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Abstract
A single species stage-structured system incorporating partial closure for the
populations and non-selective harvesting is proposed and studied in this paper. Local
and global stability property of the boundary equilibrium and the positive
equilibrium are investigated, respectively. Our study shows that the birth rate of the
immature species and the fraction of the stocks for harvesting play a crucial role in
the dynamic behaviors of the system. If the birth rate of the immature species is too
low, then the species will be driven to extinction; also, with the increase in the fraction
of the stocks for harvesting, the speed of driving the species to extinction becomes
increasing. If the birth rate of the immature species is large enough, then the system
always admits a unique globally asymptotically stable positive equilibrium; however,
with the increase in the harvesting area, the final density of the species is decreasing.
If the birth rate of the immature species lies in an interval, then there exists a
thresholdm∗ such that the species will be driven to extinction for allm ∈ (m∗, 1), and
the system will admit a unique globally asymptotically stable positive equilibrium for
allm ∈ (0,m∗); also, with the increase in the parameterm, the system takes much time
to reach its steady-state. For this case, though there are some natural protected areas
where the harvesting of the species is forbidden, if the area is too small, the species
will still be driven to extinction, that is, the small natural protected area has no
influence on the protection of the endangered species. Such a finding maybe useful
for human beings to design the protected areas for endangered species. Numeric
simulations are carried out to show the feasibility of the main results.
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1 Introduction

The aim of this paper is to investigate the dynamic behaviors of the following single
species stage-structured system incorporating partial closure for the populations and non-
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selective harvesting:

dx1

dt
= αx2 – βx1 – δ1x1 – q1Emx1,

dx2

dt
= βx1 – δ2x2 – γ x2

2 – q2Emx2,
(1.1)

where α, β , δ1, δ2, q1, q2, E, and γ are all positive constants, x1(t) and x2(t) are the densi-
ties of the immature and mature species at time t, the following assumptions are made in
formulating model (1.1):

1. The per capita birth rate of the immature population is α > 0; The per capita death
rate of the immature population is δ1 > 0; The per capita death rate of the mature
population is proportional to the current mature population with a proportionality
constant δ2 > 0; β > 0 denotes the surviving rate of immaturity to reach maturity; The
mature species is density dependent with the parameter γ > 0;

2. E is the combined fishing effort used to harvest and m (0 < m < 1) is the fraction of
the stock available for harvesting.

During the last decades, many scholars investigated the dynamic behaviors of the stage-
structured species, see [1–16] and the references cited therein. Among those works, there
are two typical ideas used to establish the model.

(1) Assume that the immature species needs time to grown up, and denote this periodic
as τ , this leads to the time delay model. For example, Chen, Chen, et al. [1], Chen, Xie, et
al. [2], Chen, Wang, et al. [3], and Ma, Li, et al. [4] studied the dynamic behaviors of the
following stage-structured predator–prey model:

ẋ1(t) = r1(t)x2(t) – d11x1(t) – r1(t – τ1)e–d11τ1 x2(t – τ1),

ẋ2(t) = r1(t – τ1)e–d11τ1 x2(t – τ1) – d12x2(t)

– b1(t)x2
2(t) – c1(t)x2(t)y2(t),

ẏ1(t) = r2(t)y2(t) – d22y1(t) – r2(t – τ2)e–d22τ2 y2(t – τ2),

ẏ2(t) = r2(t – τ2)e–d22τ2 y2(t – τ2) – d21y2(t)

– b2(t)y2
2(t) + c2(t)y2(t)x2(t),

(1.2)

where x1(t) and x2(t) denote the densities of the immature and mature prey species at time
t, respectively; y1(t) and y2(t) represent the immature and mature population densities of
predator species at time t, respectively; ri(t), bi(t), ci(t) (i = 1, 2) are all continuous func-
tions bounded above and below by positive constants for all t ≥ 0. dij, τi, i, j = 1, 2, are all
positive constants. They investigated the persistence, extinction, and stability property of
the above system. Li, Chen, et al. [5] investigated the stability property of the following
mutualism model in a plant-pollinator system with stage structure and the Beddington–
DeAngelis functional response:

ẋi(t) = αxm(t) – γ xi(t) – αe–γ τ xm(t – τ ),

ẋm(t) = αe–γ τ xm(t – τ ) – βx2
m(t) +

mxm(t)y(t)
1 + k1xm(t) + k2y(t)

,

ẏ(t) =
nmxm(t)y(t)

1 + k1xm(t) + k2y(t)
– dy(t),

(1.3)
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where xi(t), xm(t), y(t) can be described as the immature, mature plant densities, and the
pollinators densities at time t, respectively. The authors investigated the persistence, local
and global stability of the above system. Lin, Xie, et al. [10] considered the following stage-
structured predator–prey model (stage structure for both predator and prey, respectively)
with modified Leslie–Gower and Holling-type II schemes:

x′
1(t) = r1x2(t) – d11x1(t) – r1e–d11τ1 x2(t – τ1),

x′
2(t) = r1e–d11τ1 x2(t – τ1) – d12x2(t) – bx2

2(t) –
a1y2(t)x2(t)

x2(t) + k1
,

y′
1(t) = r2y2(t) – d22y1(t) – r2e–d22τ2 y2(t – τ2),

y′
2(t) = r2e–d22τ2 y2(t – τ2) – d21y2(t) –

a2y2
2(t)

x2(t) + k2
,

(1.4)

where d12 and d21 represent the death rate of mature prey x2 and mature predator y2, re-
spectively; τ1 is the time length of prey species from immature ones to mature ones, τ2

is the time length of predator from immature ones to mature ones. By using the itera-
tive technique method and fluctuation lemma, sufficient conditions which guarantee the
global stability of the positive equilibrium and boundary equilibrium are obtained. Their
results indicate that for a stage-structured predator–prey community, both stage struc-
ture and the death rate of the mature species are the important factors that lead to the
permanence or extinction of the system. For more works in this direction, one could refer
to [1–16] and the references cited therein. We mention here that the topic of the stability
of the equilibrium and the extinction property of the ecosystem are the most important
topics in the study of mathematics biology, one could refer to [17–35] for more works in
this direction.

(2) Assume that the surviving rate of immaturity to reach maturity is proportional
to the number of immature species. For example, Wu and Chen [15] studied the fol-
lowing singe species stage-structured ecosystem with both toxicant effect and harvest-
ing:

x
′
1(t) = ax2 – d1x1 – d2x2

1 – βx1 – r1x3
1,

x
′
2(t) = βx1 – b1x2 – c2Ex2,

(1.5)

where x1(t), x2(t) represent the population density of the immature and the mature at time
t, respectively, r1x3

1 is the effects of toxicant on the immature, E is the harvesting effort,
c2 is the catchability coefficient. They assumed that the immature is density restricted,
toxicant affects the immature population and only harvesting the mature species. They
showed that toxicant has no influence on the persistence property of the system. They
also considered the system with variable harvest effect, and sufficient conditions which
ensure the global stability of bionomic equilibrium were obtained. Chen [14] studied the
existence and stability of the strictly positive (componentwise) almost periodic solution
of the following non-autonomous almost periodic competitive two-species model with
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stage structure in one species:

ẋ1(t) = –a1(t)x1(t) + b1(t)x2(t),

ẋ2(t) = a2(t)x2(t) – b2(t)x2(t) – c(t)x2
2(t) – β1(t)x2(t)x3(t),

ẋ3(t) = x3(t)
(
d(t) – e(t)x3(t) – β2(t)x2(t)

)
.

(1.6)

Here x1(t) and x2(t) are immature and mature population densities of one species, re-
spectively, and x3(t) represents the population density of another species. Khajanchi and
Banerjee [16] proposed the following stage-structured predator–prey model with ratio-
dependent functional response:

dxi

dt
= αxm(t) – βxi(t) – δ1xi(t),

dxm

dt
= βxi(t) – δ2xm(t) – γ x2

m(t) –
η(1 – θ )xm(t)y(t)

g(1 – θ )xm(t) + hy(t)
,

dy
dt

=
uη(1 – θ )xm(t)y(t)

g(1 – θ )xm(t) + hy(t)
– δ3y(t).

(1.7)

By constructing a suitable Lyapunov function, the authors obtained a set of sufficient con-
ditions which ensure the uniform persistence and global asymptotic stability of the system.
They showed that the constant prey refuge plays an important role in the coexistence of
stage-structured predator–prey species. For more works in this direction, one could refer
to [14–16] and the references cited therein.

On the other hand, as was pointed out by Chakraborty et al. [20], the study of resource
management, including fisheries, forestry, and wildlife management, has great impor-
tance, it is necessary to harvest the population but harvesting should be regulated, so that
both the ecological sustainability and conservation of the species can be implemented in
a long run. Chakraborty et al. [20] proposed the following predator–prey model:

dx
dt

= rx
(

1 –
x
K

)
–

αxy
a + bx + cy

– q1mEx,

dy
dt

= sy
(

1 –
y
L

)
+

βxy
a + bx + cy

– q2mEx.
(1.8)

They tried to investigated the existence and stability property of the equilibria of the sys-
tem; however, since the system is too complicated, they could not give detailed analysis
of the influence of parameter m. Recently, many scholars investigated the dynamic be-
haviors of the non-selective harvesting ecosystem incorporating partial closure. Lin [22]
investigated the dynamic behaviors of the following two species commensal symbiosis
model with non-monotonic functional response and non-selective harvesting in a partial
closure:

dx
dt

= x
(

a1 – b1x +
c1y

d1 + y2

)
– q1Emx,

dy
dt

= y(a2 – b2y) – q2Emy,
(1.9)
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where ai, bi, qi, i = 1, 2, c1, E, m (0 < m < 1), and d1 are all positive constants, where E is
the combined fishing effort used to harvest and m (0 < m < 1) is the fraction of the stock
available for harvesting. His study showed that depending on the range of the parame-
ter m, the system may collapse, or partially survive, or the two species could coexist in
a stable state. He also showed that if the system admits a unique positive equilibrium,
then it is globally asymptotically stable. Chen [21] studied the influence of non-selective
harvesting on a Lotka–Volterra amensalism model incorporating partial closure for the
populations, and he also found that the dynamic behaviors of the system become compli-
cate.

As was shown above, though there are many works on a stage-structured ecosystem
[1–16], seldom did they consider the influence of harvesting [15]. Also, though there are
several scholars who investigated the dynamic behaviors of the non-selective harvest-
ing ecosystem incorporating partial closure for the populations (see [20–22, 32, 33, 35]),
to this day, still no scholars investigated the influence of non-selective harvesting stage-
structured ecosystem incorporating partial closure for the populations. This motivated us
to propose system (1.1). We will try to give a thorough analysis of the dynamic behaviors
of system (1.1).

The paper is arranged as follows. We investigate the existence and locally stability prop-
erty of the equilibria of system (1.1) in the next section. In Sect. 3, by constructing some
suitable Lyapunov function, we are able to investigate the global stability property of the
equilibria. Section 4 presents some numerical simulations to show the feasibility of the
main results. We end this paper with a brief discussion.

2 Local stability of the equilibria
The system always admits the boundary equilibrium O(0, 0).

If α > (δ2 + Eq2m)(1 + δ1+Eq1m
β

) holds, then the system admits a unique positive equilib-
rium A(x∗

1, x∗
2), where

x∗
1 =

αx∗
2

β + δ1 + q1Em
,

x∗
2 =

αβ – (δ2 + Eq2m)(β + δ1 + Eq1m)
γ (β + δ1 + Eq1m)

.
(2.1)

We shall now investigate the local stability property of the above equilibria.
The variational matrix of system (1.1) is

J(x, y) =

(
–β – δ1 – Emq1 α

β –δ2 – 2γ x2 – Emq2

)

. (2.2)

The characteristic equation of the variational matrix is

λ2 – tr(J)λ + det(J) = 0. (2.3)

Obviously, if tr(J) < 0 and det(J) > 0, then both eigenvalues have negative real parts, and
the corresponding equilibrium solution is asymptotically stable.
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Theorem 2.1 Assume that

α < (δ2 + Eq2m)
(

1 +
δ1 + Eq1m

β

)
(2.4)

holds, then O(0, 0) is locally asymptotically stable.

Proof From (2.2) we could see that the Jacobian matrix of the system about the equilibrium
point O(0, 0) is given by

(
–β – δ1 – Emq1 α

β –δ2 – Emq2

)

. (2.5)

Hence,

tr
(
J(0, 0)

)
= –β – δ1 – Emq1 – δ2 – Emq2 < 0,

and under assumption (2.4), one has

det
(
J(0, 0)

)
= (–β – δ1 – Emq1)(–δ2 – Emq2) – αβ > 0.

Consequently, O(0, 0) is locally asymptotically stable. This ends the proof of Theo-
rem 2.1. �

Theorem 2.2 Assume that

α > (δ2 + Eq2m)
(

1 +
δ1 + Eq1m

β

)
(2.6)

holds, then A(x∗, y∗) is locally asymptotically stable.

Proof From (2.2) we could see that the Jacobian matrix of the system about the equilibrium
point A(x∗

1, x∗
2) is given by

(
–β – δ1 – Emq1 α

β –δ2 – Emq2 – 2γ x∗
2

)

. (2.7)

Hence,

tr
(
J
(
x∗

1, x∗
2
))

= –β – δ1 – Emq1 – δ2 – Emq2 – 2γ x∗
2 < 0

and under assumption (2.6), one has

det
(
J
(
x∗

1, x∗
2
))

= (–β – δ1 – Emq1)
(
–δ2 – Emq2 – 2γ x∗

2
)

– αβ

= αβ – (β + δ1 + Emq1)(δ2 + Eq2m) > 0.

Consequently, A(x∗
1, x∗

2) is locally asymptotically stable. This ends the proof of Theo-
rem 2.2. �
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3 Global asymptotic stability
This section tries to obtain some sufficient conditions which could ensure the global
asymptotic stability of the equilibria.

Theorem 3.1 Assume that

α < (δ2 + Eq2m)
(

1 +
δ1 + Eq1m

β

)
(3.1)

holds, then O(0, 0) is globally asymptotically stable.

Proof Condition (3.1) is equal to

αβ

β + δ1 + q1Em
– δ2 – q2Em < 0. (3.2)

We will prove Theorem 3.1 by constructing some suitable Lyapunov function. Let us define
a Lyapunov function

V1(x1, x2) =
β

β + δ1 + q1Em
x1 + x2.

One could easily see that the function V1 is zero at the equilibrium O(0, 0) and is positive
for all other positive values of x1 and x2. The time derivative of V1 along the trajectories
of (1.1) is

D+V1(t) =
β

β + δ1 + q1Em
(αx2 – βx1 – δx1 – q1Emx1)

+ βx1 – δ2x2 – γ x2
2 – q2Emx2

=
(

αβ

β + δ1 + q1Em
– δ2 – q2Em

)
x2 – γ x2

2. (3.3)

Obviously, under assumption (3.1), D+V1(t) < 0 strictly for all x1, x2 > 0 except the bound-
ary equilibrium O(0, 0), where D+V1(t) = 0. Thus, V1(x1, x2) satisfies Lyapunov’s asymp-
totic stability theorem, and the boundary equilibrium O(0, 0) of system (1.1) is globally
asymptotically stable.

This completes the proof of Theorem 3.1. �

Theorem 3.2 Assume that

α > (δ2 + Eq2m)
(

1 +
δ1 + Eq1m

β

)
(3.4)

holds, then A(x∗
1, x∗

2) is globally asymptotically stable.

Proof We will prove Theorem 3.2 by constructing some suitable Lyapunov function. Let
us define a Lyapunov function

V1(x1, x2) = k1

(
x1 – x∗

1 – x∗
1 ln

x1

x∗
1

)
+ k2

(
x2 – x∗

2 – x∗
2 ln

x2

x∗
2

)
,

where k1, k2 are some positive constants to be determined later.
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One could easily see that the function V2 is zero at the equilibrium A(x∗
1, x∗

2) and is posi-
tive for all other positive values of x1 and x2. The time derivative of V2 along the trajectories
of (1.1) is

D+V2(t) = k1
x1 – x∗

1
x1

ẋ1 + k2
x2 – x∗

2
x2

ẋ2

= k1
x1 – x∗

1
x1

(
αx2 – (β + δ1 + q1Em)x1

)

+ k2
x2 – x∗

2
x2

(
βx1 – δ2x2 – γ x2

2 – q2Emx2
)
. (3.5)

Note that from the relationship of x∗
1 and x∗

2, we have

αx2 – (β + δ1 + q1Em)x1

=
α

x∗
1

(
x2x∗

1 – x1x∗
2
)

+ αx1
x∗

2
x∗

1
– (β + δ1 + q1Em)x1

=
α

x∗
1

(
x2x∗

1 – x2x1 + x2x1 – x1x∗
2
)

=
α

x∗
1

(
–x2

(
x1 – x∗

1
)

+ x1
(
x2 – x∗

2
))

. (3.6)

Also, from the expression of x∗
2, one has

βx1 – δ2x2 – γ x2
2 – q2Emx2

=
β

x∗
2

(
x1x∗

2 – x2x∗
1
)

+ βx2
x∗

1
x∗

2
– (δ2 + q2Em)x2 – γ x2

2

=
β

x∗
2

(
x1x∗

2 – x1x2 + x1x2 – x2x∗
1
)

+
(

αβ

β + δ1 + q1Em
– δ2 – q2Em

)
x2 – γ x2

2

=
β

x∗
2

(
x1

(
x∗

2 – x2
)

+ x2
(
x1 – x∗

1
))

+ γ x∗
2x2 – γ x2

2. (3.7)

Applying (3.6) and (3.7) to (3.5) leads to

D+V2(t) = k1
x1 – x∗

1
x1

α

x∗
1

(
–x2

(
x1 – x∗

1
)

+ x1
(
x2 – x∗

2
))

+ k2
x2 – x∗

2
x2

β

x∗
2

(
x1

(
x∗

2 – x2
)

+ x2
(
x1 – x∗

1
))

– k2
x2 – x∗

2
x2

(
γ x∗

2x2 – γ x2
2
)

= k1
x1 – x∗

1
x1

α

x∗
1

(
–x2

(
x1 – x∗

1
)

+ x1
(
x2 – x∗

2
))

+ k2
x2 – x∗

2
x2

β

x∗
2

(
–x1

(
x2 – x∗

2
)

+ x2
(
x1 – x∗

1
))

– k2γ
(
x2 – x∗

2
)2
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= –
k1αx2

x1x∗
1

(
x1 – x∗

1
)2 +

(
k1α

x∗
1

+
k2β

x∗
2

)(
x1 – x∗

1
)(

x2 – x∗
2
)

–
k2βx1

x2x∗
2

(
x2 – x∗

2
)2 – k2γ

(
x2 – x∗

2
)2.

Now let us choose k2 = 1, k1 = βx∗
1

x∗
2α

, then

D+V2(t) = –
βx2

x1x∗
2

(
x1 – x∗

1
)2 +

2β

x∗
2

(
x1 – x∗

1
)(

x2 – x∗
2
)

–
βx1

x2x∗
2

(
x2 – x∗

2
)2 – γ

(
x2 – x∗

2
)2

= –
β

x∗
2

[√
x2

x1

(
x1 – x∗

1
)

–
√

x1

x2

(
x2 – x∗

2
)
]2

– γ
(
x2 – x∗

2
)2. (3.8)

Obviously, under assumption (3.1), D+V2(t) < 0 strictly for all x1, x2 > 0 except the positive
equilibrium A(x∗

1, x∗
2), where D+V2(t) = 0. Thus, V2(x1, x2) satisfies Lyapunov’s asymptotic

stability theorem, and the positive equilibrium A(x∗
1, x∗

2) of system (1.1) is globally asymp-
totically stable.

This completes the proof of Theorem 3.2. �

4 The influence of partial closure
To find out the influence of partial closure, let us consider the single species stage-
structured model:

dx1

dt
= αx2 – βx1 – δ1x1,

dx2

dt
= βx1 – δ2x2 – γ x2

2,
(4.1)

where α, β , δ1, δ2, and γ are all positive constants, x1(t) and x2(t) are the densities of the
immature and mature species at time t. As a direct corollary of Theorems 3.1 and 3.2, we
have the following.

Theorem 4.1 Assume that

α < δ2

(
1 +

δ1

β

)
(4.2)

holds, then the boundary equilibrium O1(0, 0) of system (4.1) is globally stable.

Theorem 4.2 Assume that

α > δ2

(
1 +

δ1

β

)
(4.3)
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holds, then the positive equilibrium B(x∗∗
1 , x∗∗

2 ) of system (4.1) is globally stable, where

x∗∗
1 =

αx∗∗
2

β + δ1
,

x∗∗
2 =

αβ – δ2(β + δ1)
γ (β + δ1)

.
(4.4)

Now let us discuss the influence of partial closure in three cases.
Case 1. Assume that inequality (4.2) holds, then for all m ∈ (0, 1), inequality (3.1) holds,

that is, if the system without harvesting is extinct, then, for the system with harvesting,
despite the partial closure where the species could not be harvested, the species is always
driven to extinction. That is, if the birth rate of the immature species is too low, the species
will be driven to extinction.

Case 2. Assume that

α > (δ2 + Eq2)
(

1 +
δ1 + Eq1

β

)
(4.5)

holds, then for all m ∈ (0, 1), inequality (3.4) holds. It follows from Theorem 3.2 that the
system always admits a unique positive equilibrium which is globally asymptotically stable.
That is, if the birth rate of the immature species is large enough such that inequality (4.5)
holds, then the partial closure has no influence on the persistence property of the system.
However, from (2.1), one could see that

dx∗
2

dm
= –

αβEq1

γ (Eq1m + β + δ1)2 –
Eq2

γ
< 0 (4.6)

and

dx∗
1

dm
=

α

β + δ1 + Eq1m

(
–

αβEq1

γ (Eq1m + β + δ1)2 –
Eq2

γ

)
–

αEq1x∗
2

(β + δ1 + Eq1m)2 < 0. (4.7)

Here, with the increase in the harvesting area, the final densities of the immature and
mature species are both decreasing.

Case 3. Now let us assume that

δ2

(
1 +

δ1

β

)
< α < (δ2 + Eq2)

(
1 +

δ1 + Eq1

β

)
(4.8)

holds, then from (4.3) and Theorem 4.2 we know that the system without harvesting ad-
mits a unique positive equilibrium B(x∗∗

1 , x∗∗
2 ), which is globally asymptotically stable. In

this case, it follows from Theorems 3.1 and 3.2 that there exists a threshold

m∗ =
–(βq2 + δ1q2 + δ2q1) +

√



2Eq1q2
,

where


 = (βq2 + δ1q2 + δ2q1)2 – 4q1q2(–αβ + βδ2 + δ1δ2).
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For all m ∈ (0, m∗), inequality (3.4) holds, and the system has a unique positive equilibrium
A(x∗

1, x∗
2), which is globally asymptotically stable. In this case, by using (2.1), we could see

that (4.6) and (4.7) also hold, that is, with the increase in the harvesting area, the final
density of the species is decreasing. However, for all m ∈ (m∗, 1), inequality (3.1) holds, and
the species will be driven to extinction. It is well known that m (0 < m < 1) is the fraction
of the stock available for harvesting, hence, under assumption (4.8), if the harvesting area
is too large, despite the fact that there are some areas where the harvesting is forbidden,
the species will still be driven to extinction.

5 Numeric simulations
Now let us consider the following examples.

Example 5.1 Let us consider the single species stage-structured system incorporating par-
tial closure for the populations and non-selective harvesting:

dx1

dt
= αx2 – x1 – x1 –

1
2

x1,

dx2

dt
= x1 – x2 – x2

2 –
1
2

x2,
(5.1)

here we choose β = δ1 = δ2 = E = q1 = q2 = 1, m = 1
2 , γ = 1.

(1) From Theorems 2.1 and 3.1, we know that if

α < (δ2 + Eq2m)
(

1 +
δ1 + Eq1m

β

)
=

15
4

, (5.2)

then O(0, 0) is globally attractive, Fig. 1 is numeric simulation for the case α = 3;
(2) From Theorems 2.2 and 3.2, we know that if

α > (δ2 + Eq2m)
(

1 +
δ1 + Eq1m

β

)
=

15
4

, (5.3)

then A(x∗
1, x∗

2) is globally asymptotically stable. Now let us take α = 5, then the system
admits a unique positive equilibrium (1, 0.5). Figure 2 shows that in this case, (1, 0.5) is
globally asymptotically stable.

Figure 1 Dynamic behaviors of system (5.1). Here,
we take α = 3 and the initial conditions
(x1(0), x2(0)) = (0.5, 1), (1, 1), and (1.3, 0.2), respectively
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Figure 2 Dynamic behaviors of system (5.1). Here,
we take α = 5 and the initial conditions
(x1(0), x2(0)) = (0.5, 1), (1, 1), (1.4, 0.3), (0.1, 0.1), (0.1, 1),
(1.4, 0.1), and (0.1, 0.5), respectively

Figure 3 Numeric simulations of the first
component x1(t) of system (5.4), withm = 0.1, 0.3, 0.5,
where black curve is the solution ofm = 0.1, blue
curve is the solution ofm = 0.3, and red curve is the
solution ofm = 0.5, and (x1(0), x2(0)) = (0.005, 0.01)

Example 5.2 Let us consider the single species stage-structured system incorporating par-
tial closure for the populations and non-selective harvesting:

dx1

dt
= x2 – x1 – x1 – mx1,

dx2

dt
= x1 – x2 – x2

2 – mx2,
(5.4)

here we choose β = α = δ1 = δ2 = E = q1 = q2 = 1, γ = 1. In this case, since

α = 1 < 2 = δ2

(
1 +

δ1

β

)
.

It follows from the analysis of Case 1 in Sect. 4, for all m ∈ (0, 1), that the species will be
driven to extinction. Figure 3 and Fig. 4 show that with the increase in m, the time for the
species to go to extinction becomes shorter. That is, with intense harvesting, the chance
for the species to be driven to extinction is increasing.

Example 5.3 Let us consider the single species stage-structured system incorporating par-
tial closure for the populations and non-selective harvesting:

dx1

dt
= 10x2 – x1 – x1 – mx1,

dx2

dt
= x1 – x2 – x2

2 – mx2,
(5.5)
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Figure 4 Numeric simulations of the second
component x2(t) of system (5.4), withm = 0.1, 0.3, 0.5,
where black curve is the solution ofm = 0.1, blue
curve is the solution ofm = 0.3, and red curve is the
solution ofm = 0.5, and (x1(0), x2(0)) = (0.005, 0.01)

Figure 5 Numeric simulations of the first
component x1(t) of system (5.5), withm = 0.1, 0.3, 0.5,
where black curve is the solution ofm = 0.1, blue
curve is the solution ofm = 0.3, and red curve is the
solution ofm = 0.5, and (x1(0), x2(0)) = (0.005, 0.01)

Figure 6 Numeric simulations of the second
component x2(t) of system (5.5), withm = 0.1, 0.3, 0.5,
where black curve is the solution ofm = 0.1, blue
curve is the solution ofm = 0.3, and red curve is the
solution ofm = 0.5, and (x1(0), x2(0)) = (0.005, 0.01)

here we choose α = 10, β = δ1 = δ2 = E = q1 = q2 = 1, γ = 1. In this case, since

α = 10 > 6 = (δ2 + Eq2)
(

1 +
δ1 + Eq1

β

)
.

It follows from the analysis of Case 2 in Sect. 4, for all m ∈ (0, 1), that the system always
admits a unique positive equilibrium, which is globally asymptotically stable. Figure 5 and
Fig. 6 show that with the increase in m, the density of the species becomes decreasing.
That is, with intense harvesting, the final density of the species is decreasing.
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Figure 7 Dynamic behaviors of system (5.6). Here,
we take α = 4,m = 0.8 and the initial conditions
(x1(0), x2(0)) = (0.5, 1), (1, 1), (1.4, 0.3), (0.1, 0.1), (0.1, 1),
(1.4, 0.1), and (0.1, 0.5), respectively

Figure 8 Numeric simulations of the first
component x1(t) of system (5.6), withm = 0.1, 0.3, 0.5,
where black curve is the solution ofm = 0.1, blue
curve is the solution ofm = 0.3, and red curve is the
solution ofm = 0.5, and (x1(0), x2(0)) = (0.005, 0.01)

Example 5.4 Let us consider the single species stage-structured system incorporating par-
tial closure for the populations and non-selective harvesting:

dx1

dt
= 4x2 – x1 – x1 – mx1,

dx2

dt
= x1 – x2 – x2

2 – mx2,
(5.6)

here we choose α = 4, β = δ1 = δ2 = E = q1 = q2 = 1, γ = 1. In this case, since

δ2

(
1 +

δ1

β

)
= 2 < α = 4 < 6 = (δ2 + Eq2)

(
1 +

δ1 + Eq1

β

)
.

It follows from the analysis of Case 3 in Sect. 4, that there exists m∗ ≈ 0.5615528128 such
that, for all m ∈ (0, m∗), the system always admits a unique positive equilibrium, which is
globally asymptotically stable, while for m ∈ (m∗, 1), the system will be driven to extinction.
Figure 7 is the case for m = 0.8. Figure 8 and Fig. 9 show that for the case m ∈ (0, m∗), with
the increase in m, the density of the species becomes decreasing. That is, with intense
harvesting, the final density of the species is decreasing. Also, from Fig. 8 and Fig. 9, one
could see that with the increase in m, the system takes much time to reach its steady-state.

6 Conclusion
Since the pioneering works of Chakraborty et al. [20], many scholars [21, 22, 32, 33, 35]
investigated the dynamic behaviors of the non-selective harvesting ecosystem incorpo-
rating partial closure for the populations. Though Chakraborty et al. [20] could not give a
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Figure 9 Numeric simulations of the second
component x2(t) of system (5.6), withm = 0.1, 0.3, 0.5,
where black curve is the solution ofm = 0.1, blue
curve is the solution ofm = 0.3, and red curve is the
solution ofm = 0.5, and (x1(0), x2(0)) = (0.005, 0.01)

distinct analysis of the parameter m, both the works [21] and [22] showed that, depending
on the range of the parameter m, the system they considered could collapse, or partially
survive, or the two species could coexist in a stable state.

In this paper, we propose a non-selective harvesting single species stage-structured sys-
tem incorporating partial closure for the populations. Our study shows that the dynamic
behaviors of system (1.1) differ from those of the system considered in [21, 22] in the sense
that the system could not have a partial survival case. In system (1.1), there are only two
possible situations: (1) the boundary equilibrium O(0, 0) is globally asymptotically stable;
(2) the positive equilibrium A(x∗

1, x∗
2) is globally asymptotically stable.

Our study shows that with the increase in the harvesting area, the final density of the
species becomes decreasing, or it takes much time for the system to approach its steady-
state, it is in this sense that the parameter m has the destabilizing effect to the system.
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