, we study the properties of Hopf bifurcation
by using the normal form theory and center manifold theorem.

This paper is organized as follows. In Sect. 2, we study the stability of positive equilib-
rium and the existence of local Hopf bifurcation of system (1.3). In Sect. 3, the direction
and stability of Hopf bifurcation are determined by using normal form theory and central
manifold theorem. Some numerical simulations are carried out to support our results in
Sect. 4. Finally, a conclusion is given in Sect. 5.

2 Stability and existence of Hopf bifurcation
System (1.3) has a unique positive equilibrium E(S∗, I∗, Y ∗), provided that the following
conditions are satisfied:

(H1) mω + Kμ(β1 +α1m) > dm, αβ1K�μ+ m(mω + Kμ(β1 +α1m) – dm) > 0, β1βK�μ >
m2μω, αmμω + β(mω + Kμ(β1 + α1m) – dm) > 0,

where

S∗ =
ω(αβ1K�μ + m(mω + Kμ(β1 + α1m) – dm))
β1β�(ω – d) + αβ1�μω + β1mμω + α1m2μω

,

I∗ =
β1βK�μ – m2μω

β1β�(ω – d) + αβ1�μω + β1mμω + α1m2μω
,

Y ∗ =
μ(ββ1K� – ωm2)

m(αmμω + β(mω + Kμ(β1 + α1m) – dm))
.

The linearized system of system (1.3) at E(S∗, I∗, Y ∗) is

⎧
⎪⎪⎨

⎪⎪⎩

du1(t)
dt = –μu1(t) – A0u1(t – τ1) + du2(t) – B0u3(t – τ1),

du2(t)
dt = A0u1(t – τ1) – ωu2(t) + B0u3(t – τ1),

du3(t)
dt = C0u2(t – τ2) + D0u3(t – τ2) – mu3(t),

(2.1)

where A0 = βY∗
1+αY∗ , B0 = βS∗

(1+αY∗)2 , C0 = β1
(1+α1I∗)2 ( �

m – Y ∗), and D0 = –β1I∗
1+α1I∗ .

The characteristic equation of system (2.1) is

λ3 + A1λ
2 + A2λ + A3 +

(
B1λ

2 + B2λ + B3
)
e–λτ1

+
(
C1λ

2 + C2λ + C3
)
e–λτ2 + (D1λ + D2)e–λ(τ1+τ2) = 0, (2.2)

where

A1 = μ + ω + m, A2 = μω + μm + mω, A3 = μmω,

B1 = A0, B2 = A0(ω + m – d), B3 = A0m(ω – d),

C1 = –D0, C2 = D0(–μ – ω), C3 = –D0μω,

D1 = –A0D0 – B0C0, D2 = A0D0d – B0C0μ – A0D0ω.

Next, we consider the following four cases.
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Case (1): τ1 = 0, τ2 = 0.
The characteristic equation (2.2) becomes

λ3 + (A1 + B1 + C1)λ2 + (A2 + B2 + C2 + D1)λ + (A3 + B3 + C3 + D2) = 0. (2.3)

Let
(H2) A1 + B1 + C1 > 0, A3 + B3 + C3 + D2 > 0, (A1 + B1 + C1)(A2 + B2 + C2 + D1) – (A3 +

B3 + C3 + D2) > 0.
According to the Routh–Hurwitz criteria, if conditions (H1) and (H2) hold, then all the

roots of (2.3) must have negative real parts. We have the following results.

Theorem 2.1 Assume that (H1) and (H2) hold. If τ1 = τ2 = 0, then the positive equilibrium
E(S∗, I∗, Y ∗) of system (1.3) is locally asymptotically stable.

Case (2): τ1 > 0, τ2 = 0.
The characteristic equation (2.2) reduces to

λ3 +(A1 +C1)λ2 +(A2 +C2)λ+(A3 +C3)+
[
B1λ

2 +(B2 +D1)λ+(B3 +D2)
]
e–λτ1 = 0. (2.4)

Let λ = iω1 (ω1 > 0) be the root of equation (2.4). Then we have:

⎧
⎪⎪⎨

⎪⎪⎩

(B2 + D1)ω1 cosω1τ1 + [B1ω
2
1 – (B3 + D2)] sinω1τ1 = ω3

1 – (A2 + C2)ω1,

(B2 + D1)ω1 sinω1τ1 – [B1ω
2
1 – (B3 + D2)] cosω1τ1

= (A1 + C1)ω2
1 – (A3 + C3).

(2.5)

It follows that

ω6
1 + E21ω

4
1 + E22ω

2
1 + E23 = 0, (2.6)

where

E21 = (A1 + C1)2 – 2(A2 + C2) – B2
1,

E22 = (A2 + C2)2 – 2(A1 + C1)(A3 + C3) + 2B1(B3 + D2) – (B2 + D1)2,

E23 = (A3 + C3)2 – (B3 + D2)2.

Let r1 = ω2
1. Then equation (2.6) becomes

r3
1 + E21r2

1 + E22r1 + E23 = 0. (2.7)

Denote

h1(r1) = r3
1 + E21r2

1 + E22r1 + E23. (2.8)

Thus

dh1(r1)
dr1

= 3r2
1 + 2E21r1 + E22.
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If E23 = (A3 + C3)2 – (B3 + D2)2 < 0, then h1(0) < 0 and limr1−→+∞ h1(r1) = +∞. Equation
(2.7) has at least one positive root.

If E23 = (A3 + C3)2 – (B3 + D2)2 ≥ 0 and �1 = E2
21 – 3E22 ≤ 0, then equation (2.7) has no

positive root for r1 ∈ [0, +∞).
If E23 = (A3 + C3)2 – (B3 + D2)2 ≥ 0 and �1 = E2

21 – 3E22 > 0, then the equation

3r2
1 + 2E21r1 + E22 = 0

has two real roots, r∗
11 = –E21+

√�1
3 and r∗

12 = –E21–
√�1

3 . Because h′′
1(r∗

11) = 2
√�1 > 0 and

h′′
1(r∗

12) = –2
√�1 < 0, equation (2.7) has at least one positive root if and only if r∗

11 =
–E21+

√�1
3 > 0 and h1(r∗

11) ≤ 0, where r∗
11 and r∗

12 are the local minimum and maximum of
h1(r1), respectively.

Without loss of generality, we assume that (2.7) has three positive roots, defined by
r11, r12, and r13, respectively. Then (2.6) has three positive roots ω1k = √r1k , k = 1, 2, 3. From
(2.5) we get

cosω1kτ1k =
[(B2 + D1) – B1(A1 + C1)]ω4

1k
[B1ω

2
1k – (B3 + D2)]2 + (B2 + D1)2ω2

1k

–
(A3 + C3)(B3 + D2)

[B1ω
2
1k – (B3 + D2)]2 + (B2 + D1)2ω2

1k

+
[(A1 + C1)(B3 + D2) + B1(A3 + C3) – (A2 + C2)(B2 + D1)]ω2

1k
[B1ω

2
1k – (B3 + D2)]2 + (B2 + D1)2ω2

1k

and

τ
(j)
1k =

1
ω1k

{

arccos

(
[(B2 + D1) – B1(A1 + C1)]ω4

1k
[B1ω

2
1k – (B3 + D2)]2 + (B2 + D1)2ω2

1k

–
(A3 + C3)(B3 + D2)

[B1ω
2
1k – (B3 + D2)]2 + (B2 + D1)2ω2

1k

+
[(A1 + C1)(B3 + D2) + B1(A3 + C3) – (A2 + C2)(B2 + D1)]ω2

1k
[B1ω

2
1k – (B3 + D2)]2 + (B2 + D1)2ω2

1k

)

+ 2jπ
}

,

where k = 1, 2, 3, j = 0, 1, 2, . . . .
Denote

τ10 = τ
(0)
1k0

= min
k∈{1,2,3}

{
τ

(0)
1k

}
, ω10 = ω1k0 .

Next, we verify the transversality condition. Let λ(τ1) = α1(τ1)+ iω1(τ1) be the root of equa-
tion (2.4) near τ1 = τ

(j)
1k satisfying

α1
(
τ

(j)
1k

)
= 0, ω1

(
τ

(j)
1k

)
= ω1k .

Substituting λ(τ1) into (2.4) and taking the derivative with respect to τ1, we have

[
dλ

dτ1

]–1

=
[3λ2 + 2(A1 + C1)λ + (A2 + C2)]eλτ1

λ[B1λ2 + (B2 + D1)λ + (B3 + D2)]
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+
2B1λ + (B2 + D1)

λ[B1λ2 + (B2 + D1)λ + (B3 + D2)]
–

τ1

λ
. (2.9)

By (2.9) we have

[
Red(λ(τ1))

dτ1

]–1

τ1=τ
(j)
1k

= Re

[
[3λ2 + 2(A1 + C1)λ + (A2 + C2)]eλτ1

λ[B1λ2 + (B2 + D1)λ + (B3 + D2)]

]

τ1=τ
(j)
1k

+ Re

[
2B1λ + (B2 + D1)

λ[B1λ2 + (B2 + D1)λ + (B3 + D2)]

]

τ1=τ
(j)
1k

=
1

�1

{
–

[
–3ω2

2k + (A2 + C2)
]
ω1k

[[
B1ω

2
1k – (B3 + D2)

]
sin

(
ω1kτ

(j)
1k

)

+ (B2 + D1)ω1k cos
(
ω1kτ

(j)
1k

)]

– 2(A1 + C1)ω2
1k

[[
B1ω

2
1k – (B3 + D2)

]
cos

(
ω1kτ

(j)
1k

)
– (B2 + D1)ω1k sin

(
ω1kτ

(j)
1k

)]

– (B2 + D1)2ω2
1k + 2B1ω

2
1k

[
(B3 + D2)ω1k – B1ω

3
1k

]}

=
1

�1

{
3ω6

1k + 2
[
(A1 + C1)2 – 2(A2 + C2) – B2

1
]
ω4

1k

+
[
(A2 + C2)2 – 2(A1 + C1)(A3 + C3) + 2B1(B3 + D2) – (B2 + D1)2]

ω2
1k

}

=
1

�1

{
r1k

(
3r2

1k + 2E31r1k + E32
)}

=
1

�1
r1kh′′

1(r1k),

where �1 = (B2 + D1)2ω4
1k + [(B3 + D2)ω1k – B1ω

3
1k]2 > 0. Notice that �1 > 0, r1k > 0,

sign

{[
Red(λ(τ1))

dτ1

]

τ1=τ
(j)
1k

}

= sign

{[
Red(λ(τ1))

dτ1

]–1

τ1=τ
(j)
1k

}

,

and thus d(Reλ(τ (j)
1k ))

dτ1
has the same sign as h′

1(r1k).
To investigate the root distribution of the transcendental equation (2.4), we introduce

the result of Ruan and Wei [16].

Lemma 2.1 Consider the exponential polynomial

P
(
λ, e–λτ1 , . . . , e–λτm

)

= λn + p(0)
1 λn–1 + · · · + p(0)

n–1λ + p(0)
n +

[
p(1)

1 λn–1 + · · · + p(1)
n–1λ + p(1)

n
]
e–λτ1

+ · · · +
[
p(m)

1 λn–1 + · · · + p(m)
n–1λ + p(m)

n
]
e–λτm ,

where τi ≥ 0 (i = 1, 2, . . . , m) and p(i)
j (i = 0, 1, . . . , m; j = 1, 2, . . . , n) are constants. As

(τ1, τ2, . . . , τm) vary, the sum of the order of the zeros of P(λ, e–λτ1 , . . . , e–λτm ) on the open
right half-plane can change only if a zero appears on or crosses the imaginary axis.

According to this analysis, we have the following results.
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Theorem 2.2 For τ1 > 0 and τ2 = 0, suppose that (H1) and (H2) hold. Then:
(i) If E23 ≥ 0 and �1 = E2

21 – 3E22 ≤ 0, then all roots of equation (2.4) have negative real
parts for all τ1 ≥ 0, and the positive equilibrium E(S∗, I∗, Y ∗) is locally
asymptotically stable for all τ1 ≥ 0.

(ii) If either E23 < 0 or E23 ≥ 0, �1 = E2
21 – 3E22 > 0, r∗

11 > 0, and h1(r∗
11) ≤ 0, then h1(r1)

has at least one positive root, and all roots of equation (2.4) have negative real parts
for τ1 ∈ [0, τ10), and the positive equilibrium E(S∗, I∗, Y ∗) is locally asymptotically
stable for all τ1 ∈ [0, τ10).

(iii) If (ii) holds and h′
1(r1k) �= 0, then system (1.3) undergoes Hopf bifurcations at the

positive equilibrium E(S∗, I∗, Y ∗) for τ1 = τ
(j)
1k (k = 1, 2, 3; j = 0, 1, 2, . . . ).

When τ1 = 0 and τ2 > 0, the stability of the equilibrium E(S∗, I∗, Y ∗) and the existence of
Hopf bifurcation can be obtained based on a similar discussion, which we omit in this
paper.

Case (3): τ1 = τ2 = τ > 0.
When τ1 = τ2 = τ > 0, the characteristic equation (2.2) becomes

λ3 + A31λ
2 + A32λ + A33 +

(
B31λ

2 + B32λ + B33
)
e–λτ + (C31λ + C32)e–2λτ = 0, (2.10)

where

A31 = A1, A32 = A2, A33 = A3,

B31 = B1 + C1, B32 = B2 + C2, B33 = B3 + C3,

C31 = D1, C32 = D2.

Both sides of equation (2.10) are multiple eλτ , and we obviously get

(
λ3 + A31λ

2 + A32λ + A33
)
eλτ +

(
B31λ

2 + B32λ + B33
)

+ (C31λ + C32)e–λτ = 0. (2.11)

Let λ = iω3 (ω3 > 0) be the root of equation (2.11). Separating the real and imaginary
parts, we obtain:

⎧
⎪⎪⎨

⎪⎪⎩

(ω3
3 – (C31 + A32)ω3) cosω3τ + (A31ω

2
3 – A33 + C32) sinω3τ = B32ω3,

(ω3
3 + (C31 – A32)ω3) sinω3τ + (–A31ω

2
3 + A33 + C32) cosω3τ

= B31ω
2
3 – B33,

(2.12)

from which it follows that

⎧
⎨

⎩

cosω3τ = l34ω4
3+l32ω2

3+l30
ω6

3+k34ω4
3+k32ω2

3+k30
,

sinω3τ = l35ω5
3+l33ω3

3+l31ω3
ω6

3+k34ω4
3+k32ω2

3+k30
,

(2.13)

where

l30 = –A33B33 + C32B33, l31 = A32B33 + B33C31 – A33B32 – A32B32,
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l32 = –A32B32 + A31B33 + A33B31 – B31C32 + B32C31,

l33 = A31B32 – B31C31 – A32B31 – B33, l34 = B32 – A31B31, l35 = B31,

k30 = A2
33 – C2

32, k32 = –2A31A33 + A2
32 – C2

31, k34 = A2
31 – 2A32.

Since sin2 ω3τ + cos2 ω3τ = 1, we have

ω12
3 + E31ω

10
3 + E32ω

8
3 + E33ω

6
3 + E34ω

4
3 + E35ω

2
3 + E36 = 0, (2.14)

where

E31 = 2k34 – l2
35, E32 = 2k32 + k2

34 – 2l33l35 – l2
34,

E33 = 2k30 + 2k32k34 – 2l31l35 – l2
33 – 2l32l34,

E34 = 2k30k34 + k2
32 – 2l31l33 – 2l30l34 – l2

32,

E35 = 2k30k32 – l2
31 – 2l30l32, E36 = k2

30 – l2
30.

Letting r3 = ω2
3, equation (2.14) is transformed into

r6
3 + E31r5

3 + E32r4
3 + E33r3

3 + E34r2
3 + E35r3 + E36 = 0. (2.15)

If all the parameters of system (1.3) are given, then it is easy to get the roots of equation
(2.15) by using the Matlab software package. To give the main results in this paper, we
make the following assumption.

(H3) equation (2.15) has at least one positive real root.
Suppose that condition (H3) holds. Without loss of generality, we assume that (2.14) has

six positive real roots, say r31, r32, . . . , r36. Then (2.13) has six positive real roots

ω31 =
√

r31, ω32 =
√

r2, . . . , ω3i =
√

r3i (i = 1, 2, . . . , 6).

Thus, if we denote

τ
(j)
3k =

1
ω3k

{

arccos

(
l34ω

4
3k + l32ω

2
3k + l30

ω6
3k + k34ω

4
3k + k32ω

2
3k + k30

)

+ 2jπ
}

(2.16)

for k = 1, 2, . . . , 6, j = 0, 1, 2, . . . , then ±iω3k is a pair of purely imaginary roots of (2.11) cor-
responding to τ

(j)
3k . Define

τ30 = τ3k0 = min
k∈{1,2,...,6}

{
τ

(0)
3k

}
, ω30 = ω3k0 .

Let λ(τ ) = α3(τ ) + iω3(τ ) be the root of equation (2.11) near τ = τ
(j)
3k satisfying

α2
(
τ

(j)
3k

)
= 0, ω3

(
τ

(j)
3k

)
= ω3k .

Substituting λ(τ ) into (2.11) and taking the derivative with respect to τ , we have

[
dλ

dτ

]–1

= –
(3λ2 + 2A31λ + A32)eλτ + 2B31λ + B32 + C31e–λτ

λ[(λ3 + A31λ2 + A32λ + A33)eλτ – (C31λ + C32)e–λτ ]
–

τ

λ
. (2.17)



Li et al. Advances in Difference Equations  (2018) 2018:259 Page 9 of 22

Letting λ = ±iω3k at the roots of equation (2.11) at τ = τ
(j)
3k , we should compute d Re(λ((τ (j)

3k ))
dτ

.
By calculation we get

Re

[
dλ

dτ

]–1

τ=τ
(j)
3k

=
P33 + iP34

P31 + iP32
–

τ

λ
,

where

P31 =
(
–ω4

3k + A32ω
2
3k – C31ω

2
3k

)
cos

(
ω3kτ

(j)
3k

)

+
(
–A31ω

3
3k + A33ω3k + C32ω3k

)
sin

(
ω3kτ

(j)
3k

)
,

P32 =
(
A31ω

3
3k – A33ω3k + C32ω3k

)
cos

(
ω3kτ

(j)
3k

)

+
(
–ω4

3k + A32ω
2
3k + C31ω

2
3k

)
sin

(
ω3kτ

(j)
3k

)
,

P33 =
(
–3ω2

3k + A32 + C31
)

cos
(
ω3kτ

(j)
3k

)
– 2A31ω3k sin

(
ω3kτ

(j)
3k

)
+ B32,

P34 = 2A31ω3k cos
(
ω3kτ

(j)
3k

)
+

(
–3ω2

3k + A32 – C31
)

sin
(
ω3kτ

(j)
3k

)
+ 2B31ω3k .

So, we have

Re

[
dλ

dτ

]–1

τ=τ
(j)
3k

=
P33P31 + P34P32

P2
31 + P2

32
.

Obviously, if condition
(H4) P31P33 + P32P34 �= 0

holds, then d Reλ(τ )
dτ

|λ=iω3k = Re[ dλ(τ )
dτ

]–1
λ=iω3k

�= 0. Thus, we have the following results.

Theorem 2.3 For system (1.3) with τ1 = τ2 = τ > 0, let (H1)–(H4) hold. The equilibrium
point E(S∗, I∗, Y ∗) is asymptotically stable for τ ∈ [0, τ (j)

3k ) and unstable for τ > τ
(j)
3k ; Hopf

bifurcation occurs when τ = τ
(j)
3k .

Case (4): τ1 ∈ (0, τ10), τ2 > 0, τ1 �= τ2.
We consider (2.2) with τ1 in its stable interval [0, τ10) and τ2 considered as a parameter.

Let λ = iω∗
2(ω∗

2 > 0) be a root of equation (2.2). Separating real and imaginary parts leads
to

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(C2ω
∗
2 + D1ω

∗
2 cos(ω∗

2τ
∗
1 ) – D2 sin(ω∗

2τ1)) cos(ω∗
2τ2)

+ (C1ω
∗
2

2 – C3 – D1ω
∗
2 sin(ω∗

2τ1) – D2(cosω∗
2τ1)) sin(ω∗

2τ2)

= ω∗
2

3 – A2ω
∗
2 – B2ω

∗
2 cos(ω∗

2τ1) – B1ω
∗
2

2 sin(ω∗
2τ1) + B3 sin(ω∗

2τ1),

(C2ω
∗
2 + D1ω

∗
2 cos(ω∗

2τ1) – D2 sin(ω∗
2τ1)) sin(ω∗

2τ2)

– (C1ω
∗
2

2 – C3 – D1ω
∗
2 sin(ω∗

2τ1) – D2(cosω∗
2τ1)) cos(ω∗

2τ2)

= A1ω
∗
2

2 – A3 – B2ω
∗
2 sin(ω∗

2τ1) + B1ω
∗
2

2 cos(ω∗
2τ1) – B3 cos(ω∗

2τ1).

(2.18)

From equation (2.18) we can obtain

cos
(
ω∗

2τ
∗
2

)
=

h41ω
∗
2

4 + h42ω
∗
2

3 + h43ω
∗
2

2 + h44ω
∗
2 + h45

f41ω
∗
2

4 + f42ω
∗
2

3 + f43ω
∗
2

2 + f44ω
∗
2 + f45

, (2.19)
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where

h41 = C2 – C1A1 – B1C1 cos
(
ω∗

2τ1
)

+ D1 cos
(
ω∗

2τ1
)
,

h42 = –B1C2 sin
(
ω∗

2τ1
)

– D2 sin
(
ω∗

2τ1
)

+ B2C1 sin
(
ω∗

2τ1
)

+ A1D1 sin
(
ω∗

2τ1
)
,

h43 = –A2C2 – B2C2 cos
(
ω∗

2τ1
)

– A2D1 cos
(
ω∗

2τ1
)

– B2D1 + B1D2

+ A3C1 + B3C1 cos
(
ω∗

2τ1
)

+ A1C3 + B1C3 cos
(
ω∗

2τ1
)

+ A1D2 cos
(
ω∗

2τ1
)
,

h44 = B3C2 sin
(
ω∗

2τ1
)

+ A2D2 sin
(
ω∗

2τ1
)

– B2C3 sin
(
ω∗

2τ1
)

– A3D1 sin
(
ω∗

2τ1
)
,

h45 = –B3D2 – A3C3 – B3C3
(
cosω∗

2τ1
)

– A3D2 cos
(
ω∗

2τ1
)
,

f41 = C2
1 ,

f42 = –2C1D1 sin
(
ω∗

2τ1
)
,

f43 = C2
2 + 2C2D1 cos

(
ω∗

2τ1
)

+ D2
1 – 2C1C3 – 2C1C3 cos

(
ω∗

2τ1
)
,

f44 = 2C3D1 sin
(
ω∗

2τ1
)

– 2C2D2 sin
(
ω∗

2τ1
)
,

f45 = C2
3 + D2

2 + 2C3D2 cos
(
ω∗

2τ1
)
.

From equation (2.18) we obtain:

ω∗
2

6 + E41ω
∗
2

4 + E42ω
∗
2

2 + E43 + E44 sin
(
ω∗

2τ1
)

+ E45 cos
(
ω∗

2τ1
)

= 0, (2.20)

where

E41 = B2
1 – 2A2 – C2

1 + A2
1,

E42 = A2
2 + 2C1C3 – 2A1A3 + B2

2 – 2B1B2 – C2
2 – D2

1,

E43 = B2
3 – D2

2 – C2
3 + A2

3,

E44 = –2B1ω
∗
2

5 + 2(B3 – A1B2 + A2B1 + C1D1)ω∗
2

3 + 2(C2D2 + A3B2 – C3D1 – A2B3)ω∗
2,

E45 = 2(A1B1 – B2)ω∗
2

4 + 2(A2B2 – A3B1 – C2D1 + C1D2 – A1B3)ω∗
2

2

+ 2(A3B3 – C3D2).

Denote F1(ω∗
2) = ω∗

2
6 + E41ω

∗
2

4 + E42ω
∗
2

2 + E43 + E44 sin(ω∗
2τ1) + E45 cos(ω∗

2τ1). If E43 = B2
3 –

D2
2 – C2

3 + A2
3 < 0, then

F1(0) < 0, lim
ω∗

2−→+∞
F1

(
ω∗

2
)

= +∞.

We can see that (2.20) has at most six positive roots ω∗
21,ω∗

22, . . . ,ω∗
26. For every fixed ω∗

2k
(k = 1, 2, . . . , 6), for (2.19), the critical value

τ ∗
2k

(j) =
1

ω∗
2k

{

arccos

(
h41ω

∗
2k

4 + h42ω
∗
2k

3 + h43ω
∗
2k

2 + h44ω
∗
2k + h45

f41ω
∗
2k

4 + f42ω
∗
2k

3 + f43ω
∗
2k

2 + f44ω
∗
2k + f45

)

+ 2jπ
}

(k = 1, 2, . . . , 6; j = 0, 1, 2, . . .). (2.21)

There exists a sequence {τ ∗
2k

(j)|j = 0, 1, 2, . . .} such that (2.18) holds.
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Let

τ ∗
20 = τ ∗

2k0
(0) = min

k∈{1,2,...,6}
{
τ ∗

2k
(0)}, ω∗

20 = ω∗
2k0 . (2.22)

Substituting τ2 into (2.2) and taking the derivative with respect to τ2, we have

[
dλ

dτ2

]–1

=
1
λ

Q11 + Q12e–λτ1 + Q13e–λτ2 + Q14e–λ(τ1+τ2)

Q15e–λ(τ1+τ2) + Q16e–λτ2
, (2.23)

where

Q11 = 3λ2 + 2A1λ + A2, Q12 = –B1τ1λ
2 + (2B1 – τ1B2)λ + B2 – τ1B3,

Q13 = 2C1λ + C2, Q14 = –τ1D1λ + (D1 – τ1D2),

Q15 = D1λ + D2, Q16 = C1λ
2 + C2λ + C3.

By (2.23) we have

Re

[
dλ(τ ∗

2k
(j))

dτ2

]–1

λ=iω∗
2k

=
Q31Q33 + Q32Q34

Q2
31 + Q2

32
,

where

Q31 = D2ω
∗
2k sin

(
ω∗

2k
(
τ1 + τ ∗

2k
(j)))

– D1ω
∗
2k

2 cos
(
ω∗

2k
(
τ1 + τ ∗

2k
(j)))

– C1ω
∗
2k

3 sin
(
ω∗

2kτ
∗
2k

)
+ C3ω

∗
2k sin

(
ω∗

2kτ
∗
2k

(j)) – C2ω
∗
2k

2 cos
(
ω∗

2kτ
∗
2k

(j)),

Q32 = D2ω
∗
2k cos

(
ω∗

2k
(
τ1 + τ ∗

2k
(j)))

+ D1ω
∗
2k

2 sin
(
ω∗

2k
(
τ1 + τ ∗

2k
(j)))

– C1ω
∗
2k

3 cos
(
ω∗

2kτ
∗
2k

(j)) + C3ω
∗
2k cos

(
ω∗

2kτ
∗
2k

(j)) + C2ω
∗
2k

2 sin
(
ω∗

2kτ
∗
2k

(j)),

Q33 = –3ω∗
2k

2 + A2 + 2B1ω
∗
2k sin

(
ω∗

2kτ1
)

– τ1B2ω
∗
2k sin

(
ω∗

2kτ1
)

+ B2 cos
(
ω∗

2kτ1
)

+ τ1B1ω
∗
2k

2 cos
(
ω∗

2kτ1
)

– τ1B3 cos
(
ω∗

2kτ1
)

+ 2C1ω
∗
2k sin

(
ω∗

2kτ
∗
2k

(j)) + C2 cos
(
ω∗

2kτ
∗
2k

(j)) – τ1D1ω
∗
2k sin

(
ω∗

2k
(
τ1 + τ ∗

2k
(j)))

+ D1 cos
(
ω∗

2k
(
τ1 + τ ∗

2k
(j)))

– τ1D2 cos
(
ω∗

2k
(
τ1 + τ ∗

2k
(j)))

,

Q34 = 2A1ω
∗
2k + 2B1ω

∗
2k cos

(
ω∗

2kτ1
)

– τ1B2ω
∗
2k cos

(
ω∗

2kτ1
)

– B2 sin
(
ω∗

2kτ1
)

– τ1B1ω
∗
2k

2 sin
(
ω∗

2kτ1
)

+ τ1B3 sin
(
ω∗

2kτ1
)

+ 2C1ω
∗
2k cos

(
ω∗

2kτ
∗
2k

)

– C2 sin
(
ω∗

2kτ
∗
2k

(j)) – τ1D1ω
∗
2k cos

(
ω∗

2k
(
τ1 + τ ∗

2k
(j)))

– D1 sin
(
ω∗

2k
(
τ1 + τ ∗

2k
(j)))

+ τ1D2 sin
(
ω∗

2k
(
τ1 + τ ∗

2k
(j)))

.

We suppose that
(H5) Q31Q33 + Q32Q34 �= 0.
Then Re( dλ

dτ2
)λ=iω∗

2k
�= 0, and we have the following result on the stability and Hopf bifur-

cation in system (1.3).

Theorem 2.4 For system (1.3) with τ1 ∈ [0, τ10), suppose that (H1), (H2), and (H5) hold.
If E43 = B2

3 – D2
2 – C2

3 + A2
3 < 0, then the positive equilibrium point E(S∗, I∗, Y ∗) is locally
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asymptotically stable for τ2 ∈ [0, τ ∗
20) and unstable for τ2 > τ ∗

20. Hopf bifurcation occurs
when τ2 = τ ∗

2k
(j) (k = 1, 2, . . . , 6; j = 0, 1, 2, . . .).

When τ1 > 0, τ2 ∈ (0, τ20), τ1 �= τ2, the stability of the equilibrium E(S∗, I∗, Y ∗) and the exis-
tence of Hopf bifurcation can be obtained based on a similar discussion, which we omit
in this paper.

3 Direction and stability of the Hopf bifurcation
In this section, we employ the normal form method and center manifold theorem [17–
19] to determine the direction of Hopf bifurcation and stability of the bifurcated periodic
solutions of system (1.3) with respect to τ2 for τ1 ∈ (0, τ10). Without loss of generality, we
denote any of the critical values τ2 = τ ∗

2k
(j) (k = 1, 2, . . . , 6; j = 0, 1, 2, . . .) by τ ∗

20.
Let u1 = x – S∗, u2 = y – I∗, u3 = z – Y ∗, t = t/τ2, and τ2 = τ ∗

20 +μ, μ ∈ R3. Then μ = 0 is the
Hopf bifurcation value of system (1.3), which may be written as a functional differential
equation in C = C([–1, 0], R3),

u̇(t) = Lμ(ut) + f (μ, ut), (3.1)

where u(t) = (x(t), y(t), z(t))T ∈ R3, and Lμ(φ) : C → R3 and f (μ, ut) are given by

Lμ(φ) =
(
τ ∗

20 + μ
)
A′

⎡

⎢
⎣

φ1(0)
φ2(0)
φ3(0)

⎤

⎥
⎦ +

(
τ ∗

20 + μ
)
B′

⎡

⎢
⎢
⎣

φ1(– τ1
τ∗

20
)

φ2(– τ1
τ∗

20
)

φ3(– τ1
τ∗

20
)

⎤

⎥
⎥
⎦ +

(
τ ∗

20 + μ
)
C′

⎡

⎢
⎣

φ1(–1)
φ2(–1)
φ3(–1)

⎤

⎥
⎦ , (3.2)

where φ = (φ1,φ2,φ3)T ∈ C([–1, 0], R3), and

A′ =

⎛

⎜
⎝

–μ d 0
0 ω 0
0 0 –m

⎞

⎟
⎠ , B′ =

⎛

⎜
⎝

–A0 0 –B0

A0 0 B0

0 0 0

⎞

⎟
⎠ , C′ =

⎛

⎜
⎝

0 0 0
0 0 0
0 C0 D0

⎞

⎟
⎠ .

f (μ,φ) =
(
τ ∗

20 + μ
)

⎛

⎜
⎝

f1

f2

f3

⎞

⎟
⎠ , (3.3)

where

f1 = k11φ1

(

–
τ1

τ ∗
20

)

φ3

(

–
τ1

τ ∗
20

)

+ k12φ
2
3

(

–
τ1

τ ∗
20

)

+ k13φ1

(

–
τ1

τ ∗
20

)

φ2
3

(

–
τ1

τ ∗
20

)

+ k14φ
3
3

(

–
τ1

τ ∗
20

)

+ k15φ1

(

–
τ1

τ ∗
20

)

φ3
3

(

–
τ1

τ ∗
20

)

+ · · · ,

f2 = k21φ1

(

–
τ1

τ ∗
20

)

φ3

(

–
τ1

τ ∗
20

)

+ k22φ
2
3

(

–
τ1

τ ∗
20

)

+ k23φ1

(

–
τ1

τ ∗
20

)

φ2
3

(

–
τ1

τ ∗
20

)

+ k24φ
3
3

(

–
τ1

τ ∗
20

)

+ k25φ1

(

–
τ1

τ ∗
20

)

φ3
3

(

–
τ1

τ ∗
20

)

+ · · · ,

f3 = k31φ2(–1)φ3(–1) + k32φ
2
2 (–1) + k33φ

2
2 (–1)φ3(–1) + k34φ

3
2 (–1)

+ k35φ
3
2 (–1)φ3(–1),
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k11 = –
β

(1 + αY ∗)2 , k12 =
αβS∗

(1 + αY ∗)3 , k13 =
αβ

(1 + αY ∗)3 ,

k14 = –
α2βS∗

(1 + αY ∗)4 , k15 = –
α2β

(1 + αY ∗)4 ,

k21 =
β

(1 + αY ∗)2 , k22 = –
αβS∗

(1 + αY ∗)3 , k23 = –
αβ

(1 + αY ∗)3 ,

k24 =
α2βS∗

(1 + αY ∗)4 , k25 =
α2β

(1 + αY ∗)4 ,

k31 = –
β1

(1 + α1I∗)2 , k32 = –
α1β1

(1 + α1I∗)3

(
�

m
– Y ∗

)

, k33 =
α1β1

(1 + α1I∗)3 ,

k34 =
α2

1β1

(1 + α1I∗)4

(
�

m
– Y ∗

)

, k35 = –
α2

1β1

(1 + α1I∗)4 .

Obviously, Lμ(φ) is a continuous linear mapping from C([–1, 0], R3) into R3. By the Riesz
representation theorem there exists a 3 × 3 matrix function η(θ ,μ) (–1 ≤ θ ≤ 0), whose
elements are of bounded variation such that

Lμ(φ) =
∫ 0

–1
dη(θ ,μ)φ(θ ), φ ∈ C

(
[–1, 0], R3)

. (3.4)

In fact, we can choose η(θ ,μ) = (τ ∗
20 + μ)[A′δ(θ ) + C′δ(θ + 1) + B′δ(θ + τ1

τ∗
20

)], where δ is the
Dirac delta function. For φ ∈ C1([–1, 0], R3), we define

A(μ)φ =

⎧
⎨

⎩

dφ(θ )
dθ

, θ ∈ [–1, 0),
∫ 0

–1 dη(s,μ)φ(s), θ = 0,

and

R(μ)φ =

⎧
⎨

⎩

0, θ ∈ [–1, 0),

f (μ,φ), θ = 0.

Then, for θ = 0, system (3.1) is equivalent to

u̇t = A(μ)ut + R(μ)ut , (3.5)

where ut = u(t + θ ) = (u1(t + θ ), u2(t + θ ), u3(t + θ )) for θ ∈ [–1, 0].
The adjoint operator A∗ of A is defined by

A∗ψ(s) =

⎧
⎨

⎩

– dψ(s)
ds , s ∈ (0, 1],

∫ 0
–1 dηT (t, 0)ψ(–t), s = 0,

associated with the bilinear form

〈
ψ(s),φ(θ )

〉
= ψ̄(0)φ(0) –

∫ 0

–1

∫ θ

ξ=0
ψ̄(ξ – θ ) dη(θ )φ(ξ ) dξ , (3.6)

where η(θ ) = η(θ , 0), Denote A = A(0). Then A and A∗ are adjoint operators. From our
discussion we see that ±iω∗

20τ
∗
20 are eigenvalues of A, and they also are eigenvalues of A∗.
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Suppose that q(θ ) = (1, q2, q3)T eiω∗
20τ∗

20θ is the eigenvector of A corresponding to iω∗
20τ

∗
20

and q∗(s) = D(1, q∗
2, q∗

3)eiω∗
20τ∗

20s is the eigenvector of A∗ corresponding to –iω∗
20τ

∗
20. Then by

a simple computation we obtain

q2 =
iω∗

20 + μ

d – iω∗
20 + ω

, q3 =
(iω∗

20 + μ)(iω∗
20 – ω) – A0e–iω∗

20τ1 (d – iω∗
20 + w)

B0e–iω∗
20τ1 (d – iω∗

20 + w)
.

q∗
2 =

–iω∗
20 + μ + A0eiω∗

20τ1

A0eiω∗
20τ1

, q∗
3 =

–dA0eiω∗
20τ1 – (iω∗

20 + ω)(–iω∗
20 + μ + A0eiω∗

20τ1 )
A0C0eiω∗

20(τ1+τ∗
20) .

From (3.6) we have

〈
q∗(s), q(θ )

〉
= D̄

(
1, q̄∗

2, q̄∗
3
)
(1, q2, q3)T

–
∫ 0

–1

∫ θ

ξ=0
D̄

(
1, q̄∗

2, q̄∗
3
)
e–i(ξ–θ )ω∗

20τ1 dη(θ )(1, q2, q3)T eiξω∗
20τ1 dξ

–
∫ 0

–1

∫ θ

ξ=0
D̄

(
1, q̄∗

2, q̄∗
3
)
e–i(ξ–θ )ω∗

20τ∗
20 dη(θ )(1, q2, q3)T eiξω∗

20τ∗
20 dξ

= D̄
{

1 + q2q̄∗
2 + q3q̄∗

3 + τ1eiω∗
20τ1

(
1, q̄∗

2, q̄∗
3
) · B′(1, q2, q3)T

+ τ ∗
20eiω∗

20τ∗
20

(
1, q̄∗

2, q̄∗
3
) · C′(1, q2, q3)T }

= D̄
{

1 + q2q̄∗
2 + q3q̄∗

3 + τ1e–iω∗
20τ1

[
A0q̄∗

2 – A0 + q3
(
B0q̄∗

2 – B0
)]

+ τ ∗
20e–iω∗

20τ∗
20

[
q̄∗

3(C0q2 + D0q3)
]}

.

Thus we can choose

D̄ =
{

1 + q2q̄∗
2 + q3q̄∗

3 + τ1e–iω∗
20τ1

[
A0q̄∗

2 – A0 + q3
(
B0q̄∗

2 – B0
)]

+ τ ∗
20e–iω∗

20τ∗
20

[
q̄∗

3(C0q2 + D0q3)
]}–1 (3.7)

such that 〈q∗(s), q(θ )〉 = 1 and 〈q∗(s), q̄(θ )〉 = 0.
Next, we use the same notations as those in Hassard [19] and firstly compute the coor-

dinates to describe the center manifold C0 at μ = 0. Let ut be the solution of equation (3.1)
with μ = 0. Define

z(t) =
〈
q∗, ut

〉
, W (t, θ ) = ut(θ ) – 2 Re

{
z(t)q(θ )

}
. (3.8)

On the center manifold C0, we have

W (t, θ ) = W
(
z(t), z̄(t), θ

)
= W20(0)

z2

2
+ W11(θ )zz̄ + W02(θ )

z̄2

2
+ W30(θ )

z3

6
+ · · · ,

where z and z̄ are the local coordinates for center manifold C0 in the directions of q and
q̄. Note that W is real if ut is real. For the solution ut ∈ C0 of (3.1), since μ = 0, we have

ż = iω∗
20τ

∗
20z +

〈
q∗(θ ), f (0, W

(
z(t), z̄(t), θ

)
+ 2 Re

{
z(t)q(θ )

}〉

= iω∗
20τ

∗
20z + q̄∗(0)f (0, W

(
z(t), z̄(t), 0

)
+ 2 Re

{
z(t)q(0)

}
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= iω∗
20τ

∗
20z + q̄∗(0)f0(z, z̄) � iω∗

20τ
∗
20z + g(z, z̄), (3.9)

where

g(z, z̄) = q̄∗(0)f0(z, z̄) = g20
z2

2
+ g11zz̄ + g02

z̄2

2
+ g21

z̄z2

2
+ · · · . (3.10)

Then

g(z, z̄) = q̄∗(0)f0(z, z̄)

= D̄τ ∗
20

(
1, q̄∗

2, q̄∗
3
)(

f (0)
1 f (0)

2 f (0)
3

)T

= D̄τ ∗
20

{[

k11u1t

(

–
τ1

τ ∗
20

)

u3t

(

–
τ1

τ ∗
20

)

+ k12u2
3t

(

–
τ1

τ ∗
20

)

+ k13u1t

(

–
τ1

τ ∗
20

)

u2
3t

(

–
τ1

τ ∗
20

)

+ k14u3
3t

(

–
τ1

τ ∗
20

)

+ k15u1t

(

–
τ1

τ ∗
20

)

u3
3t

(

–
τ1

τ ∗
20

)

+ · · ·
]

+ q̄∗
2

[

k21u1t

(

–
τ1

τ ∗
20

)

u3t

(

–
τ1

τ ∗
20

)

+ k22u2
3t

(

–
τ1

τ ∗
20

)

+ k23u1t

(

–
τ1

τ ∗
20

)

u2
3t

(

–
τ1

τ ∗
20

)

+ k24u3
3t

(

–
τ1

τ ∗
20

)

+ k25u1t

(

–
τ1

τ ∗
20

)

u3
3t

(

–
τ1

τ ∗
20

)

+ · · ·
]

+ q̄∗
3
[
k31u2t(–1)u3t(–1) + k32u2

2t(–1) + k33u2
2t(–1)u3t(–1) + k34u3

2t(–1)

+ k35u3
2t(–1)u3t(–1)

]
}

.

Since ut(θ ) = (u1t(θ ), u2t(θ ), u3t(θ ))T = W (t, θ ) + zq(θ ) + z̄q̄(θ ) and q(θ ) = (1, q2,
q3)T eiω∗

20τ∗
20θ , we have

u1t

(

–
τ1

τ ∗
20

)

= ze–iω∗
20τ1 + z̄eiω∗

20τ1 + W (1)
20

(

–
τ1

τ ∗
20

)
z2

2
+ W (1)

11

(

–
τ1

τ ∗
20

)

zz̄

+ W (1)
02

(

–
τ1

τ ∗
20

)
z̄2

2
+ O

(∣
∣(z, z̄)

∣
∣3)

,

u2t

(

–
τ1

τ ∗
20

)

= q2ze–iω∗
20τ1 + q̄2z̄eiω∗

20τ1 + W (2)
20

(

–
τ1

τ ∗
20

)
z2

2

+ W (2)
11

(

–
τ1

τ ∗
20

)

zz̄ + W (2)
02

(

–
τ1

τ ∗
20

)
z̄2

2
+ O

(∣
∣(z, z̄)

∣
∣3)

,

u3t

(

–
τ1

τ ∗
20

)

= q3ze–iω∗
20τ1 + q̄3z̄eiω∗

20τ1 + W (3)
20

(

–
τ1

τ ∗
20

)
z2

2
+ W (3)

11

(

–
τ1

τ ∗
20

)

zz̄

+ W (3)
02

(

–
τ1

τ ∗
20

)
z̄2

2
+ O

(∣
∣(z, z̄)

∣
∣3)

,

u1t(–1) = ze–iω∗
20τ∗

20 + z̄eiω∗
20τ∗

20 + W (1)
20 (–1)

z2

2
+ W (1)

11 (–1)zz̄
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+ W (1)
02 (–1)

z̄2

2
+ O

(∣
∣(z, z̄)

∣
∣3)

,

u2t(–1) = q2ze–iω∗
20τ∗

20 + q̄2z̄eiω∗
20τ∗

20 + W (2)
20 (–1)

z2

2
+ W (2)

11 (–1)zz̄

+ W (2)
02 (–1)

z̄2

2
+ O

(∣
∣(z, z̄)

∣
∣3)

,

u3t(–1) = q3ze–iω∗
20τ∗

20 + q̄3z̄eiω∗
20τ∗

20 + W (3)
20 (–1)

z2

2
+ W (3)

11 (–1)zz̄

+ W (3)
02 (–1)

z̄2

2
+ O

(∣
∣(z, z̄)

∣
∣3)

.

Comparing the coefficients with (3.10), we have

g20 = 2D̄τ ∗
20

{[
k11q3e–2iω∗

20τ1 + k12q2
3e–2iω∗

20τ1
]

+ q̄∗
2
[
k21q3e–2iω∗

20τ1 + k22q2
3e–2iω∗

20τ1
]

+ q̄∗
3
[
k31q2q3e–2iω∗

20τ∗
20 + k32q2

2e–2iω∗
20τ∗

20
]}

,

g11 = D̄τ ∗
20

{[
k11(q3 + q̄3) + 2k12q3q̄3

]
+ q̄∗

2
[
k21(q3 + q̄3) + 2k22q3q̄3

]

+ q̄∗
3
[
k31(q2q̄3 + q̄2q3) + 2k32q2q̄2

]}
,

g02 = 2D̄τ ∗
20

{[
k11q̄3e2iω∗

20τ1 + k12q̄3
2e2iω∗

20τ1
]

+ q̄∗
2
[
k21q̄3e2iω∗

20τ1 + k22q̄3
2e2iω∗

20τ1
]

+ q̄∗
3
[
k31q̄2q̄3e2iω∗

20τ∗
20 + k32q̄2

2e2iω∗
20τ∗

20
]}

,

g21 = D̄τ ∗
20

{[

k11

(

2e–iω∗
20τ1 W (3)

11

(

–
τ1

τ ∗
20

)

+ eiω∗
20τ1 W (3)

20

(

–
τ1

τ ∗
20

)

+ q̄3eiω∗
20τ1 W (1)

20

(

–
τ1

τ ∗
20

)

+ 2q3e–iω∗
20τ1 W (1)

11

(

–
τ1

τ ∗
20

))

+ k12

(

2q̄3eiω∗
20τ1 W (3)

20

(

–
τ1

τ ∗
20

)

+ 4q3e–iω∗
20τ1 W (3)

11

(

–
τ1

τ ∗
20

))

+ k13
(
4q̄3q3e–iω∗

20τ1 + 2q2
3e–iω∗

20τ1
)

+ 6k14q2
3q̄3

2e–iω∗
20τ1

]

+ q̄∗
2

[

k21

(

2e–iω∗
20τ1 W (3)

11

(

–
τ1

τ ∗
20

)

+ eiω∗
20τ1 W (3)

20

(

–
τ1

τ ∗
20

)

+ q̄3eiω∗
20τ1 W (1)

20

(

–
τ1

τ ∗
20

)

+ 2q3e–iω∗
20τ1 W (1)

11

(

–
τ1

τ ∗
20

))

+ k22

(

2q̄3eiω∗
20τ1 W (3)

20

(

–
τ1

τ ∗
20

)

+ 4q3e–iω∗
20τ1 W (3)

11

(

–
τ1

τ ∗
20

))

+ k23
(
4q̄3q3e–iω∗

20τ1 + 2q2
3e–iω∗

20τ1
)

+ 6k24q2
3q̄3

2e–iω∗
20τ1

]

+ q̄∗
3
[
k31

(
2q2e–iω∗

20τ∗
20 W (3)

11 (–1) + q̄2eiω∗
20τ∗

20 W (3)
20 (–1)

+ q̄3eiω∗
20τ∗

20 W (2)
20 (–1) + 2q3e–iω∗

20τ∗
20 W (2)

11 (–1)
)

+ k32
(
4q2e–iω∗

20τ∗
20 W (2)

11 (–1) + 2q̄2eiω∗
20τ∗

20 W (2)
20 (–1)

)

+ k33
(
4q2q̄2q3e–iω∗

20τ∗
20 + 2q2

2q̄3e–iω∗
20τ∗

20
)

+ 6k34q2
2q̄2e–iω∗

20τ∗
20

]
}

,
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where

W20(θ ) =
ig20

ω∗
20τ

∗
20

q(0)eiω∗
20τ∗

20θ +
iḡ02

3ω∗
20τ

∗
20

q̄(0)e–iθω∗
20τ∗

20 + E1e2iθω∗
20τ∗

20 ,

W11(θ ) = –
ig11

ω∗
20τ

∗
20

q(0)eiθω∗
20τ∗

20 +
iḡ11

ω∗
20τ

∗
20

q̄(0)e–iθω∗
20τ∗

20 + E2,

and

E1 = 2

⎡

⎢
⎣

2iω∗
20 + μ + A0e–2iω∗

20τ1 –d B0e–2iω∗
20τ1

–A0e–2iω∗
20τ1 2iω∗

20 – ω –B0e–2iω∗
20τ1

0 –C0e–2iω∗
20τ∗

20 2iω∗
20 – D0e–2iω∗

20τ∗
20 + m

⎤

⎥
⎦

–1

·
⎡

⎢
⎣

M1

M2

M3

⎤

⎥
⎦ ,

E2 = 2

⎡

⎢
⎣

–μ – A0 d –B0

A0 ω B0

0 C0 D0 – m

⎤

⎥
⎦

–1

·
⎡

⎢
⎣

N1

N2

N3

⎤

⎥
⎦ ,

where

M1 = k11q3e–2iω∗
20τ1 + k12q2

3e–2iω∗
20τ1 , M2 = k21q3e–2iω∗

20τ1 + k22q2
3e–2iω∗

20τ1 ,

M3 = k31q2q3e–2iω∗
20τ∗

20 + k32q2
2e–2iω∗

20τ∗
20 , N1 = k11(q3 + q̄3) + 2k12q3q̄3,

N2 = k21(q3 + q̄3) + 2k22q3q̄3, N3 = k31(q2q̄3 + q̄2q3) + 2k32q2q̄2.

Thus we can calculate the following values:

C1(0) =
i

2ω∗
20τ

∗
20

(

g11g20 – 2|g11|2 –
|g02|2

3

)

+
g21

2
, μ2 = –

Re(C1(0))
Re(λ′(τ ∗

20))
,

T2 = –
Im C1(0) + μ2 Imλ′(τ ∗

20)
ω∗

20τ
∗
20

, β2 = 2 Re
(
C1(0)

)
.

Based on this discussion, we obtain the following results.

Theorem 3.1
(i) μ2 determines the direction of the Hopf bifurcation. If μ2 > 0 (μ2 < 0), then the Hopf

bifurcation is supercritical (subcritical).
(ii) β2 determines the stability of the bifurcating periodic solutions. If β2 < 0 (β2 > 0),

then the bifurcating periodic solutions are stable (unstable).
(iii) T2 determines the period of the bifurcating periodic solutions. If T2 > 0 (T2 < 0), then

the period of the bifurcating periodic solutions increases (decreases).

4 Numerical simulation
In this section, we give some numerical simulations supporting our theoretical predic-
tions. The selection of parameter values refers to [4] and references therein. The same
parameters as in [4] are adopted: μ = 0.1, k = 63,β = 0.01,β1 = 0.01,γ = 0.01. According
to [4] and references therein, the other parameters α,α1,�, d, m are appropriately chosen
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to system (1.3). As an example, we consider the following system:

⎧
⎪⎪⎨

⎪⎪⎩

dS
dt = 0.01(63 – S) – 0.01Y (t–τ1)

1+0.02Y (t–τ1) S(t – τ1) + 0.02I,
dI
dt = 0.01Y (t–τ1)

1+0.02Y (t–τ1) S(t – τ1) – 0.04I,
dY
dt = 0.01I(t–τ2)

1+0.01I(t–τ2) ( 10
0.1 – Y (t – τ2)) – 0.1Y .

(4.1)

Obviously, hypotheses (H1) and (H2) hold:
(H1) mω + Kμ(β1 + α1m) – dm = 0.0089, αβ1K�μ + m(mω + Kμ(β1 + α1m) – dm) =

0.0022 > 0, β1βK�μ – m2μω = 6.26e–04, αmμω + β(mω + Kμ(β1 + α1m) – dm) =
9.01e–05 > 0;

(H2) A1 + B1 + C1 = 0.6684 > 0, A3 + B3 + C3 + D2 = 0.002 > 0, (A1 + B1 + C1)(A2 + B2 +
C2 + D1) – (A3 + B3 + C3 + D2) = 0.0759 > 0.

Then E = (4.0546, 29.4727, 69.4784) is a unique positive equilibrium of system (4.1).
(1) When τ1 = τ2 = 0, the positive equilibrium E = (4.0546, 29.4727, 69.4784) of system

(4.1) is locally asymptotically stable.
(2) When τ2 = 0 and τ1 �= 0, the characteristic equation is

λ3 + 0.3776λ2 + 0.0168λ+ 1.3105e–04+
(
0.29076λ2 + 0.0998λ+ 0.0019

)
e–λτ1 = 0.

By a simple computation we can easily get E23 = –3.5637e–06 < 0, ω10 = 0.2862,
τ10 = 5.8744. By Theorem 2.2, if τ1 = 3 < τ10 = 5.8744 or τ1 = 5.79 < τ10 = 5.8744,
then the positive equilibrium E is asymptotically stable. If τ1 = 5.88 > τ10 = 5.8744,
then the positive equilibrium E is unstable, and system (4.1) undergoes a Hopf
bifurcation at E, and a family of periodic solutions bifurcate from the positive
equilibrium E. This property can be illustrated by in Figs. 1–3. Further, we can
compute the values

c1(0) = –0.6538 – 0.005i, μ2 = 0.1314, T2 = –1.3628, β2 = –0.3076.

Since μ2 > 0 and β2 < 0, the bifurcating periodic solution from E is supercritical and
asymptotically stable at τ = τ1.

(3) When τ1 > 0 and τ2 > 0, let τ1 = 5.79 ∈ (0, 5.8744) and chose τ2 as a parameter. Then
the characteristic equation is

λ3 + 0.15λ2 + 0.0054λ + 4.0e–05 +
(
0.2906λ2 + 0.349λ + 5.8151e–04

)
e–5.79λ

+
(
0.2276λ2 + 0.0114λ + 9.1054e–05

)
e–λτ2 + (0.0649λ + 0.0013)e–λ(5.79+τ2)

= 0.

We obtain E43 = –1.3868e–06 < 0, ω∗
20 = 0.4438, τ ∗

20 = 4.5647, and condition
(H5) Q31Q33 + Q32Q34 = 0.0079 �= 0

is satisfied. From Theorem 2.4 we know that the positive equilibrium E is asymptotically
stable for τ2 ∈ [0, τ ∗

20). As τ2 continues to increase, the positive equilibrium E will lose
stability, and a Hopf bifurcation occurs once τ2 > τ ∗

20. The corresponding numerical sim-
ulation results are shown Figs. 4–5.
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Figure 1 The trajectories of system (4.1) with τ1 = 3 < τ10 = 5.8744,τ2 = 0. The positive equilibrium E is
asymptotically stable. The initial value is (4, 29.5, 69.5)

Figure 2 The trajectories of system (4.1) with τ1 = 5.79 < τ10 = 5.8744,τ2 = 0. The positive equilibrium E is
asymptotically stable. The initial value is (4, 29.5, 69.5)

Further, we get c1(0) = –0.0055 – 0.005i,μ2 = 0.2471, T2 = 0.0044,β2 = –0.0111. There-
fore, from Theorem 3.1, we know that the Hopf bifurcation is supercritical and the bifur-
cating periodic solutions are stable.

5 Conclusion
In this paper, we study the dynamics of plant virus propagation model with two delays.
First, we obtain sufficient conditions for the stability of positive equilibrium E and the ex-
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Figure 3 The trajectories of system (4.1) with τ1 = 5.88 > τ10 = 5.8744,τ2 = 0. A Hopf bifurcation occurs from
the positive equilibrium E. The initial value is (4, 29.5, 69.5)

Figure 4 The trajectories of system (4.1) with τ1 = 5.79,τ2 = 1 < τ ∗
20 = 4.5647. The positive equilibrium E is

asymptotically stable. The initial value is (4, 29.5, 69.5)

istence of Hopf bifurcation when τ1 > 0, τ2 = 0 and τ1 ∈ (0, τ10), τ2 > 0, τ1 �= τ2, respectively.
Next, when τ1 �= τ2, by using the center manifold and normal form theory, regarding τ2 as
a parameter, we investigate the direction and stability of the Hopf bifurcation. We derive
an explicit algorithm for determining the direction of the Hopf bifurcation and the sta-
bility of the bifurcating periodic solutions. Finally, a numerical example supporting our
theoretical predictions is given.
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Figure 5 The trajectories of system (4.1) with τ1 = 5.79,τ2 = 5.2 > τ ∗
20 = 4.5647. A Hopf bifurcation occurs

from the positive equilibrium E. The initial value is (4, 29.5, 69.5)
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